FORMULAS FOR DIOPHANTINE QUINTUPLES CONTAINING TWO PAIRS OF CONJUGATES IN SOME QUADRATIC FIELDS

ANDREJ DUJELLA, ZRINKA FRANUŠIĆ, VINKO PETRIČEVIĆ

Abstract

Let D be a positive integer which is not a perfect square. We consider Diophantine quintuples in the ring $\mathbb{Z}[\sqrt{D}]$ of the form $$
\{e, a \pm b \sqrt{D}, c \pm d \sqrt{D}\}
$$ where a, b, c, d, e are integers. In this paper, we show that there exists a Diophantine quintuple of that form for certain values of D, including $D=1+n^{2}(n+1)^{2}$ and some other polynomials of degree 4 , and we represent its elements also as polynomials in n.

1. Introduction

Let \mathcal{R} be a commutative ring with the unity. A Diophantine m tuple in \mathcal{R} is a set of m elements in $\mathcal{R} \backslash\{0\}$ with the property that the product of any two of its distinct elements increased by the unity is a square in \mathcal{R}. Diophantine m-tuples have been most studied for $\mathcal{R}=\mathbb{Z}$ and $\mathcal{R}=\mathbb{Q}$ where the major focus has been on finding an upper bound on m, i.e. on the size of such a set. Let us mention two important historical examples of such sets, $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$ - the first Diophantine quadruple in \mathbb{Q} (found by Diophantus himself) and $\{1,3,8,120\}$ - the first Diophantine quadruple in \mathbb{Z} (found by Fermat). There does not exist an integer Diophantine quintuple (see [11]) and, on the other hand, there are infinitely many rational Diophantine sextuples (see [7]). A brief overview of the results on Diophantine m-tuples, including various generalizations, can be found in [5, 6].

Any Diophantine triple $\left\{a_{1}, a_{2}, a_{3}\right\}$ can be extended to a Diophantine quadruple by adding one of the following two elements (if they are not equal to 0):

$$
\begin{equation*}
d_{ \pm}=a_{1}+a_{2}+a_{3}+2 a_{1} a_{2} a_{3} \pm 2 r s t \tag{1}
\end{equation*}
$$

2020 Mathematics Subject Classification. 11D09, 11R11.
Key words and phrases. Diophantine quintuples, regular Diophantine quadruples, quadratic fields.
where $a_{1} a_{2}+1=r^{2}, a_{1} a_{3}+1=s^{2}, a_{2} a_{3}+1=t^{2}$. Sets $\left\{a_{1}, a_{2}, a_{3}, d_{-}\right\}$and $\left\{a_{1}, a_{2}, a_{3}, d_{+}\right\}$(if $d_{ \pm} \neq 0$) are called regular Diophantine quadruples. It is not difficult to show that the relation

$$
\begin{equation*}
\left(a_{1}+a_{2}-a_{3}-a_{4}\right)^{2}=4\left(a_{1} a_{2}+1\right)\left(a_{3} a_{4}+1\right) \tag{2}
\end{equation*}
$$

characterizes the property of being regular, i.e. $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is a regular Diophantine quadruple if and only if (2) holds. There is a conjecture saying that all Diophantine quadruples in \mathbb{Z} are regular. If $d_{-} d_{+}+1=\square$ and $d_{ \pm} \neq 0$, then $\left\{a_{1}, a_{2}, a_{3}, d_{+}, d_{-}\right\}$represents a Diophantine quintuple and such a set will be called a biregular Diophantine quintuple. Simply said, a biregular Diophantine quintuple includes two regular quadruples. Biregular quadruples in \mathbb{Q} were studied in [4] and [8], and applied to construction of high-rank elliptic curves and rational Diophantine sextuples.

In this paper, we deal with biregular Diophantine quintuples containing two pairs of conjugates in the ring $\mathbb{Z}[\sqrt{D}]$, where D is a positive integer and not a perfect square, i.e. with quintuples of the form

$$
\begin{equation*}
\{e, a+b \sqrt{D}, a-b \sqrt{D}, c+d \sqrt{D}, c-d \sqrt{D}\} \tag{3}
\end{equation*}
$$

such that $a, b, c, d, e \in \mathbb{Z}$ and $c \pm d \sqrt{D}$ correspond to the regular extensions $d_{ \pm}$generated by the triple $\{e, a+b \sqrt{D}, a-b \sqrt{D}\}$.

Our work has been motivated by examples found by Gibbs in [10] and some of them are listed below. (Occasionally we denote an element $a+b \sqrt{D} \in \mathbb{Q}(\sqrt{D})$ by (a, b).

D	Diophantine quintuple in $\mathbb{Z}[\sqrt{D}]$
2	$(3,0),(7,4),(7,-4),(119,84),(119,-84)$
5	$(4,0),(7,3),(7,-3),(50,22),(50,-22)$
13	$(6,0),(8,2),(8,-2),(166,46),(166,-46)$
17	$(12,0),(21,5),(21,-5),(438,106),(438,-106)$
29	$(4,0),(41,7),(41,-7),(2166,402),(2166,-402)$
34	$(5,0),(81,12),(81,-12),(16817,2884),(16817,-2884)$
37	$(4,0),(43,5),(43,-5),(7482,1230),(7482,-1230)$

Table 1

Gibbs conducted a search for Diophantine quintuples in $\mathbb{Z}[\sqrt{D}]$ for square free D with $|D|<50$ and found 160 examples. All examples are found for positive D and all of them are biregular, i.e. include two regular quadruples. No example was found for $D \in\{23,35,42,43,47\}$.

We managed to find a Diophantine quintuple in $\mathbb{Z}[\sqrt{43}]$:

$$
\{(-7512908,1145708),(-195,30),(0,848),(195,30),(7512908,1145708)\}
$$

For other exceptions, we found many examples of "almost quintuples", meaning that only one condition out of ten is missing. Also, no Diophantine quintuples were found for negative D. In [1] Adžaga showed that there is no Diophantine m-tuple in imaginary quadratic number ring (i.e. with $D<0$) with $m>43$. It is also known that for $D=-1$ some particular Diophantine quadruples cannot be extended to Diophantine quintuples (see [2, 3, 9]).

We are interested in constructing Diophantine quintuples in $\mathbb{Z}[\sqrt{D}]$ for infinite families of positive integers D. It is easy to obtain certain results of that type. Namely, if $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a Diophantine triple in \mathbb{Z} and $d_{ \pm} \neq 0$, then $\left\{a_{1}, a_{2}, a_{3}, d_{+}, d_{-}\right\}$is a Diophantine triple in $\mathbb{Z}[\sqrt{D}]$ for $D=d_{+} d_{-}+1$. By taking $a_{1}=n-1, a_{2}=n+1, a_{3}=16 n^{3}-4 n$, we obtain $d_{-}=4 n, d_{+}=64 n^{5}-48 n^{3}+8 n$ and $D=256 n^{6}-192 n^{4}+32 n^{2}+1$. Note that D is a perfect square only for $n=0$.Therefore, we are especially interested in families of D 's which are asymptotically larger than this simply obtained family, i.e. in parametric families of D 's where involved polynomials have degree smaller than 6 .

One of our results of that shape in the following theorem.
Theorem 1. Let n be a positive integer and $D=1+n^{2}(n+1)^{2}$. There exists a biregular Diophantine quintuple of the form (3) in $\mathbb{Z}[\sqrt{D}]$.

2. Equations

If $\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\}$ is a Diophantine quintuple in \mathcal{R}, then the following ten equations should be satisfied:

$$
z_{i} z_{j}+1=\xi_{i j}^{2}, 1 \leq i<j \leq 5
$$

where $\xi_{i j} \in \mathcal{R}$. If a Diophantine quintuple in $\mathbb{Z}[\sqrt{D}]$ is of the form (3), then it suffices to fulfill only these equations:

$$
\begin{gather*}
e(a+b \sqrt{D})+1=(u+v \sqrt{D})^{2} \tag{4}\\
a^{2}-D b^{2}+1=x^{2} \tag{5}
\end{gather*}
$$

or

$$
\begin{equation*}
a^{2}-D b^{2}+1=x^{2} D \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{2}-D d^{2}+1=y^{2} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
c^{2}-D d^{2}+1=y^{2} D, \tag{8}
\end{equation*}
$$

for $u, v, x, y \in \mathbb{Z}$. Since we assume that $c \pm d \sqrt{D}$ are regular extensions of the triple $\{e, a \pm b \sqrt{D}\}$, the conditions $e(c \pm d \sqrt{D})+1=\square$, $(a \pm b \sqrt{D})(c \pm d \sqrt{D})+1=\square$ are "automatically" fulfilled. Also, the condition $e(a-b \sqrt{D})+1=\square$ can be omitted because (4) implies $e(a-b \sqrt{D})+1=(u-v \sqrt{D})^{2}$.

Since we have assumed that our quintuple should contain two pairs of conjugates in $\mathbb{Z}[\sqrt{D}]$, the possibility of (5) is rejected (because it would yield a rational integer value of $c \pm d \sqrt{D}$). So, according to (11) and putting $r=u+v \sqrt{D}, s=u-v \sqrt{D}, t=x \sqrt{D}$ we have

$$
\begin{equation*}
c \pm d \sqrt{D}=e+2 a+2 e\left(a^{2}-D b^{2}\right) \pm 2\left(u^{2}-D v^{2}\right) x \sqrt{D} \tag{9}
\end{equation*}
$$

We further assume that equation (7) should hold and we get

$$
\begin{equation*}
\left(2 a+2 e D x^{2}-e\right)^{2}-4 D\left(u^{2}-D v^{2}\right)^{2} x^{2}+1=y^{2} \tag{10}
\end{equation*}
$$

where we substituted $a^{2}-b^{2} D=D x^{2}-1$. Equation (4) splits into

$$
\begin{equation*}
e a+1=u^{2}+D v^{2}, e b=2 u v \tag{11}
\end{equation*}
$$

and imply $\left(u^{2}-D v^{2}\right)^{2}=(e a+1)^{2}-(e b)^{2} D=(e a+1)^{2}-e^{2}\left(a^{2}-D x^{2}+\right.$ $1)=1+2 a e-e^{2}+D e^{2} x^{2}$. Therefore (10) transforms into

$$
\begin{equation*}
(2 a-e)^{2}-4 D x^{2}+1=y^{2} \tag{12}
\end{equation*}
$$

So, if equations (6), (11), (12) (or equivalently (4), (6), (7)) are solvable in $e, a, b, u, v, x, y \in \mathbb{Z}$, then (3) represents a biregular Diophantine quintuple.

3. Solving the equations

From (11) we get

$$
a=\frac{u^{2}+D v^{2}-1}{e}, b=\frac{2 u v}{e}
$$

and substituting into (6) yields

$$
\begin{gather*}
\left(u^{2}+D v^{2}-1\right)^{2}-D(2 u v)^{2}+e^{2}=D x^{2} e^{2} \tag{13}\\
1+e^{2}-2 u^{2}+u^{4}-2 D v^{2}-2 D u^{2} v^{2}+D^{2} v^{4}=D x^{2} e^{2}
\end{gather*}
$$

Obviously, $D \mid 1+e^{2}-2 u^{2}+u^{4}$. Hence, assume that

$$
1+e^{2}-2 u^{2}+u^{4}=k D, k \in \mathbb{Z}
$$

First, dividing (13) by D and then putting $D=\left(1+e^{2}-2 u^{2}+u^{4}\right) / k$, we get

$$
\frac{1}{k}\left(k^{2}-2 k v^{2}-2 k u^{2} v^{2}+v^{4}+e^{2} v^{4}-2 u^{2} v^{4}+u^{4} v^{4}\right)=x^{2} e^{2}
$$

The expression on the left side of the previous equality can be viewed as a quartic polynomial in $u, p(u)=\frac{1}{k}\left(k^{2}-2 k v^{2}+v^{4}+e^{2} v^{4}-2 k v^{2} u^{2}-\right.$ $\left.2 v^{4} u^{2}+v^{4} u^{4}\right)$. It can be shown that if

$$
k=\frac{e^{2} v^{2}}{4}
$$

the discriminant of p equals zero and $p(u)=\frac{v^{2}\left(e^{2}-4 u^{2}+4\right)^{2}}{4 e^{2}}=\square$. So far, we have

$$
\begin{gathered}
D=\frac{4\left(1+e^{2}-2 u^{2}+u^{4}\right)}{e^{2} v^{2}} \\
a=\frac{e^{2}\left(u^{2}+3\right)+4\left(u^{2}-1\right)^{2}}{e^{3}}, \quad b=\frac{2 u v}{e} .
\end{gathered}
$$

An analogous procedure have to be carried out to fulfill (12). Taking into account the above, we get

$$
\frac{-16 e^{2}\left(u^{4}-6 u^{2}+1\right)+e^{4}\left(e^{2}-4 u^{2}-15\right)+64 u^{2}\left(u^{2}-1\right)^{2}}{e^{4}}=q(u)=y^{2}
$$

For $e=4$ the discriminant of the polynomial q equals zero and

$$
q(u)=\frac{1}{4} u^{2}\left(-3+u^{2}\right)^{2}=\square
$$

The only thing left is to find the parameters of u and v such that a, b, D given by

$$
D=\frac{17-2 u^{2}+u^{4}}{4 v^{2}}, a=\frac{13+2 u^{2}+u^{4}}{16}, b=\frac{u v}{2}
$$

are integers. Obviously, u should be odd, $u=2 n+1$, and with $v=2$ we obtain

$$
D=1+n^{2}(1+n)^{2}, a=1+n+2 n^{2}+2 n^{3}+n^{4}, b=1+2 n .
$$

So, the set

$$
\begin{gather*}
\left\{4,1+n+2 n^{2}+2 n^{3}+n^{4} \pm(1+2 n) \sqrt{D}\right. \\
6-14 n+4 n^{2}+20 n^{3}-22 n^{4}-16 n^{5}+32 n^{6}+32 n^{7}+8 n^{8} \tag{14}\\
\left. \pm\left(-6+14 n-2 n^{2}-24 n^{3}+8 n^{4}+24 n^{5}+8 n^{6}\right) \sqrt{D}\right\}
\end{gather*}
$$

represents a biregular Diophantine quintuple in $\mathbb{Z}[\sqrt{D}]$, where $D=$ $1+n^{2}(1+n)^{2}$, because equations (4), (6), (7) are solvable in \mathbb{Z}. Indeed,

$$
e(a+b \sqrt{D})+1=(1+2 n+2 \sqrt{D})^{2}
$$

$$
\begin{gathered}
(a+b \sqrt{D})(a-b \sqrt{D})+1=\left(\left(-1+n+n^{2}\right) \sqrt{D}\right)^{2} \\
(c+d \sqrt{D})(c-d \sqrt{D})+1=\left(-1+6 n^{2}+4 n^{3}\right)^{2}
\end{gathered}
$$

This finishes the proof of Theorem 1 .
For $D<1000$ we list the examples of Diophantine quintuples (14):

D	e	(a, b)	(c, d)
5	4	$(7,3)$	$(50,22)$
37	4	$(43,5)$	$(7482,1230)$
145	4	$(157,7)$	$(140670,11682)$
401	4	$(421,9)$	$(1158926,57874)$
901	4	$(931,11)$	$(6063786,202014)$

Table 2

Note that the first two rows in Table 2 correspond to examples from Table 1.

4. More examples

Here we try to find more solutions assuming that D is a polynomial of degree 4 , as we obtained in the previous sections. Thus, let us take

$$
D=D(n)=d_{4} n^{4}+d_{3} n^{3}+d_{2} n^{2}+d_{1} n+d_{0},
$$

where $d_{0}, d_{1}, d_{2}, d_{3}, d_{4} \in \mathbb{Z}$. Also, we assume that

$$
u=u(n)=u_{1} n+u_{0} .
$$

So, (11) gives

$$
\begin{gathered}
a=\frac{1}{e}\left(-1+u_{0}^{2}+d_{0} v^{2}+\left(2 u_{0} u_{1}+d_{1} v^{2}\right) n+\left(u_{1}^{2}+d_{2} v^{2}\right) n^{2}+d_{3} v^{2} n^{3}+d_{4} v^{2} n^{4}\right), \\
b=\frac{2 v}{e}\left(u_{0}+u_{1} n\right) .
\end{gathered}
$$

According to (6) $D(n)$ divides $\left(a^{2}+1\right)(n)$ and therefore the remainder of their polynomial division is zero. By equating its coefficients to zero, we get

$$
\begin{aligned}
& d_{0}=\frac{1-2 u_{0}^{2}+u_{0}^{4}+e^{2}}{u_{1}^{4}} d_{4}, d_{1}=\frac{4\left(-1+u_{0}^{2}\right) u_{0}}{u_{1}^{3}} d_{4} \\
& d_{2}=\frac{2\left(-1+3 u_{0}^{2}\right)}{u_{1}^{2}} d_{4}, d_{3}=\frac{4 u_{0}}{u_{1}} d_{4} .
\end{aligned}
$$

Also, equation (6) yields that $\left(a^{2}+1-D b^{2}\right) / D=\square$. Hence, if $\left(a^{2}+\right.$ $\left.1-D b^{2}\right) / D=q(n)$ is considered as a quartic polynomial in n, then
two or more roots of q are equal if and only if the discriminant is zero. Since one of the factors of the discriminant of q is $d_{4} e^{2} v^{2}-4 u_{1}^{4}$, for

$$
d_{4}=\frac{4 u_{1}^{4}}{e^{2} v^{2}}
$$

we get

$$
\frac{1}{D}\left(a^{2}+1-D b^{2}\right)=\frac{\left(-4-e^{2}+4 u_{0}^{2}+8 n u_{0} u_{1}+4 n^{2} u_{1}^{2}\right)^{2} v^{2}}{4 e^{4}}=\square .
$$

As argued in the previous sections, for $e=4$ we have $c^{2}-D d^{2}+1=\square$. By all obtained, we have

$$
\begin{aligned}
& \begin{aligned}
D= & \frac{1}{4 v^{2}}(17- \\
& 2 u_{0}^{2}+u_{0}^{4}+\left(-4 u_{0} u_{1}+4 u_{0}^{3} u_{1}\right) n \\
& \left.\quad+\left(-2 u_{1}^{2}+6 u_{0}^{2} u_{1}^{2}\right) n^{2}+4 u_{0} u_{1}^{3} n^{3}+u_{1}^{4} n^{4}\right)
\end{aligned} \\
& \begin{aligned}
a= & \frac{1}{16}(13+
\end{aligned} \quad 2 u_{0}^{2}+u_{0}^{4}+\left(4 u_{0} u_{1}+4 u_{0}^{3} u_{1}\right) n \\
& \quad \\
& \left.\quad+\left(2 u_{1}^{2}+6 u_{0}^{2} u_{1}^{2}\right) n^{2}+4 u_{0} u_{1}^{3} n^{3}+u_{1}^{4} n^{4}\right)
\end{aligned} \quad \begin{aligned}
& b=\frac{\left(u_{0}+u_{1} n\right) v}{2}
\end{aligned}
$$

We still have to choose u_{0}, u_{1}, v which would give integer values of D, a, b. For $v=2$, odd $u_{0}=2 k+1$ and even $u_{1}=2 l$, we obtain that $D, a, b \in \mathbb{Z}$. However, by taking $n_{0}=k+\ln$, we get $D=1+n_{0}^{2}\left(n_{0}+1\right)^{2}$ and quintuple (14). Nevertheless, for another choice of the parameter v, for instance $v=10$ and $u_{0}=23+50 k, u_{1}=50 l$ we get a new solution. If we put again $n_{0}=k+\ln$, we obtain

$$
\begin{aligned}
D & =697+6072 n_{0}+19825 n_{0}^{2}+28750 n_{0}^{3}+15625 n_{0}^{4}, \\
a & =17557+152375 n_{0}+496250 n_{0}^{2}+718750 n_{0}^{3}+390625 n_{0}^{4}, \\
b & =115+250 n_{0}, \\
c & =2392278510+41841233150 n_{0}+319909592500 n_{0}^{2}+1396567187500 n_{0}^{3} \\
& +3807366406250 n_{0}^{4}+6637656250000 n_{0}^{5}+7226562500000 n_{0}^{6} \\
& +4492187500000 n_{0}^{7}+1220703125000 n_{0}^{8} \\
d & =90614010+1190152250 n_{0}+6504293750 n_{0}^{2}+18931875000 n_{0}^{3} \\
& +30953125000 n_{0}^{4}+26953125000 n_{0}^{5}+9765625000 n_{0}^{6} .
\end{aligned}
$$

We conclude with a table of examples obtained by extending the range of search from [10] (we omit examples from Table 1).

D	e	(a, b)	(c, d)
2	6	$(31,15)$	$(6200,4384)$
2	10	$(13,9)$	$(176,124)$
2	3	$(39,20)$	$(4407,3116)$
2	21	$(17,12)$	$(97,68)$
2	6	$(403,279)$	$(81536,57652)$
2	21	$(97,68)$	$(6977,4932)$
2	3	$(7655,3828)$	$(175766455,124285652)$
2	182	$(107,75)$	$(72832,51500)$
2	3	$(44615,22308)$	$(5971316215,4222358188)$
2	1974	$(1379,975)$	$(1548400,1094884)$
2	4074	$(1297,831)$	$(2453263544,1734719288)$
2	3	$(8833479,4416740)$	$(234091018396407,165527346522964)$
2	7665	$(639,320)$	$(3119985873,2206163168)$
5	28	$(148,30)$	$(974948,436010)$
5	416	$(718,287)$	$(86262780,38577888)$
5	104	$(2467,493)$	$(1013140590,453090246)$
5	3344	$(3097,1379)$	$(556477890,248864478)$
13	6	$(268,22)$	$(786926,218254)$
13	6	$(86,20)$	$(26530,7358)$
13	10	$(148,34)$	$(137826,38226)$
13	234	$(44,10)$	$(297970,82642)$
13	114	$(122,32)$	$(358774,99506)$
13	696	$(278,77)$	$(289396,80264)$
13	7794	$(10652,2618)$	$(379787495194,105334099054)$
17	12	$(1211,285)$	$(2059138,499414)$
17	12	$(29635,6973)$	$(1239583250,300643098)$
17	3192	$(2240,527)$	$(1890993160,458633208)$
17	12	$(1955293,460069)$	$(5397399308486,1309061614854)$
29	112	$(17,1)$	$(58386,10842)$
29	20	$(17,3)$	$(1174,218)$
29	44	$(331,23)$	$(8292066,1539798)$
34	5	$(125745,18492)$	$(41853919985,7177888060)$
37	390	$(1708,238)$	$(640723886,105334358)$
37	1146	$(5026,700)$	$(16343520590,2686858234)$
41	4032	$(2082,325)$	$(33062532,5163500)$
53	4	$(33307,675)$	$(8681731610,1192527550)$
58	90	$(17,1)$	$(41704,5476)$

D	e	(a, b)	(c, d)
61	1482	$(782,100)$	$(4520182,578750)$
73	4	$(27,3)$	$(634,74)$
73	8	$(27,3)$	$(1214,142)$
73	8	$(162452,17803)$	$(52056888864,6092797992)$
82	306	$(173,19)$	$(200776,22172)$
85	14	$(132,6)$	$(402470,43654)$
85	4	$(3277,113)$	$(77233470,8377146)$
97	3792	$(1239,115)$	$(1913419134,194278278)$
109	20	$(33,3)$	$(4406,422)$
113	1680	$(1228,113)$	$(218696456,20573232)$
130	6	$(203,11)$	$(306160,26852)$
145	4	$(157,7)$	$(140670,11682)$
229	1992	$(15007,719)$	$(425594736326,28124091802)$
401	4	$(421,9)$	$(1158926,57874)$
401	232	$(782,25)$	$(167458932,8362500)$
409	20	$(143,7)$	$(16626,822)$
493	15924	$(11037,497)$	$(1271792334,57278646)$
586	590	$(3671,71)$	$(12416221632,512909388)$
697	4	$(17557,115)$	$(2392278510,90614010)$
769	1400	$(5321,187)$	$(3981276042,143568486)$
901	4	$(931,11)$	$(6063786,202014)$
901	3540	$(1832,61)$	$(25516444,850076)$
1093	1056	$(563,17)$	$(2308486,69826)$
1765	4	$(1807,13)$	$(23739330,565062)$
1961	2	$(1030,10)$	$(3461262,78162)$

Table 3

Here is a brief description of our algorithm. For all square free D, $1<D<1000,1 \leq u, v \leq 10000$ and for all positive integers e such that $e \mid \operatorname{gcd}\left(u^{2}+D v^{2}-1,2 u v\right)$, we put $z=\left((u+v \sqrt{D})^{2}-1\right) / e$ and test if $(N(z)+1) / D$ equals a perfect square. If "yes", then $\{e, z, \bar{z}\}$ is a Diophantine triple where \bar{z} means a conjugate of z in $\mathbb{Z}(\sqrt{D})$. If $(2 a-e)^{2}-4 D x^{2}+1=\square$ or $D \cdot \square$, where $a=(z+\bar{z}) / 2$, then the Diophantine triple $\{e, z, \bar{z}\}$ can be exteded to a biregular Diophantine quintuple containing two pairs of conjugates $\left\{e, z, \bar{z}, z^{\prime}, \overline{z^{\prime}}\right\}$ (where $z^{\prime}, \bar{z}^{\prime}$ are given by (9) and $z^{\prime} \neq 0$).

Note that entries for $d=145,401,697,901,1765$ are special cases of our polynomials formulas for Diophantine quintuples.

Acknowledgements. The authors acknowledge support from the QuantiXLie Center of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004). A. D. and V. P. were supported by the Croatian Science Foundation under the project no. IP-2018-011313.

References

[1] N. Adžaga, On the size of Diophantine m-tuples in imaginary quadratic number rings, Bull. Math. Sci. 9(3) (2019) 1950020 (10 pages).
[2] N. Adžaga, A. Filipin and Z. Franušić, On the extensions of the Diophantine triples in Gaussian integers, preprint.
[3] A. Bayad, A. Filipin and A. Togbé, Extension of a parametric family of Diophantine triples in Gaussian integers, Acta Math. Hungar. 148 (2016), 312327.
[4] A. Dujella, Diophantine triples and construction of high-rank elliptic curves over \mathbb{Q} with three non-trivial 2-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.
[5] A. Dujella, Diophantine m-tuples, https://web.math.pmf.unizg.hr/~duje/ dtuples.html
[6] A. Dujella, What is...a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 (2016), 772-774.
[7] A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational Diophantine sextuples, Int. Math. Res. Not. IMRN 2017 (2) (2017), 490-508.
[8] A. Dujella, M. Kazalicki and V. Petričević, Rational Diophantine sextuples containing two regular quadruples and one regular quintuple, Acta Mathematica Spalatensia, to appear.
[9] Z. Franušić, On the extensibility of Diophantine triples $\{k-1, k+1,4 k\}$ for Gaussian integers, Glas. Mat. Ser. III 43 (2008), 265-291.
[10] P. E. Gibbs, Diophantine Quintuples over Quadratic Rings, https://www.researchgate.net/publication/323176085_Diophantine_ Quintuples_over_Quadratic_Rings (2018)
[11] B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Email address: duje@math.hr
Email address: fran@math.hr
Email address: vpetrice@math.hr

