A problem of Diophantus and Dickson's conjecture

Andrej Dujella

Abstract

A Diophantine m-tuple with the property $D(n)$, where n is an integer, is defined as a set of m positive integers with the property that the product of its any two distinct elements increased by n is a perfect square. It is known that if n is of the form $4 k+2$, then there does not exist a Diophantine quadruple with the property $D(n)$. The author has formerly proved that if n is not of the form $4 k+2$ and $n \notin\{-15,-12,-7,-4,-3,-1,3,5,7,8,12,13,15,20,21,24,28,32,48,60,84\}$, then there exist at least two distinct Diophantine quadruples with the property $D(n)$.

The main problem of this paper is to consider the set U of all integers n, not of the form $4 k+2$, such that there exist at most two distinct Diophantine quadruples with the property $D(n)$. One open question is whether the set U is finite or not. It can be proved that if $n \in U$ and $|n|>48$, then n can be represented in one of the following forms: $4 k+3,16 k+12,8 k+5,32 k+20$. The main results of the this paper are:

If $n \in U \backslash\{-9,-1,3,7,11\}$ and $n \equiv 3(\bmod 4)$, then the integers $|n-1| / 2,|n-9| / 2$ and $|9 n-1| / 2$ are primes, and either $|n|$ is prime or n is the product of twin primes.

If $n \in U \backslash\{-27,-3,5,13,21,45\}$ and $n \equiv 5(\bmod 8)$, then the integers $|n|,|n-1| / 4$, $|n-9| / 4$ and $|9 n-1| / 4$ are primes.

1991 Mathematics Subject Classification: 11D09, 11A41

1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the rational numbers $\frac{1}{16}, \frac{33}{16}, \frac{17}{4}$ and $\frac{105}{16}$ have the following property: the product of any two of them increased by 1 is a square of a rational number (see [3]). The first set of four integers with the above property was found by Fermat, and it was $\{1,3,8,120\}$. In 1969, Davenport and Baker [1] showed that if d is a positive integer such that the set $\{1,3,8, d\}$ has the property of Diophantus, then d has to be 120 .

Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property $D(n)$, if for all $1 \leq i<j \leq m$ the following holds: $a_{i} a_{j}+n=b_{i j}^{2}$, where $b_{i j}$ is an integer. Such a set is called a Diophantine m-tuple. If n is an integer of the form $4 k+2, k \in \mathbf{Z}$, then there does not exist Diophantine quadruple with the property $D(n)$ (see [2, Theorem 1], [4, Theorem 4] or [9, p. 802]). If an integer n is not of
the form $4 k+2$ and $n \notin\{-15,-12,-7,-4,-3,-1,3,5,7,8,12,13,15,20,21,24$, $28,32,48,60,84\}$, then there exist at least two distinct Diophantine quadruples with the property $D(n)$ (see [4, Theorems 5 and 6$]$ and [5, p. 315]). The proof of the former result is based on the fact that the sets

$$
\begin{gathered}
\left\{m, m(3 k+1)^{2}+2 k, m(3 k+2)^{2}+2 k+2,9 m(2 k+1)^{2}+8 k+4\right\}, \\
\left\{m, m k^{2}-2 k-2, m(k+1)^{2}-2 k, m(2 k+1)^{2}-8 k-4\right\}
\end{gathered}
$$

have the property $D(2(2 k+1) m+1)$. These formulas are used in [7] and the above results are generalized to the set of Gaussian integers. More formulas of this type were obtained in [6].

These formulas were used in [8], where some improvements of the results of [4] were obtained. It was proved that if $n \equiv 1(\bmod 8)$ and $n \notin\{-15,-7,17,33\}$, or $n \equiv 4(\bmod 32)$ and $n \notin\{-28,68\}$, or $n \equiv 0(\bmod 16)$ and $n \notin\{-16,32,48$, $80\}$, then there exist at least six, and if $n \equiv 8(\bmod 16)$ and $n \notin\{-8,8,24,40\}$, then there exist at least four distinct Diophantine quadruples with the property $D(n)$. These results imply that if an integer n is not of the form $4 k+2,|n|>48$, and there exist at most two distinct Diophantine quadruples with the property $D(n)$, then n can be represented in one of the following forms:

$$
4 k+3, \quad 16 k+12, \quad 8 k+5, \quad 32 k+20
$$

The main problem of this paper is to consider those n for which there are at most two Diophantine quadruples with the property $D(n)$. We will prove that for an integer n, not of the from $4 k+2$, the assumption that there exist at most two distinct Diophantine quadruples with the property $D(n)$ has very strong consequences, which are connected with the problem of existence of primes in arithmetical progressions.

Since multiplying all elements of quadruples with the properties $D(4 k+3)$ and $D(8 k+5)$ by 2 we obtain the quadruples with the properties $D(16 k+12)$ and $D(32 k+20$), respectively (by [4, Remark 3], all quadruples with the property $D(16 k+12)$ can be obtained on this way), we will restrict our attention to the integers of the forms $4 k+3$ and $8 k+5$.

2. The case $\mathbf{n}=4 \mathrm{k}+3$

Theorem 1. Let n be an integer such that $n \equiv 3(\bmod 4), n \notin\{-9,-1,3,7,11\}$, and there exist at most two distinct Diophantine quadruples with the property $D(n)$. Then the integers $|n-1| / 2,|n-9| / 2$ and $|9 n-1| / 2$ are primes. Furthermore, either the integer $|n|$ is prime or $n=p q$, where p and q are twin primes.

To prove this theorem we need the following lemmas.
Lemma 1. Let n be an integer such that $n \equiv 3(\bmod 4)$ and let $n=s t$, where s and t are integers such that $s \geq 1$ and $s-t>2$. Let $v=(s-t-2) / 4$. Then the
set

$$
\begin{equation*}
\left\{1,(3 v+1)^{2}+2 v t,(3 v+2)^{2}+2(v+1) t, 9(2 v+1)^{2}+4(2 v+1) t\right\} \tag{2.1}
\end{equation*}
$$

is a Diophantine quadruple with the property $D(n)$.
Proof. From $s t \equiv 3(\bmod 4)$ it follows that $s \equiv t+2(\bmod 4)$. Hence v is a positive integer. Set

$$
\begin{aligned}
b & =(3 v+1)^{2}+2 v t \\
c & =(3 v+2)^{2}+2(v+1) t \\
d & =9(2 v+1)^{2}+4(2 v+1) t
\end{aligned}
$$

By [6, proof of Theorem 1], the product of any two distinct elements of the set $\{1, b, c, d\}$ increased by n is a perfect square. Thus, it is sufficient to prove that 1 , b, c and d are distinct positive integers. We have:

$$
\begin{aligned}
b-1 & =v(9 v+2 t+6)=v(v+2 s+2)>0 \\
c-1 & =(v+1)(9 v+2 t+3)=(v+1)(v+2 s-1)>0 \\
d-1 & =(2 v+1)(18 v+4 t+9)-1=(2 v+1)(2 v+4 s+1)-1>0 \\
c-b & =6 v+2 t+3=(3 s+t) / 2 \neq 0 \\
d-b & =(3 v+2)(9 v+2 t+4)=(3 v+2)(v+2 s)>0 \\
d-c & =(3 v+1)(9 v+2 t+5)=(3 v+1)(v+2 s+1)>0
\end{aligned}
$$

which proves the lemma.
Lemma 2. If the integer $|2 k+1|$ is composite, then there exists a Diophantine quadruple $\{a, b, c, d\} \subset \mathbf{N} \backslash\{1\}$ with the property $D(4 k+3)$.

Proof. Let

$$
2 k+1=(2 l+1) m,
$$

where $l \notin\{-1,0\}$ and $m \geq 3$. Then $4 k+3=2(2 l+1) m+1$. Set

$$
\begin{aligned}
a & =m \\
b & =(3 l+1)^{2} m+2 l \\
c & =(3 l+2)^{2} m+2 l+2 \\
d & =9(2 l+1)^{2} m+8 l+4
\end{aligned}
$$

We claim that the set $\{a, b, c, d\}$ has the desired property. By [4, (13)] it suffices to show that a, b, c and d are distinct integers and $b, c, d \geq 2$. Since $l \notin\{-1,0\}$, we have:

$$
\begin{aligned}
b-a & =\left(9 l^{2}+6 l\right) m+2 l \geq 27 l^{2}+20 l>0 \\
c-a & =\left(9 l^{2}+12 l+3\right) m+2 l+2 \geq 27 l^{2}+28 l+11>0 \\
d-a & =\left(36 l^{2}+36 l+8\right) m+8 l+4 \geq 144 l^{2}+152 l+36>0 \\
c-b & =3(2 l+1) m+2 \neq 0
\end{aligned}
$$

$$
\begin{aligned}
d-b & =(3 l+2)[(9 l+4) m+2] \neq 0 \\
d-c & =(3 l+1)[(9 l+5) m+2] \neq 0
\end{aligned}
$$

Hence a, b, c and d are distinct integers and $b, c, d>a \geq 3$.
Lemma 3. If the integer $|2 k-3|$ is composite and $k \notin\{-3,6\}$, then there exists a Diophantine quadruple $\{a, b, c, d\} \subset \mathbf{N} \backslash\{1\}$ with the property $D(4 k+3)$.

Proof. Let

$$
2 k-3=(2 l+1) m,
$$

where $l \notin\{-2,-1,0,1\}$ and $m \geq 3$. Then $4 k+3=2(2 l+1) m+9$. Set

$$
\begin{aligned}
a & =m \\
b & =l^{2} m+2 l-2 \\
c & =(l+1)^{2} m+2 l+4 \\
d & =(2 l+1)^{2} m+8 l+4
\end{aligned}
$$

To prove that the set $\{a, b, c, d\}$ has the desired property, by [4, (23)], it suffices to show that a, b, c and d are distinct integers and $b, c, d \geq 2$. Since $l \notin\{-2,-1,0,1\}$, we have:

$$
\begin{aligned}
b-a & =\left(l^{2}-1\right) m+2 l-2 \geq 3 l^{2}+2 l-5>0 \\
c-a & =\left(l^{2}+2 l\right) m+2 l+2 \geq 3 l^{2}+8 l+2>0 \\
d-a & =\left(4 l^{2}+4 l\right) m+8 l+4 \geq 12 l^{2}+20 l+4>0 \\
c-b & =(2 l+1) m+6 \neq 0 \\
d-b & =(l+1)[(3 l+1) m+6] \neq 0 \\
d-c & =l[(3 l+2) m+6] \neq 0,
\end{aligned}
$$

which gives the desired conclusion.
Lemma 4. If the integer $|18 k+13|$ is composite, then there exist a Diophantine quadruple $\{a, b, c, d\} \subset \mathbf{N} \backslash\{1\}$ with the property $D(4 k+3)$.

Proof. Let

$$
\begin{equation*}
18 k+13=(2 l+3) m \tag{2.2}
\end{equation*}
$$

where $l \notin\{-2,-1\}$ and $m \geq 5$. Then $4 k+3=[2 m(2 l+3)+1] / 9$. Set

$$
\begin{aligned}
a & =m \\
b & =\left(l^{2} m-2 l-6\right) / 9 \\
c & =\left[(l+3)^{2} m-2 l\right] / 9 \\
d & =\left[(2 l+3)^{2} m-8 l-12\right] / 9
\end{aligned}
$$

The numbers b, c and d are integers, by (2.2). We claim that the set $\{a, b, c, d\}$ has the desired property. From [6, proof of Theorem 1] it follows that the product of
any two distinct elements of this set is a perfect square. Thus it suffices to prove that a, b, c and d are distinct integers and $b, c, d \geq 2$. Since $l \not \equiv 0(\bmod 3)$, we have:

$$
\begin{aligned}
b-a & =(l+3)[(l-3) m-2] / 9 \neq 0 \\
c-a & =l[(l+6) m-2] / 9 \neq 0 \\
d-a & =\left[\left(4 l^{2}+12 k\right) m-8 l-12\right] / 9 \geq\left(20 l^{2}+52 l-12\right) / 9>0 \\
c-b & =[(2 l+1) m+2] / 3 \neq 0 \\
d-b & =(l+1)[(l+3) m-2] / 3 \neq 0 \\
d-c & =(l+2)[l m-2] / 3 \neq 0 .
\end{aligned}
$$

It remains to prove that $b \geq 2$ and $c \geq 2$. Since $k \notin\{-3,-2\}$ and $m \geq 5$, we have:

$$
c \geq \frac{1}{9}\left(5 k^{2}+28 k+45\right)>1
$$

Suppose that $k \neq 1$. Then $b \geq\left(5 k^{2}-2 k-6\right) / 9>1$. If $k=1$, then from $54 q+49=5 m$ if follows that $m \geq 53$ and $b=(m-8) / 9>5$.

Proof of Theorem 1. It is clear that the assertion is valid for $n=15$. If $n \neq 15$, then there exist at least two distinct Diophantine quadruples with the property $D(n)$ which contain the number 1 (see $[4,(7)$ and (17)]).

If either of the integers $|n-1| / 2,|n-9| / 2$ and $|9 n-1| / 2$ is not prime, then it is composite. Note that the integer $|27 \cdot 9-1| / 2=121$ is composite. From Lemmas 2,3 and 4 it follows that there exists a Diophantine quadruple with the property $D(n)$ which does not contain the number 1 . This contradicts to our assumption.

Suppose that $|n|$ is not a prime and that n is not a product of twin primes. If $n \equiv 0(\bmod 3)$ and $n \notin\{3,15\}$, the integer $|n-9| / 2$ is composite.

Thus $n \not \equiv 0(\bmod 3)$ and $n=s t$, where $s \geq 5,|t| \geq 5$ and $s-t>2$. Write $v=(s-t-2) / 4$. Then the set (2.1) is the Diophantine quadruple with the property $D(n)$, by Lemma 1 . We claim that this quadruple is different from quadruples [4, (7)] and $[4,(17)]$. Indeed, the sums of elements of quadruples $(2.1),[4,(7)]$ and $[4,(17)]$ are $3\left(18 v^{2}+18 v+5+4 v t+2 t\right), 3\left(18 k^{2}+22 k+7\right)$ and $3\left(2 k^{2}-2 k-1\right)$, respectively, where $n=4 k+3$. Since $18 k^{2}+22 k+7 \geq 2 k^{2}-2 k-1$ for every integer k, it is sufficient to prove that

$$
\begin{equation*}
18 v^{2}+18 v+5+4 v t+2 t<2 k^{2}-2 k-1 \tag{2.3}
\end{equation*}
$$

The relation (2.3) is equivalent to

$$
\begin{equation*}
(2 v+1)(2 v+4 s+1)<\frac{1}{4}(n-1)(n-9) . \tag{2.4}
\end{equation*}
$$

Let $t>0$. Then

$$
v \leq \frac{\frac{n}{5}-5-2}{4}=\frac{n-35}{20}
$$

and

$$
(2 v+1)(2 v+4 s+1) \leq \frac{n-25}{10} \cdot \frac{9 n-25}{10} .
$$

If $t<0$, then $n=-m<0$, and we have

$$
v \leq \frac{\frac{m}{5}+5-2}{4}=\frac{m+15}{20}
$$

and

$$
(2 v+1)(2 v+4 s+1) \leq \frac{m+25}{10} \cdot \frac{9 m+25}{10}=\frac{n-25}{10} \cdot \frac{9 n-25}{10}
$$

If $|n|>5$, then $(n-25)(9 n-25)<25(n-1)(n-9)$, which establishes the formula (2.4) and completes the proof.

3. The case $\mathrm{n}=8 \mathrm{k}+5$

Theorem 2. Let n be an integer such that $n \equiv 5(\bmod 8), n \notin\{-27,-3,5,13,21$, $45\}$, and there exist at most two distinct Diophantine quadruples with the property $D(n)$. Then the integers $|n|,|n-1| / 4,|n-9| / 4$ and $|9 n-1| / 4$ are primes.

To prove this theorem we need the following lemmas.
Lemma 5. Let n be an integer such that $n \equiv 5(\bmod 8)$ and let $n=$ st, where s and t are integers such that $s \geq 1, s-t>4$ and $t \neq-3 s$. If $v=(s-t-4) / 8$, then the set

$$
\begin{equation*}
\left\{2,2(3 v+1)^{2}+2 v t, 2(3 v+2)^{2}+2(v+1) t, 18(2 v+1)^{2}+4(2 v+1) t\right\} \tag{3.5}
\end{equation*}
$$

is the Diophantine quadruple with the property $D(n)$.
Proof. From $s t \equiv 5(\bmod 8)$ it follows that $s \equiv t+4(\bmod 8)$. Hence v is a positive integer. Set

$$
\begin{aligned}
& b=2(3 v+1)^{2}+2 v t \\
& c=2(3 v+2)^{2}+2(v+1) t \\
& d=18(2 v+1)^{2}+4(2 v+1) t
\end{aligned}
$$

By [6, proof of Theorem 1], it is sufficient to prove that $2, b, c$ and d are distinct positive integers. We have:

$$
\begin{aligned}
b-2 & =2 v(9 v+t+6)=2 v(v+s+2)>0 \\
c-2 & =2(v+1)(9 v+t+3)=2(v+1)(v+s-1)>0 \\
d-2 & =2(2 v+1)(18 v+2 t+9)-2=2[(2 v+1)(2 v+2 s+1)-1]>0 \\
c-b & =2(6 v+t+3)=(3 s+t) / 2 \neq 0 \\
d-b & =2(3 v+2)(9 v+t+4)=2(3 v+2)(v+s)>0 \\
d-c & =2(3 v+1)(9 v+t+5)=2(3 v+1)(v+s+1)>0
\end{aligned}
$$

which proves the lemma.

Lemma 6. If the integer $|2 k+1|$ is composite, then there exists a Diophantine quadruple $\{a, b, c, d\} \subset \mathbf{N} \backslash\{2\}$ with the property $D(8 k+5)$.

Proof. Let

$$
2 k+1=(2 l+1) m,
$$

where $l \notin\{-1,0\}$ and $m \geq 3$. Then $8 k+5=4(2 l+1) m+1$. Set

$$
\begin{aligned}
a & =2 m \\
b & =2 m(3 l+1)^{2}+2 l \\
c & =2 m(3 l+2)^{2}+2 l+2 \\
d & =18 m(2 l+1)^{2}+8 l+4
\end{aligned}
$$

An analysis similar to the one in the proof of Lemma 2 shows that the set $\{a, b, c, d\}$ has the desired property.

Lemma 7. If the integer $|2 k-1|$ is composite and $k \notin\{-4,5\}$, then there exists a Diophantine quadruple $\{a, b, c, d\} \subset \mathbf{N} \backslash\{2\}$ with the property $D(8 k+5)$.

Proof. The proof of Lemma 7 is completely analogous to the proof of Lemma 3.

Lemma 8. If the integer $|18 k+11|$ is composite and $k \notin\{-2,3\}$, then there exist a Diophantine quadruple $\{a, b, c, d\} \subset \mathbf{N} \backslash\{2\}$ with the property $D(8 k+5)$.

Proof. Let

$$
\begin{equation*}
18 k+11=(2 l+3) m, \tag{3.6}
\end{equation*}
$$

where $l \notin\{-2,-1\}$ and $m \geq 5$. Then $8 k+5=[4 m(2 l+3)+1] / 9$. Set

$$
\begin{aligned}
a & =2 m \\
b & =\left(2 m l^{2}-2 l-6\right) / 9 \\
c & =\left[2 m(l+3)^{2}-2 l\right] / 9 \\
d & =\left[2 m(2 l+3)^{2}-8 l-12\right] / 9 .
\end{aligned}
$$

We claim that the set $\{a, b, c, d\}$ has the desired property. Let us first observe that (3.6) implies that b, c and d are integers. Similarly, as in the proof of Lemma 4 we obtain that a, b, c and d are distinct integers and $d>a$.

If $l \neq 1$, then $b \geq\left(10 l^{2}-2 l-6\right) / 9>2$, and if $l=1$, then from $18 l+11=5 m$ and $k \neq 3$ it follows that $m \geq 31$ and $b=(2 m-8) / 9 \geq 6$.

If $l \neq-4$, then $c \geq\left(10 l^{2}+58 l+90\right) / 9>2$, and if $l=-4$ then from $18 k+11=$ $-5 m$ and $k \neq-2$ it follows that $m \geq 23$ and $c=(2 m+8) / 9 \geq 6$.

Proof of Theorem 2. If n satisfies the assumptions of Theorem 2 then there exist at least two distinct Diophantine quadruples with the property $D(n)$ which contain the number 2 (see [4, (9) and (19)]).

If either of the integers $|n-1| / 4,|n-9| / 4$ and $|9 n-1| / 4$ is not prime, then it is composite. Assume that $n \notin\{-11,29\}$. Then from Lemmas 6,7 and 8 it follows that there exists a Diophantine quadruple with the property $D(n)$ which does not contain the number 2 .

For $n=-11$ the construction of Lemma 8 gives the quadruple $\{2,10,18,30\}$, while $[4,(9)$ and (19)] gives the quadruples $\{2,30,46,150\}$ and $\{2,6,10,30\}$ with the property $D(-11)$.

For $n=29$ the construction of Lemma 8 gives the quadruple $\{2,26,46,70\}$, while $[4,(9)$ and (19)] gives the quadruples $\{2,206,250,910\}$ and $\{2,10,26$, $70\}$ with the property $D(29)$. This completes the proof that the integers $|n-1| / 4$, $|n-9| / 4$ and $|9 n-1| / 4$ are primes.

It remains to prove that $|n|$ is prime. Suppose that the integer $|n|$ is composite. We need to consider three cases.

First, let $n \equiv 0(\bmod 3)$. Since $n \notin\{-3,21\}$, the integer $|n-9| / 4$ is composite, a contradiction.

Next, let $n=s t$, where $s \geq 5,|t| \geq 5$ and $s-t>4$. Let $v=(s-t-4) / 8$. Then the set (3.5) is the Diophantine quadruple with the property $D(n)$, by Lemma 5. We will show that this quadruple is different from quadruples [4, (9)] and [4, (19)]. Indeed, the sums of elements of quadruples (3.5), [4, (9)] and [4, (19)] are $6\left(18 v^{2}+18 v+5+2 v t+t\right), 6\left(18 k^{2}+20 k+6\right)$ and $12 k^{2}$, respectively, where $n=8 k+5$. Thus, it is sufficient to prove that

$$
\begin{equation*}
18 v^{2}+18 v+5+2 v t+t<2 k^{2} \tag{3.7}
\end{equation*}
$$

or, equivalently, that

$$
\begin{equation*}
(2 v+1)(2 v+2 s+1)<\frac{1}{16}(n-1)(n-9) \tag{3.8}
\end{equation*}
$$

The proof of (3.8) is completely analogous to the proof of (2.4).
Finally, let $n=p q$, where p and q are primes and $p-q=4$. Since $n \neq 21$, we conclude that n is of the form $n=(6 x+1)(6 x+5), x \geq 1$. An easy computation shows that the set

$$
\begin{gathered}
\left\{2,32 x^{2}+32 x+10,288 x^{4}+672 x^{3}+542 x^{2}+178 x+22\right. \\
\left.288 x^{4}+480 x^{3}+254 x^{2}+42 x+2\right\}
\end{gathered}
$$

is the Diophantine quadruple with the property $D((6 x+1)(6 x+5))$. From $32 x^{2}+$ $32 x+10<n$ it follows easily that this quadruple is different from quadruples [4, (9)] and [4, (19)]. This completes the proof of the theorem.

4. Connection with Dickson's conjecture

Let U denote the set of all integers n, not of the form $4 k+2$, such that there exist at most two distinct Diophantine quadruples with the property $D(n)$. It is not yet known, whether the set U is finite or not. From the results of [8] and Theorems 1 and 2 it follows that if U is infinite then at least one of the sets

$$
\begin{aligned}
& A=\{k \in \mathbf{Z}:|2 k-3|,|2 k+1|,|4 k+3|,|18 k+13| \text { are primes }\}, \\
& B=\left\{l \in \mathbf{N}: 2 l-1,2 l+1,2 l^{2}-5,2 l^{2}-1,18 l^{2}-5 \text { are primes }\right\}, \\
& C=\{k \in \mathbf{Z}:|2 k-1|,|2 k+1|,|8 k+5|,|18 k+11| \text { are primes }\}
\end{aligned}
$$

is infinite. The question whether the sets A, B and C are infinite or not is still unanswered. Let us observe that the linear polynomials appearing in the sets A and C satisfy the conditions of following Dickson's conjecture ([10, p. 292]):

Let $s \geq 1, f_{i}(x)=b_{i} x+a_{i}$, with a_{i}, b_{i} integers, $b_{i} \geq 1($ for $i=1, \ldots, s)$. Assume that the following condition is satisfied:

There does not exist any integer $n>1$ dividing all the products $f_{1}(k) f_{2}(k) \cdots f_{s}(k)$ for every integer k.

Then there exist infinitely many natural numbers m such that all numbers $f_{1}(m), f_{2}(m), \ldots, f_{s}(m)$ are primes.

Indeed, if $f_{1}(x)=2 x-3, f_{2}(x)=2 x+1, f_{3}(x)=4 x+3$ and $f_{4}(x)=18 x+13$, then the integers $f_{1}(0) f_{2}(0) f_{3}(0) f_{4}(0)=-117$ and $f_{1}(2) f_{2}(2) f_{3}(2) f_{4}(2)=2695$ are relatively prime, and if $g_{1}(x)=2 x-1, g_{2}(x)=2 x+1, g_{3}(x)=8 x+$ 5 and $g_{4}(x)=18 x+11$, then the integers $g_{1}(0) g_{2}(0) g_{3}(0) g_{4}(0)=-55$ and $g_{1}(1) g_{2}(1) g_{3}(1) g_{4}(1)=1131$ are relatively prime. Furthermore, the polynomials from the set B satisfy the conditions of the Schinzel-Sierpiński conjecture ([11], [10, p. 312]), which is an analogue of Dickson's conjecture for irreducible polynomials. Therefore, the validity of the Schinzel-Sierpiński conjecture would imply that the sets A, B and C are infinite.

References

[1] Baker, A., Davenport, H., The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137
[2] Brown, E., Sets in which $x y+k$ is always a square. Math. Comp. 45 (1985), 613-620
[3] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers. Nauka, Moscow 1974 (in Russian)
[4] Dujella, A., Generalization of a problem of Diophantus. Acta Arith. 65 (1993), 15-27
[5] - , Diophantine quadruples for squares of Fibonacci and Lucas numbers. Portugal. Math. 52 (1995), 305-318
[6] -, Some polynomial formulas for Diophantine quadruples. Grazer Math. Ber. (to appear)
[7] -, The problem of Diophantus and Davenport for Gaussian integers. Glas. Mat. Ser. III (to appear)
[8] -, Some estimates of the number of Diophantine quadruples. (preprint)
[9] Gupta, H., Singh, K., On k-triad sequences. Internat. J. Math. Math. Sci. 8 (1985), 799-804
[10] Ribenboim, P., The Book of Prime Number Records. Springer Verlag, New York-Berlin-Heidelberg 1989
[11] Schinzel, A., Sierpiński, W., Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185-208, Corrigendum, 5 (1959), 259

