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Abstract. In this paper we prove the best possible upper bounds for
the number of elements in a set of polynomials with integer coefficients
all having the same degree, such that the product of any two of them plus
a linear polynomial is a square of a polynomial with integer coefficients.
Moreover, we prove that there does not exist a set of more than 12
polynomials with integer coefficients and with the property from above.
This significantly improves a recent result of the first two authors with
R. F. Tichy [10].
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1. Introduction

Let n be a nonzero integer. A set of m positive integers {a1, a2, . . . , am}
is called a Diophantine m-tuple with the property D(n) or simply D(n)-m-
tuple, if the product of any two of them increased by n is a perfect square.

Diophantus [2] found the first quadruple {1, 33, 68, 105} with the
property D(256). The first D(1)-quadruple, the set {1, 3, 8, 120}, was
found by Fermat. The folklore conjecture is that there does not exist a
D(1)-quintuple. In 1969, Baker and Davenport [1] proved that the Fermat’s
set cannot be extended to a D(1)-quintuple. Recently, the first author
proved that there does not exist a D(1)-sextuple and there are only finitely
many D(1)-quintuples (see [5]). Moreover, the first and the second author
proved that there does not exist a D(−1)-quintuple (see [9]).

The natural question is how large such sets can be. We define

Mn = sup{|S| : S has the propertyD(n)},
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where |S| denotes the number of elements in the set S. The first author
proved that

Mn ≤ 31 for |n| ≤ 400,

Mn < 15.476 log |n| for |n| > 400

(see [4, 6]).
A polynomial variant of the above problems was first studied by Jones

[12], [13], and it was for the case n = 1.

Definition 1. Let n ∈ Z[x] and let {a1, a2, . . . , am} be a set of m nonzero
polynomials with integer coefficients. We assume that there does not exist a
polynomial p ∈ Z[x] such that a1/p, . . . , am/p and n/p2 are integers. The set
{a1, a2, . . . , am} is called a polynomial D(n)-m-tuple if for all 1 ≤ i < j ≤ m
the following holds: ai · aj + n = b2

ij, where bij ∈ Z[x].

In analog to the above results, we are interested in the size of

Pn = sup{|S| : S is a polynomial D(n)-tuple}.

From [4, Theorem 1], it follows that Pn ≤ 22 for all n ∈ Z. The above
mentioned result about the existence of only finitely many D(1)-quintuples
implies that P1 = 4. The first and the second author proved that P−1 = 3
(cf. [7]). Moreover, in [8] they proved that if {a, b, c, d} is a polynomial D(1)-
quadruple, then

(a + b− c− d)2 = 4(ab + 1)(cd + 1),

which implies that every polynomial D(1)-triple can be extended to a poly-
nomial D(1)-quadruple in an essentially unique way, which in turn gives
P1 = 4 once again.

Another polynomial variant of the problem was considered by the
first author and Luca [11]. They considered sets of polynomials with the
property that the product of any two elements plus 1 is a perfect kth power
and they proved sharp upper bounds for the size of such sets.

The first and second author together with Tichy [10] considered the case
of linear polynomials, i.e. n = ax + b, with integers a 6= 0 and b. Let us
define

L = sup{|S| : S is a polynomial D(ax + b)-tuple for some a 6= 0 and b },

and let us denote by Lk the number of polynomials of degree k in a polyno-
mial D(ax + b)-m-tuple S. Trivially, L0 ≤ 1. We proved that

L1 ≤ 8, L2 ≤ 5, Lk ≤ 3 for all k ≥ 3,

(see [10, Propositions 1,2 and 3]) and

L ≤ 26
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(see [10, Theorem 1]). Moreover, we proved that there are at most 15
polynomials of degree ≥ 4 in such a set S.

In this paper we will give sharp upper bounds for Lk for all k ≥ 1.
Moreover, we will significantly improve the upper bound for L.

Theorem 1. There does not exist a set of five linear polynomials with inte-
ger coefficients and the property that the product of any two of then plus the
linear polynomial n = ax + b with integers a 6= 0 and b is a square in Z[x].

This solves the problem for linear polynomials completely, in view of the
following example:

{x, 16x + 8, 25x + 14, 36x + 20}
is a polynomial D(16x + 9)-quadruple (see [3]).

The idea of the proof of Theorem 1 is the following: first we show that we
may assume that one of the polynomials is a multiple of x, then we reduce
the defining equations, which is a quadratic polynomial in x that is a square
and therefore has vanishing discriminant, to a system of Diophantine equa-
tions for the coefficients. In the above example, the question of extendability
reduces to finding all integer solutions of

n2(3m− 8) + m2(3n− 8)2 −m2n2(36mn− 9(m + n) + 265) = 0,

which gives

(3mn− 8m− 8n + 8)(3mn− 8m− 8n− 8)(m− n + 1)(m− n− 1) = 0,

from which a contradiction can be derived.

The next theorem now deals with the case of quadratic polynomials.

Theorem 2. There does not exist a set of four quadratic polynomials with
integer coefficients and the property that the product of any two of them plus
the linear polynomial n = ax + b with integers a 6= 0 and b is a square in
Z[x].

Also this result is best possible since the set

{9x2 + 8x + 1, 9x2 + 14x + 6, 36x2 + 44x + 13}
is a polynomial D(4x+3)-triple. Let us note that this triple can be extended
to the D(4x + 3)-quadruple

{1, 9x2 + 8x + 1, 9x2 + 14x + 6, 36x2 + 44x + 13}
(see [3]).

Corollary 1. We have

L1 ≤ 4, Lk ≤ 3 for all k ≥ 2.

Moreover, all these bounds are sharp.
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In order to show that the bound Lk ≤ 3 for k ≥ 3 is sharp, let us consider
the following examples

{x2k − x, x2k + 2xk − x + 1, 4x2k + 4xk − 4x + 1},
{x2k−1 − 1, x2k−1 + 2xk + x− 1, 4x2k−1 + 4xk + x− 4},

for k = 1, 2, 3, . . . , which are polynomial D(x)-triples consisting of three
polynomials with the same degree.

Using the new information from Theorems 1 and 2 together with a closer
look at the case of polynomials with “large” degrees, we can prove the fol-
lowing result:

Theorem 3.

L ≤ 12.

In analog to the classical integer case, we prove our result for “large”
degree by using Mason inequality [14], which is the function field analog
of Baker’s method for linear forms in logarithms of algebraic numbers, to
solve a certain elliptic equation over a function field in one variable, which
is done by following the original ideas of Siegel [16].

In Section 2, we will consider the cases of equal degrees and give proofs
of Theorems 1 and 2, which immediately imply Corollary 3. In Section 3
we prove an upper bound for the degree of the largest element in a D(n)-
quadruple by considering the corresponding elliptic equation over a function
field. In the last section (Section 4), by combining this upper bound with a
gap principle and Theorems 1 and 2, we give a proof of Theorem 3.

2. Sets with polynomials of equal degree

First, we will handle the case of linear polynomials and therefore give a
proof of Theorem 1. Afterwards, we consider the case of quadratic poly-
nomials and therefore prove Theorem 2. Corollary 1 is then an immediate
consequence of these two theorems together with the remark after [10,
Proposition 2] in the first part to this paper.

2.1. Linear polynomials and proof of Theorem 1.

Let {ax+b, cx+d, ex+f} be a polynomial D(ux+v)-triple. Then {a2x+
ab, acx+ad, aex+af} is a polynomial D(a2ux+a2v)-triple. By substitution
ax = y, it follows that {ay + ab, cy + ad, ey + af} is a D(auy + a2v)-triple,
and finally by substitution y + b = z, we conclude that

{az, cz + d′, ez + f ′} is a polynomial D(auz + v′)-triple,

where d′ = ad− cb, f ′ = af − eb, v′ = a2v − abu.
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We may assume that gcd(a, c, e) = 1, since otherwise we substitute z′ =
z gcd(a, c, e). This implies that a, c and e are perfect squares:

a = A2, c = C2, e = E2,

where A,C, E are positive integers. Furthermore, by specializing z = 0, we
see that v′ is also a perfect square: v′ = V 2. But we have

v′ = a2v − abu = A4v −A2bu = V 2.

Hence, V = AW with W 2 = A2v − bu.
Now from

A2z · (C2z + d′) + (A2uz + A2W 2) = (ACz ±AW )2,

we find by comparing the coefficients of z that A2d′ + A2u = ±2A2CW
and therefore d′ = ±2CW − u. Analogously, f ′ = ±2EW − u. Hence, we
obtained the set {A2z, C2z±2CW−u, E2z±2EW−u} which is a polynomial
D(A2uz + A2W 2)-triple. It means that

(C2z ± 2CW − u) · (E2z ± 2EW − u) + (A2uz + A2W 2)

is a square of a linear polynomial and this implies that the discriminant of
this quadratic polynomial is equal to 0. The discriminant can be factored
into 4 factors:

(C−E−A)(C−E+A)(±2CEW−Cu−Eu+Au)(±2CEW−Cu−Eu−Au),

which can be easily checked.
Assume now that there exists a D(ux+v)-quintuple consisting of 5 linear

polynomials. The above construction shows that in this case there exists
a D(A2uz + A2W 2)-quintuple with one element equal to A2z and with all
other elements of the form

m2
i z + 2miW − u for i = 1, 2, 3, 4.

Observe that the mi can be positive or negative corresponding to the sign
of W . Let

m1 = min{m1,m2,m3,m4}.
Then one of the remaining mi’s is equal to m1 + A and the other two come
from the factors ±2CEW −Cu−Eu + Au,±2CEW −Cu−Eu−Au. The
condition ±2ECW − Cu − Eu = Au or −Au is equivalent to (±2CW −
u)(±2EW − u) = u2 + 2AWu or u2 − 2AWu. Therefore, let us denote

pi := 2miW − u, i = 1, 2, 3, 4; P := u2 − 2AWu, Q := u2 + 2AWu.

We may assume that m2 = m1 + A and that

p1p3 = P, p1p4 = Q.

We want to prove that m3 = m2 + A or m4 = m2 + A. Suppose that this is
not true, then p2p3 = Q, p2p4 = P . We have

AWu = Q− P = p3(p2 − p1) = 2p3AW

= p4(p1 − p2) = −2p4AW.
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Since p3p4 cannot be equal to P or Q, we have |m3 −m4| = A. But then

Q− P = p2(p3 − p4) = ±2p2WA,

which implies that p2 = p3 or p2 = p4, a contradiction. Hence, we may
assume that m3 = m2 +A. Then, p2p4 = P . Moreover, from |m3−m4| = A,
we conclude that m4 = m3 + A.

Let us insert m2 = m1+A,m3 = m1+2A,m4 = m1+3A into the relation
p1p3 = p2p4. We obtain

4W (m2m4 −m1m3) = 2(m2 + m4 −m1 −m3)u

or
4WA(2m1 + 3A) = 4Au,

and finally
u = 2m1W + 3AW.

From
4AWu = Q− P = 2p1AW = −2p4AW,

we find that 2u = p1 = −p4. This implies that 2m1W = 3u and 2m4W = −u
and we get

(1) 4u = 2(m1 −m4)W = −6AW.

Furthermore, since p1p4 = Q, we get −4u2 = u2 + 2AWu and therefore

−5u = 2AW,

which is a contradiction to equation (1). This proves that there does not
exist a polynomial D(ux + v)-quintuple consisting of linear polynomials. �

2.2. Quadratic polynomials and proof of Theorem 2.

Let Z+[x] denote the set of all polynomials with integer coefficients with
positive leading coefficient. For a, b ∈ Z[x], a < b means that b− a ∈ Z+[x].

Let {a, b, c} be a polynomial D(n)-triple containing only quadratic poly-
nomials and with linear n ∈ Z[x]. Assume that a < b < c. In our previous
paper ([10, Proof of Proposition 3]), we have shown that for fixed a and b
such that ab + n = r2, there are at most three possibilities for c, namely
c = a + b + 2r and two possible c’s which come from

c1,2 = a + b +
e

n
+

2
n2

(abe± ruv),

where u, v ∈ Z+[x] and e ∈ Z satisfy ae + n2 = u2, be + n2 = v2.

Observe now that

c1 · c2 = a2 + b2 +
e2

n2
− 2ab− 2ae

n
− 2bc

n
− 4n,

which implies that c2 < b, a contradiction.
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Now we assume that a polynomial D(n)-m-tuple S contains a, b, c, c1. The
same argument as above applied to the pair {b, c} implies that c1 = d0 =
b + c + 2t or c1 = d1 or c1 = d2 with

d1,2 = b + c +
f

n
+

2
n2

(abf ± tũṽ),

where bc + n = t2 and with certain ũ, ṽ ∈ Z+[x] and f ∈ Z satisfying
bf + n2 = ũ2, bf + n2 = ṽ2. As before we get d2 < c and therefore c1 6= d2.
Moreover, in the proof of [10, Proposition 3] it is shown that be + n2 = v2

and bf +n2 = ũ2 with e, f ∈ Z implies that e = f . Hence, d1 > c1. The only
remaining case is

c1 = d0 = b + a + b + 2r + 2b + 2r = a + 4b + 4r,

which means that we have to deal with the only possible polynomial D(n)-
quadruple of the form

{a, b, a + b + 2r, a + 4b + 4r}

with ab + n = r2.
The only remaining condition for this set to be a polynomial D(n)-

quadruple is a · (a + 4b + 4r) + n = z2, which implies

a2 + 4(r2 − n) + 4ar + n = z2

or

(2) (a + 2r − z)(a + 2r + z) = (a + 2r)2 − z2 = 3n.

This is a contradiction, since the left hand side of (2) has degree ≥ 2 and
the right hand side has degree 1. Consequently, we have proved that there
are at most 3 polynomials in the D(n)-m-tuple S all having degree two. �

3. A certain elliptic equation

In this section we will reduce the problem of finding all extensions of
{a, b, c} to a polynomial D(n)-quadruple to finding all solutions in Z[x] of
a certain elliptic equation in an algebraic function field in one variable over
the algebraically closed field of constants C.

Assume that the set {a, b, c, d} is a polynomial D(n)-quadruple. Let ab +
n = r2, ac + n = s2, bc + n = t2 where r, s, t ∈ Z+[x]. Moreover, we have

ad + n = u2, bd + n = v2, cd + n = w2,

with u, v, w ∈ Z[x]. Multiplying these equations, we get the following elliptic
equation

(uvw)2 = (ad + n)(bd + n)(cd + n),

where we search for polynomial solutions d ∈ Z[x].
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Let us denote X = abcd and Y = abcuvw. Then by multiplying the above
equation with a2b2c2 we get

(3) Y 2 = (X + nbc)(X + nac)(X + nab).

The polynomial on the right hand side becomes

(X + nbc)(X + nac)(X + nab) =
= X3 + n(ab + bc + ac)X2 + n2abc(a + b + c)X + n3a2b2c2

so this polynomial has coefficients and roots in Z[x]. Instead of applying a
general theorem for hyperelliptic equations in function fields due to Mason
(cf. [15, Theorem 6]), as we did in our previous paper ([10, Lemma 2]), we
will follow Siegel’s original approach (cf. [16] and the method of proof of
[15, Theorem 6]).

Therefore, let
F := C(x,

√
ab,

√
ac)

be a function field in one variable over the field of complex numbers. Let
O denote the ring of elements of F integral over C[x]. These elements
have the property that ν(f) ≥ 0 for all finite valuations on F . Let us
recall the definitions of the discrete valuations on the field C(x) where
x is transcendental over C. For ξ ∈ C define the valuation νξ such that
for Q ∈ C(x) we have Q(x) = (x − ξ)νξ(Q)A(x)/B(x) where A,B are
polynomials with A(ξ)B(ξ) 6= 0. Further, for Q = A/B with A,B ∈ C[x],
we put deg Q := deg A− deg B; thus ν∞ := −deg is a discrete valuation on
C(x). These are all discrete valuations on C(x). Now let F as above be a
finite extension of C(x). Each of the valuations νξ, ν∞ can be extended in
at most [F : C(x)] =: d ways to a discrete valuation on F and in this way
one obtains all discrete valuations on F . A valuation on F is called finite if
it extends νξ for some ξ ∈ C and infinite if it extends ν∞.

All solutions of interest for us come from solutions of (3) in F , where
X + nbc, X + nac,X + nab are squares. Observe that this follows from the
relations

X + nbc = abcd + nbc = u2bc,

X + nac = abcd + nac = v2ac,

X + nab = abcd + nab = w2ac

and the fact that
√

ab,
√

ac and therefore also

√
bc =

√
ab
√

ac

a

are elements of F . We denote

ξ2
1 = u2bc = X + nbc, ξ2

2 = v2ac = X + nac, ξ2
3 = w2ac = X + nab
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and we define βi, β̂i, i = 1, 2, 3 by β1 = ξ2−ξ3, β̂1 = ξ2 +ξ3 with β2, β̂2, β3, β̂3

defined similarly by permutation of indices. All these elements are contained
in the ring O. Then β1β̂1 = na(b − c), β2β̂2 = nb(c − a), β3β̂3 = nc(a − b),
and

(4) β1 + β2 + β3 = 0.

This is Siegel’s classical identity. Moreover, we have

(5) β1 + β̂2 − β̂3 = −β̂1 + β2 + β̂3 = β̂1 − β̂2 + β3 = 0.

We note that each of β1, β2 and β3 divide the fixed element

µ = −n3abc(b− a)(c− a)(c− b)

in O. Hence, if ν is any finite valuation on F with ν(µ) = 0, then we
have ν(βi) = 0, i = 1, 2, 3 and so ν(β̂i) = 0, i = 1, 2, 3, also. Now we
apply Mason’s Inequality to Siegel’s identity (4) to get an upper bound
for the degree of the polynomials X and therefore also for the polynomials d.

We need the following generalization of the degree from C[x] to F . We
define the height of f ∈ F by

H(f) = −
∑

ν

min{0, ν(f)}

where the sum is taken over all valuations on F ; thus for f ∈ C(x) the height
H(f) is just the number of poles of f counted according to multiplicity. We
note that if f lies in C[x], then H(f) = d deg f . Moreover, we have

(6) max{H(f + h),H(fh)} ≤ H(f) +H(h)

for any two elements f, h in F .
Now we state the following theorem on the solutions of two-dimensional

unit equations over an algebraic function field, which is usually referred to as
Mason’s inequality and which can be seen as an analog of Baker’s theorem
in linear forms of logarithms of algebraic numbers. A proof of this theorem
can be found in the monograph of Mason (cf. [15, Lemma 2]).

Theorem 4. (R. C. Mason) Let γ1, γ2 and γ3 be non-zero elements of
F with γ1 + γ2 + γ3 = 0, and such that ν(γ1) = ν(γ2) = ν(γ3) for each
valuation ν not in the finite set V. Then either γ1/γ2 lies in C, in which
case H(γ1/γ2) = 0, or

H(γ1/γ2) ≤ |V|+ 2g − 2,

where |V| denotes the number of elements of V and g the genus of F/C(X).

Now we are ready to prove the following lemma:

Lemma 1. Let {a, b, c, d}, a < b < c < d be a polynomial D(n)-quadruple
with n ∈ Z[x]. Then

deg d ≤ 7 deg a + 11 deg b + 15 deg c + 14 deg n− 4.
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Proof. We denote by W the set of absolute values on F containing all
infinite ones together with those finite absolute values ν for which ν(µ) > 0.
For brevity we denote M = 2g − 2 + |W|.

First, we need an upper bound for the genus g of F/C(x). We consider the
two Kummer extensions F1 := C(x,

√
ab) and F2 := C(x,

√
ac) and calculate

the genus g1 of F1/C(x) and g2 of F2/C(x), respectively. It follows from [17,
Corollary III.7.4] (see also Example III.7.6 on page 113) that

g1 =
deg a + deg b− 2

2
, g2 =

deg a + deg c− 2
2

,

since neither ab nor ac can have odd degree (ab + n and ac + n are squares
of polynomials and therefore have even degree). Observe that the degree of
the extensions F1/C(x) and F2/C(x) is two in both cases. Now we can use
Castelnuovo’s inequality (cf. [17, Theorem III.10.3]) to get an upper bound
for the genus g of F = F1F2. We have

g ≤ 2
deg a + deg b− 2

2
+2

deg a + deg c− 2
2

+1 = 2 deg a+deg b+deg c−3.

Next, we need an upper bound for the cardinality of the set W. It can be
obtained by considering the number of zeros and poles of µ = −n3abc(b −
a)(c−a)(c−b). The number of zeros is bounded by the degree of the polyno-
mial µ which is 3 deg n+deg a+2 deg b+3 deg c. Each zero can be extended
to an absolute value of F in at most [F : C(x)] = 4 ways. Moreover, there
exist at most 4 infinite absolute values on F . Therefore,

|W| ≤ 4(3 deg n + deg a + 2 deg b + 3 deg c) + 4.

Now Mason’s theorem (Theorem 4) applied to the equation β1 +β2 +β3 = 0
yields that

H(β2/β3) ≤ M.

Further, M also serves as an upper bound for each of H(β̂2/β3),H(β2/β̂3)
and H(β̂2/β̂3) because of equations (5). However, it is easy to check that

2(2X − nbc− nab)
nc(a− b)

=
β̂2

β3

β̂2

β̂3

+
β2

β3

β2

β̂3

.

Hence, we have

H
(

2X − nbc− nab

nc(a− b)

)
≤ 4M

and therefore

H(X) ≤ H(nb(a + c)) +H(nc(a− b)) + 4M,

where we have used that the height of a sum or a product is bounded by
the sum of the heights (see (6)). Finally, since X = abcd, we get

H(X) = 4(deg a + deg b + deg c + deg d),
H(nb(a + c)) = 4(deg n + deg b + deg c),
H(nc(a− b)) ≤ 4(deg n + deg c + deg b),
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and therefore, by taking into account the bound for M which is

M ≤ 4 deg a+2 deg b+2 deg c−8+12 deg n+4 deg a+8 deg b+12 deg c+4,

we obtain the following upper bound

deg d ≤ 14 deg n + 7 deg a + 11 deg b + 15 deg c− 4

as claimed in our lemma. �

4. Proof of Theorem 3

Let S = {a1, a2, . . . , am} be a polynomial D(ux + v)-m-tuple with some
integers u 6= 0 and v. We already know that m ≤ 26 from the main result in
[10]. From the fact that the product of each two elements from S plus ux+v
is a square of a polynomial with integer coefficients, it follows that if the set
S contains a polynomial with degree ≥ 2, then it contains either polynomials
with even or polynomials with odd degree only. From Theorem 1 we get that
there are at most 4 linear polynomials in S. Theorem 2 implies that there
are at most 3 quadratic polynomials in S. The number of polynomials of
degree µ ≥ 3 is also at most 3 and there is at most one constant in S.

We may assume that there is a polynomial of degree ≥ 2 in S. Therefore,
we will consider separate cases depending on whether all degrees are even
or all degrees are odd.

We use the following gap principle, which was already proved in our pre-
vious paper (cf. [10, Lemma 3]).

Lemma 2. If {a, b, c, d} is a polynomial D(n)-quadruple, where n ∈ Z[x],
a < b < c < d and deg a ≥ 3, then

deg d ≥ deg b + deg c− 2.

Combining these gaps between the degrees of the elements in S with the
upper bound proved in Lemma 1 we will get a much smaller upper bound
for m.

First, we consider the case that all degrees of the ai in S are odd. Let
us assume the worst case, namely that there is the smallest possible gap
between the degrees of the elements in S according to Lemma 2. In this case
the following sequence of degrees is possible:

(7) 1, 1, 1, 1, 3, 3, 3, 5, 7, 11, 17, 27, 43, 69, 111, 179, . . . .

More precisely, we get lower bounds for the degrees of the elements of S:

deg a1 ≥ 1, deg a2 ≥ 1, deg a3 ≥ 1, deg a4 ≥ 1,
deg a5 ≥ 3, deg a6,≥ 3, deg a7 ≥ 3, deg a8 ≥ 5,
deg a9 ≥ 7, deg a10 ≥ 11, deg a11 ≥ 17, deg a12 ≥ 27,
deg a13 ≥ 43, deg a14 ≥ 69, deg a15 ≥ 111, . . .

We obtained this in the following way: there are at most 4 linear polynomials
in S. The next possible (odd) degree is 3 and there are at most 3 polynomials
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of degree 3 in S. But having three polynomials of degree 3 enables us to use
the above gap principle (Lemma 2) and we get that the next degree is

deg a8 ≥ 3 + 3− 2 = 4,

and since the smallest odd number ≥ 4 is 5 we get the lower bound as
stated in the table, namely deg a8 ≥ 5. Proceeding in this way, we produce
the numbers in (7).

Since the linear polynomials in S play a special role here we will divide
cases depending on how many linear polynomials our set S contains. If we
assume that deg a1 = deg a2 = deg a3 = deg a4 = 1, then we have

deg a1 = 1, deg a2 = 1, deg a3 = 1,
deg a4 = 1, deg a5 = A, deg a6 ≥ A,
deg a7 ≥ A, deg a8 ≥ 2A− 1, deg a9 ≥ 3A− 2,
deg a10 ≥ 5A− 4, deg a11 ≥ 8A− 7, deg a12 ≥ 13A− 12,
deg a13 ≥ 21A− 20, deg a14 ≥ 34A− 33, . . .

with A ≥ 3.
Let us assume that A > 3 first. We get by Lemma 1 applied to

{a1, a2, a3, am} that

deg am ≤ 7 + 11 + 15 + 14− 4 = 43,

which gives a contradiction unless m ≤ 12.
Now, we consider the case that A = 3. We first show that the configuration

of degrees 1, 1, 1, 1, 3, 3, 3 is not possible. Assume that {a, b, c, d} ⊆ S is
a polynomial D(ux + v)-quadruple such that deg a = 1,deg b = deg c =
deg d = 3. For the polynomials e and e defined by

e = n(a + b + c) + 2abc− 2rst,(8)
e = n(a + b + c) + 2abc + 2rst,(9)

where ab+n = r2, ac+n = s2, bc+n = t2, we have that ae+n2, be+n2, ce+n2

are perfect squares (cf. [10, Lemma 1] applied to {a, b, c}) and

(10) e · e = n2(c− a− b− 2r)(c− a− b + 2r)

(see ([10, equation (2)]). It is plain that deg e = 7,deg(ee) ≤ 8 and therefore
deg e ≤ 1. Hence, e = 0 or deg e = 1. If e = 0, then c = a + b + 2r. Also the
third polynomial of degree 3 has the form d = b + c + 2t by the proof of [10,
Proposition 2]. Thus, d = a + 4b + 4r and together with ad + n = z2, we get

3n = (a + 2r − z)(a + 2r + z),

a contradiction. Therefore, we may assume that deg e = 1. From be+n2 = y2,
we have y ± n = e · f with deg f = 1. This gives b = ef2 ∓ 2fn. Hence, f |b.
We want to prove that there are at most 3 such f ’s corresponding to the
possible linear factors of b. Assume that we have two such f ’s (say f and f ′)
which correspond to the same linear factor of b, i.e. f ′ = α · f, α 6= 1. From

b = ef2 ∓ 2fn = e′f ′2 ∓ 2f ′n,
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we find
f(e′ · α2 − e) = ±2n(α± 1).

Thus, n|f and n|b. From be+n2 = y2 we find that n|y and n2|be. Hence, n|e.
Now ce+n2 being a perfect square, implies that n|c and n2|bc contradicting
the relation bc + n = t2. Therefore, there are at most 3 polynomials f with
the above property and consequently, there are at most 3 possibilities for
the polynomial e. Altogether, this means that for fixed polynomials b and
c of degree 3, there are at most 3 possibilities for the linear polynomial
a (each e induce two possible a’s, but as we have shown above only one
of them is indeed a polynomial). Hence, we proved that the configuration
1, 1, 1, 1, 3, 3, 3 is not possible. The remaining case to consider is

deg a1 = 1, deg a2 = 1, deg a3 = 1,
deg a4 = 1, deg a5 = A, deg a6 ≥ A,
deg a7 ≥ 2A− 1, deg a8 ≥ 3A− 2, deg a9 ≥ 5A− 4,
deg a10 ≥ 8A− 7, deg a11 ≥ 13A− 12, deg a12 ≥ 21A− 20,
deg a13 ≥ 34A− 33, . . .

with A = 3. But as above we get deg a13 ≤ 43, and therefore

34A− 33 ≤ deg a13 ≤ 43,

which is a contradiction to A = 3.
Similarly, we get upper bounds for m in the case that we have

deg a1 = deg a2 = deg a3 = 1 and
deg a4 = A ≥ 3,deg a5 ≥ A,deg a6 ≥ A,deg a7 ≥ 2A− 1, . . . ,

deg a13 ≥ 34A− 33,

where we get deg a13 ≤ 43 as before and therefore m ≤ 12. In the case

deg a1 = deg a2 = 1,deg a3 = A ≥ 3,

deg a4 ≥ A,deg a5 ≥ A, deg a6 ≥ 2A− 1, . . . ,deg a13 ≥ 55A− 54,

we get
deg a13 ≤ 7 + 11 + 15A + 14− 4 = 15A + 28

and therefore m ≤ 12. Next, we consider the case

deg a1 = 1,deg a2 = A,deg a3 = B,

deg a4 ≥ B,deg a5 ≥ 2B − 1, . . . ,deg a12 ≥ 55B − 54

with 3 ≤ A ≤ B, where we get

deg a12 ≤ 7 + 11A + 15B + 14− 4 ≤ 26B + 17

and therefore m ≤ 11. Observe that we can apply the gap principle already
to get a lower bound for deg a4, since we have three elements with degree
≥ 3. Finally, we consider the case

deg a1 = A, deg a2 = B,deg a3 = C,

deg a4 ≥ C,deg a5 ≥ 2C − 1, . . . ,deg a12 ≥ 55C − 54
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with 3 ≤ A ≤ B ≤ C, where we get

deg a12 ≤ 7A + 11B + 15C + 14− 4 ≤ 33C + 10

and therefore m ≤ 11. Altogether, we see that there are at most 12
polynomials in S all of them having odd degrees.

The case where all polynomials in S have even degree can be handled in
essentially the same way. Here the degrees 0 (which appears at most once)
and 2 play a special role.

Let us start by showing that it is not possible to have polynomials
{a, b, c, d} ⊆ S with deg a = A, deg b = deg c = deg d = B and a < b <
c < d, 2 ≤ A < B. By the proof of [10, Proposition 2] we have d = b+ c+2t,
where bc + n = t2. Consider the triple {a, b, c} and let e and e be the
polynomials defined by (8) and (9), which exist by [10, Lemma 1]. Since
deg e = A+2B,deg(ee) ≤ 2B+2 (by (10)), it follows that deg e ≤ 2−A ≤ 0.
Hence, e is a constant. But by the proof of [10, Proposition 3] (we used these
arguments already above), there is at most one nonzero constant e such that
ae+n2 is a perfect square. Therefore, one of the polynomials c and d corre-
sponds to e = 0. We may assume that c = a + b + 2r. Then d = a + 4b + 4r,
and the condition ad + n = z2 leads again to

3n = (a + 2r − z)(a + 2r + z),

a contradiction.
Now assume that deg a1 = 0,deg a2 = 2,deg a3 = 2. Then deg a4 ≥

2,deg a5 ≥ 4 (since there are at most 3 elements of degree 2 in the set S
by Theorem 2), deg a6 ≥ 4, (since by the arguments from above with one
polynomial of degree ≥ 2 there are at most two polynomials with the same
degree B > 2) deg a7 ≥ 6,deg a8 ≥ 8,deg a9 ≥ 12,deg a10 ≥ 18,deg a11 ≥
28,deg a12 ≥ 44,deg a13 ≥ 70. On the other hand, we get the upper bound

deg a13 ≤ 0 + 22 + 30 + 14− 4 = 62,

which is a contradiction. Therefore, we get m ≤ 12 in this case.
Assume now that
deg a1 = 0, deg a2 = A, deg a3 = B,
deg a4 ≥ B, deg a5 ≥ 2B − 2, deg a6 ≥ 3B − 4,
deg a7 ≥ 5B − 8, deg a8 ≥ 8B − 14, deg a9 ≥ 13B − 24,
deg a10 ≥ 21B − 30, deg a11 ≥ 34B − 54, deg a12 ≥ 55B − 84

with 2 ≤ A < B and where we have again used the gap principle (Lemma 2)
several times. Applying Lemma 1 to the quadruple {a1, a2, a3, a12} we get

deg a12 ≤ 11A + 15B + 14− 4 ≤ 26B + 10,

a contradiction. Hence, m ≤ 11 in this case.
Finally, we consider the case that

deg a1 = A,deg a2 = B,deg a3 = C,
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where 2 ≤ A ≤ B ≤ C. If C ≥ 4, then we have

deg a4 ≥ C,deg a5 ≥ 2C − 2, . . . ,deg a13 ≥ 89C − 140.

By Lemma 1 we obtain

deg a13 ≤ 7A + 11B + 15C + 14− 4 ≤ 33C + 10,

which gives a contradiction. If A = B = C = 2, then we have
deg a1 = 2,deg a2 = 2,deg a3 = 2,deg a4 ≥ 4,deg a5 ≥ 4,deg a6 ≥
6,deg a7 ≥ 8,deg a8 ≥ 12,deg a9 ≥ 18,deg a10 ≥ 28,deg a11 ≥ 44,deg a12 ≥
70,deg a13 ≥ 112 and

deg a13 ≤ 14 + 22 + 30 + 14− 4 = 76,

which gives a contradiction, showing that m ≤ 12. Altogether, we have at
most 12 polynomials in S all having even degrees. �
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