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Abstract. Let m ≥ 2 and k ≥ 2 be integers and let R be a commutative ring
with a unit element denoted by 1. A k-th power diophantine m-tuple in R is an
m-tuple (a1, a2, . . . , am) of non-zero elements of R such that aiaj +1 is a k-th
power of an element of R for 1 ≤ i < j ≤ m. In this paper, we investigate the
case when k ≥ 3 and R = K[X], the ring of polynomials with coefficients in a
field K of characteristic zero. We prove the following upper bounds on m, the
size of diophantine m-tuple: m ≤ 5 if k = 3; m ≤ 4 if k = 4; m ≤ 3 for k ≥ 5;
m ≤ 2 for k even and k ≥ 8.

1. Introduction

Let m ≥ 2, k ≥ 2 be positive integers and R be a commutative ring with 1. A kth power diophantine
m-tuple in R is an m-tuple (a1, a2, . . . , am) of non-zero elements of R such that aiaj + 1 is a kth
power of an element of R for 1 ≤ i < j ≤ m. Given R and k, the question of interest is usually
finding an upper bound on m, the size of such a kth power diophantine m-tuple. For k = 2 and
R = Z, or Q, the ring of integers, or the field of rational numbers, this question has received a lot of
interest (see [3], pages 513-520). For example, the first diophantine quadruple of rational numbers( 1
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33
16

,
17
4

,
105
16

)
was found by Diophantus himself, while the first diophantine quadruple of

integers (1, 3, 8, 120) was found by Fermat. In 1969, Baker and Davenport (see [1]) showed that
Fermat’s quadruple cannot be extended to a diophantine quintuple of integers, and in 1998, Dujella
and Pethő (see [7]) proved that even the pair (1,3) cannot be extended to a diophantine quintuple.
When R = Z and k = 2 it is conjectured that m ≤ 4, and the best result available to date towards
this conjecture is due to the first author who proved (see [4]) that m ≤ 5, and that m = 5 can
happen only in finitely many, effectively computable, instances. In the case in which R = Q and
k = 2, the first Diophantine quintuple was found by Euler and a few diophantine sextuples were
recently found by Gibbs (see [8]). However, no upper bound for the size of such sets is known.
The case R = Z[X] and k = 2 was considered by Jones (see [10,11]). Among other results, he proved
that the pair of polynomials (X, X +2) cannot be extended to a diophantine quintuple. Recently,
some variants of this case were considered by Dujella and Fuchs (see [5]) and Dujella, Fuchs and
Tichy (see [6]). In [5], it was showed that there is no quadruple of polynomials (a1, a2, a3, a4)
with integer coefficients and at least one of them non-constant, such that aiaj − 1 is a perfect
square in Z[X] for all 1 ≤ i < j ≤ 4. In [6], an absolute upper bound was given for the size of
sets of polynomials with integer coefficients such that the product of any two of them plus a linear
polynomial is a square.
For R = Z and larger values of k, Bugeaud and Dujella (see [2]) showed that there is no kth power
diophantine quadruple provided that k ≥ 177. They also gave upper bounds on the size of a kth
power diophantine m-tuple for the remaining values 3 ≤ k ≤ 176.
In this paper, we investigate the above question when k ≥ 3 and R = K[X], the ring of polynomials
with coefficients in any field K of characteristic zero. There is no loss of generality in assuming
that K is algebraically closed. Before we state our results, let us make a few remarks. Suppose
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that k ≥ 2 and (a1, . . . , am) is a kth power diophantine m-tuple. When R = Z, then the fact
that ai 6= aj holds for all i 6= j follows from the fact that the equation a2 + 1 = rk has no integer
solutions (a, r, k) with k ≥ 2 and a 6= 0. However, this is not necessarily so over other rings. In
particular, if (a1, a2, . . . , am) is a kth power diophantine m-tuple over R, and if a2

m+1 happens to
be an kth power in R, then we may adjoin at the m-tuple (a1, . . . , am) values of am, say t times,
where t ≥ 1 is any positive integer, obtaining in this way a kth power diophantine (m + t)-tuple.
Since when K is algebraically closed the equation a2 + 1 = rk admits a solution r in K for any
given values of a ∈ K and integer k ≥ 2, it follows that we have to assume that our kth power
diophantine m-tuple (a1, a2, . . . , am) consisting of non-zero polynomials in K[X], fulfills ai 6= aj

for i 6= j whenever ai is a constant polynomial. Let us also notice that since K is algebraically
closed, any m-tuple of constant polynomials is a kth power diophantine m-tuple for any k ≥ 2. So,
we will assume that at least one of the polynomials is non-constant. From now on, we will work
under these assumptions.
Let us also notice that, at least in principle, one may ask for a slightly more general problem,
namely given k ≥ 2, to determine an upper bound for m such that there exist λ ∈ K∗ and an
m-tuple of non-zero polynomials (a1, a2, . . . , am) with coefficients in K and at least one of them
non-constant, and such that

aiaj + λ = rk
ij for 1 ≤ i < j ≤ m (1)

holds, with rij ∈ K[X] for all 1 ≤ i < j ≤ m. However, since K is algebraically closed, we may
replace ai by λ−1/2ai and rij by λ−1/krij and obtain our original problem.
Our main result is the following.

Theorem.

Assume that K is an algebraically closed field and that (a1, a2, . . . , am) is a kth power diophantine
m-tuple consisting of polynomials with coefficients in K not all of them constant. Assume also that
if ai and aj are constant polynomials for i 6= j, then ai 6= aj. Then,
i. m ≤ 5 if k = 3;
ii. m ≤ 4 if k = 4;
iii. m ≤ 3 for k ≥ 5;
iv. m ≤ 2 for k even and k ≥ 8.

The paper is organized as follows. We first prove a couple of lemmas concerning inequalities
between the degrees of polynomials appearing in kth power diophantine triples and, respectively,
quadruples. Combining these two results, we get an easy proof of parts i-iii of our Theorem. For
the proof of part iv of the above Theorem, we will develop a theory of Pell-like equations in K[X].

2. Inequalities for the degrees of polynomials

In the proof of our first two lemmas we will use the following theorem of Mason [12] (see also [13]),
which is usually referred to as the abc theorem for polynomials:

The abc Theorem.

Let f, g, h be three non-zero polynomials, not all three constant such that f and g are coprime
and f + g = h. Then,

max(deg(f), deg(g), deg(h)) ≤ N(fgh)− 1,

where for a non-constant polynomial λ we denote by N(λ) the number of distinct roots of λ.

2



Lemma 1.

Let (a1, a2, . . . , am) be a kth power diophantine m-tuple satisfying the conditions from the hypoth-
esis of the Theorem. Then ai 6= aj for i 6= j and at most one of the polynomials ai for i = 1, . . . , m
is constant.

Proof. We already know that the constant polynomials appearing in the m-tuple are distinct.
Assume that there exist a non-constant polynomial a such that a = ai = aj for some i 6= j. We
write

a2 + 1 = rk (2)

and notice that a and r have no common root and that

deg(r) =
2deg(a)

k
.

An applications of Mason’s theorem to the equation (2) gives 2deg(a) ≤ deg(a) + 2deg(a)
k − 1 or

(k − 2)deg(a) ≤ −k, which is obviously a contradiction.
To prove the second assertion of Lemma 1, assume that a 6= b are two constant polynomials
belonging to the m-tuple, and let c be a non-constant polynomial in the m-tuple. We write

ac + 1 = rk and bc + 1 = sk, (3)

where r and s are some non-constant polynomials. Relations (3) imply

brk − ask = b− a. (4)

Applying Mason’s theorem to the equation (4), we get kdeg(r) ≤ 2deg(r)− 1 < 2deg(r), which is
a contradiction.

Lemma 2.

Assume that a, b, c are distinct polynomials such that at most one of them is constant. Assume
moreover that

ac + 1 = rk and bc + 1 = sk (5)

hold with two polynomials r and s. Let α = deg(a), β = deg(b), γ = deg(c) and assume that
α ≤ β. Then,

(k − 2)γ ≤ (k + 1)β + α− k. (6)

Proof. We may, of course, assume that c is not constant otherwise relation (6) is obviously

satisfied. Thus, γ > 0. From (5), we read deg(r) =
α + γ

k
and deg(s) =

β + γ

k
. In particular,

deg(s) ≥ deg(r) > 0. Eliminating c from the two relations (5) we get

brk − ask = b− a. (7)

Let g = gcd(r, s) and h = gcd(a, b). We may write (7) as

b

h

( r

g

)k

− a

h

( s

g

)k

=
b− a

hgk
. (8)
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It is clear that the polynomials appearing in (8) satisfy the conditions of Mason’s theorem. We
obtain

k
(β + γ

k
− deg(g)

)
+ (α− deg(h)) ≤(α + γ

k
− deg(g) + β − deg(h)

)
+

(β + γ

k
− deg(g) + α− deg(h)

)
+ (β − deg(h)− kdeg(g))− 1.

Thus,

α + β + γ ≤ α + β + γ

k
+ α + 2β − 1, (9)

and it is easy to see that inequality (9) is equivalent to inequality (6).

Notice that, in particular, Lemma 2 gives us an upper bound on the largest degree of a polynomial
appearing in a kth power diophantine triple in terms of the degrees of the other two polynomials.

In what follows, we prove a gap principle for the largest degree of a polynomial appearing in a kth
power diophantine quadruple in terms of the degrees of the other three involved polynomials. This
principle appears originally in a paper of Gyarmati (see [9], and [2] for some slight improvements of
the principle from [9]) for kth power diophantine m-tuples consisting of integers. Our next lemma
illustrates the above principle in the polynomial context.

Lemma 3.

Let A = {a, b} and B = {c1, c2} be two sets consisting each of two non-zero distinct polynomials
with coefficients in K. Let α, β, γ1, γ2 be the degrees of a, b, c1, c2, respectively, and assume that
α ≤ β and γ1 ≤ γ2. Assume moreover that fg + 1 is a kth power of a polynomial with coefficients
in K for all f ∈ A and g ∈ B. Then,

β + γ2 ≥ (k − 1)(α + γ1). (10)

Proof. Write
ac1 + 1 = rk

1 ,

ac2 + 1 = rk
2 ,

and
bc1 + 1 = sk

1 ,

bc2 + 1 = sk
2 ,

(11)

with some polynomials ri, si for i = 1, 2. Notice that deg(ri) =
α + γi

k
and deg(si) =

β + γi

k
for

i = 1, 2. In particular, deg(si) ≥ deg(ri) for i = 1, 2, deg(s2) ≥ deg(s1) and deg(r2) ≥ deg(r1).
From the first and the last relations (11) we get

abc1c2 = (ac1)(bc2) = (rk
1 − 1)(sk

2 − 1)

and from the second and the third relations (11) we get

abc1c2 = (ac2)(bc1) = (rk
2 − 1)(sk

1 − 1).

Thus,
(rk

1 − 1)(sk
2 − 1) = (rk

2 − 1)(sk
1 − 1),

or
(r1s2)k − (r2s1)k = rk

1 + sk
2 − rk

2 − sk
1 . (12)

We first notice that the two polynomials appearing in the two sides of (12) are not zero. Indeed,
if (r1s2)k = (r2s1)k, we get (ac1 + 1)(bc2 + 1) = (ac2 + 1)(bc1 + 1), or ac1 + bc2 = ac2 + bc1, which
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leads to (a− b)(c1 − c2) = 0, contradicting the fact that a 6= b and c1 6= c2. To get a gap principle,
we compare the degrees of the two polynomials appearing in (12). Let ζ1, . . . , ζk be all the roots
of 1 of exponent k in K, i.e. the roots of the polynomial Xk − 1. Since K is of characteristic zero,
it follows that all these roots are distinct. Let A be the leading coefficient of r1s2 and B be the
leading coefficient of r2s1. Notice that

(r1s2)k − (r2s1)k =
k∏

i=1

(r1s2 − ζir2s1). (13)

The two polynomials r1s2 and r2s1 have the same degree, namely δ :=
α + β + γ1 + γ2

k
, therefore

r1s2 − ζir2s1 = (A− ζiB)Xδ + terms of smaller degree. (14)

Since ζi are distinct for i = 1, 2, . . . , k, at most one of the elements A − ζiB can be zero. This
shows that the inequality

deg(r1s2 − ζir2s1) < δ

can hold for at most one value of the index i = 1, 2, . . . , k, and if it does hold for one index i,
then deg(r1s2−ζir2s1) ≥ 0 because this polynomial cannot be the zero polynomial. This argument
shows that

deg((r1s2)k − (r2s1)k) ≥ (k − 1)δ =
(k − 1

k

)
(α + β + γ1 + γ2). (15)

Since obviously
deg(rk

1 + sk
2 − rk

2 − sk
1) ≤ deg(sk

2) = β + γ2, (16)

we get, by (12), (15), and (16), that

k − 1
k

(α + β + γ1 + γ2) ≤ β + γ2, (17)

and it is easy to see that inequality (17) is equivalent to inequality (10).

3. The proof of the Theorem: Parts i-iii

We first deal with the case k ≥ 5. Assume that (a, b, c, d) is a kth power diophantine quadruple of
polynomials satisfying the hypothesis of the Theorem. Let α, β, γ, δ be the degrees of a, b, c, d,
respectively, and assume that α ≤ β ≤ γ ≤ δ. By Lemma 1, we know that at most one of them
can be constant (and if this is so, then the constant polynomial must be a), and that all four of
them are distinct. Applying Lemma 2 to the triple (a, b, c, d), we get

δ ≤ (k + 1)β
k − 2

+
α

k − 2
− k

k − 2
. (18)

Applying Lemma 3 to the pairs of sets A = {a, b} and B = {c, d}, we get

δ + β ≥ (k − 1)(α + γ) ≥ (k − 1)(α + β). (19)

Thus,

(k − 1)α + (k − 2)β ≤ δ ≤ (k + 1)β
k − 2

+
α

k − 2
− k

k − 2
,
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or
0 ≤

(k + 1
k − 2

− (k − 2)
)
β +

( 1
k − 2

− (k − 1)
)
α− k

k − 2
, (20)

which is obviously a contradiction because β > 0 and
k + 1
k − 2

− (k − 2) < 0 for k ≥ 5. Thus, there

does not exist a kth power diophantine quadruple if k ≥ 5.
When k = 4, inequality (18) for the quadruple (a, b, c, d) shows that

δ ≤ 5β

2
+

α

2
− 2 (21)

and inequality (19) for this quadruple implies

δ + β ≥ 3α + 3γ. (22)

Assume now that there exist a fourth power diophantine quintuple (a, b, c, d, e) and let α ≤
β ≤ γ ≤ δ ≤ ε be the degrees of a, b, c, d, e, respectively. Applying inequality (22) for the two
quadruples (b, c, d, e) and (a, b, c, d), we get

ε + γ ≥ 3(δ + β) ≥ 9(γ + α),

or
ε ≥ 8γ + 9α. (23)

However, inequality (21) for the quadruple (a, b, c, e) shows that

ε ≤ 5
2
β +

α

2
− 2, (24)

and now (23) and (24) lead to
5
2
β +

α

2
− 2 ≥ 8γ + 9α,

which is obviously impossible because γ ≥ β.
Assume now that k = 3 and that (a, b, c, d, e, f) is a third power diophantine sextuple and
assume that α ≤ β ≤ γ ≤ δ ≤ ε ≤ φ are the degrees of a, b, c, d, e, f , respectively. For the third
power diophantine quadruple (a, b, c, d) inequality (18) becomes

δ ≤ 4β + α− 3, (25)

while inequality (19) becomes
δ + β ≥ 2α + 2γ. (26)

Thus, using (26) for the diophantine quadruples (c, d, e, f) and (b, c, d, e), we get

φ + δ ≥ 2(ε + γ) ≥ 4(δ + β),

or
φ ≥ 3δ + 4β. (27)

But using (25) for the diophantine quadruple (a, b, c, f), we also have

φ ≤ 4β + α− 3, (28)
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and now (27) and (28) imply
4β + α− 3 ≥ 3δ + 4β,

or
α− 3 ≥ 3δ,

which is impossible because δ ≥ α. So, parts i-iii of the Theorem are proved.

4. A Pell-like equation in polynomials

Assume now that k is even and large enough. Write k = 2k0,

ab + 1 = rk, ac + 1 = sk, bc + 1 = tk, (29)

with r, s, t in K[X]. Clearly, deg(r) =
α + β

k
, deg(s) =

α + γ

k
and deg(t) =

β + γ

k
, therefore

deg(t) ≥ deg(s) ≥ deg(r) > 0. Eliminating c from the second and third formula (29) above, we get

a(tk0)2 − b(sk0)2 = b− a. (30)

Let R := rk0 , S := sk0 , and T := tk0 . Equation (30) above implies that the equation

aU2 − bV 2 = a− b, (31)

where
ab + 1 = R2 (32)

admits a solution non-trivial solution (U, V ) (i.e. both U and V are non-constant polynomials)
such that both U and V are k0th powers of some polynomials t and s. In what follows, we take a
closer look at all the solutions of equation (31) when a and b satisfy (32).

Lemma 4.

Assume that a and b are non-zero polynomials with at least of them non-constant and assume
moreover that

ab + 1 = R2 (33)

holds with some polynomial R. Let deg(a) = α and deg(b) = β and assume that α ≤ β. Assume
moreover that (U, V ) are polynomials such that

aU2 − bV 2 = a− b. (34)

Then the following hold:
i. ab is not the square of a polynomial.
ii. U 6= 0.
iii. If U is constant, then (U, V ) = (±1, ±1).

iv. There exist (U0, V0) satisfying equation (34) and such that both deg(U0) ≤ 3β − α

4
and

deg(V0) ≤
α + β

4
hold, and some non-negative integer m, such that up to replacing (U, V ) by

(±U, ±V ) the formula

U
√

a + V
√

b = (U0

√
a + V0

√
b)(R +

√
ab)m (35)
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holds.
v. Assume that (U, V ) is a solution of (34) and that formula (35) holds. If U2 ≡ 1 (mod b), then
V 2 ≡ 1 (mod a), and the above congruence relations hold for (U, V ) replaced by (U0, V0) as well.

In particular, if (U0, V0) 6= (±1, ±1), then both deg(U0) ≥
β

2
and deg(V0) ≥

α

2
hold.

Proof. Part i has already been done in Lemma 1. To see part ii, notice that U = 0 implies
bV 2 = b−a, which leads to b | a. Since β ≥ α, we conclude that b = c1a, where c1 is some element
of K. Since K is algebraically closed, we get ab = c1a

2 = (
√

c1a)2 which contradicts i. Part iii
follows for part ii as well. Indeed, if U is a constant, then bV 2 = b − a − aU2 and from degree
considerations we get that V is constant as well. But now b(V 2 − 1) = a(U2 − 1), and if U2 − 1
is not the zero constant, then V 2 − 1 is not the zero constant either, and therefore we get b = c1a

with c1 =
U2 − 1
V 2 − 1

∈ K, but by part i this is impossible via the argument used to prove part ii.

To prove iv, we use an argument already employed before in a similar context in [5] (see Lemma 1
in [5]). Assume that (U, V ) is any solution of (34) and for any integer m and signs ε1, ε2 ∈ {±1}
define

U∗√a + V ∗
√

b = ε1(U
√

a + ε2V
√

b)(R +
√

ab)m. (36)

For m ≥ 0, the above relation defines, in a formal way, U∗ and V ∗ unambiguously in terms of
U, V , a, b, R, m and the two signs ε1 and ε2 (the fact that this is so follows from i, because by i,
ab is not a perfect square). For m < 0, we use the obvious fact that

(R +
√

ab)m = (R−
√

ab)−m, (37)

which is a consequence of the fact that

(R +
√

ab)m · (R−
√

ab)m = (R2 − ab)m = 1, (38)

to also express U∗ and V ∗ in terms of U, V, a, b, R, m and the two signs ε1 and ε2. From relation
(36) we also conclude that

U∗√a− V ∗
√

b = ε1(U
√

a− ε2V
√

b)(R−
√

ab)m, (39)

and therefore, by formula (38), and the fact that (U, V ) is a solution of (34), we conclude that

a(U∗)2 − b(V ∗)2 = (U∗√a + V ∗
√

b)(U∗√a− V ∗
√

b) =

(U
√

a + ε2V
√

b)(U
√

a− ε2V
√

b)(R +
√

ab)m(R−
√

ab)m = aU2 − bV 2 = a− b,

therefore the pair (U∗, V ∗) satisfies equation (34) as well. Notice that by ii, U∗ is never zero, and
if it is a constant, then it must be ±1.
Out of all possible pairs of solutions (U∗, V ∗) obtained by formula (36) from the starting pair
(U, V ) for all possible integers m and signs ε1, ε2, we choose one for which deg(U∗) is minimal
and we denote such a solution by (U0, V0). From formula (36), we notice that

U
√

a + ε2V
√

b = ε1(U0

√
a + V0

√
b)(R +

√
ab)m0 (40)

holds with some signs ε1, ε2 and some integer m0. Changing simultaneously the signs of U and V
we may assume that ε1 = 1, and now by changing only the sign of V , if needed, we may assume
that ε2 = 1. If m0 is negative, then relation (40) implies that

U
√

a− V
√

b = (U0

√
a− V0

√
b)(R +

√
ab)−m0
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holds with −m0 ≥ 0. Thus, by replacing V with −V and V0 with −V0 (notice that this replacement
does not change the degree of V0), we may assume that formula (35) holds with m ≥ 0 and the

pair (U0, V0) for which the degree of U0 is minimal. All is left to prove is that deg(U0) ≤
3β − α

4
.

Let
U1

√
a + V1

√
b = (U0

√
a + V0

√
b)(R +

√
ab)

and
U−1

√
a + V−1

√
b = (U0

√
a + V0

√
b)(R +

√
ab)−1 = (U0

√
a + V0

√
b)(R−

√
ab).

Then,
U1 = RU0 + bV0 and U−1 = RU0 − bV0. (41)

By the minimality of deg(U0), and the fact that U∗ is never zero, we get

deg(U1) ≥ deg(U0) deg(U−1) ≥ deg(U0), (42)

and
max(deg(U1), deg(U−1)) = deg(U0) +

α + β

2
.

By multiplying now relations (41), and using (34), and the fact that at least one of the inequalities
in (42) is strict, we get

deg(U2
0 ) < deg(U1U−1) = deg(U2

0 R2 − b2V 2
0 ) =

deg(U2
0 (ab + 1)− b2V 2

0 ) = deg(b(aU2
0 − bV 2

0 ) + U2
0 ) =

deg(b(a− b) + U2
0 ). (43)

But relation (43) clearly implies that deg(U1) + deg(U−1) ≤ deg(b(a− b)) ≤ 2β. Hence,

2deg(U0) +
α + β

2
≤ 2β

and deg(U0) ≤
3β − α

4
.

When V0 = 0, we get even a better inequality because in this case aU2
0 = a− b, therefore a | b and

U2
0 = 1− b

a
. Thus, deg(U0) =

β − α

2
in this case.

If V0 6= 0 is constant, then deg(V0) = 0 <
α + β

4
. Finally, if V0 is not constant, then by looking at

the degrees of the polynomials appearing in formula (34) we get that

deg(aU2
0 ) = deg(bV 2

0 ),

therefore
deg(V0) = deg(U0)−

β − α

2
≤ 3β − α

4
− β − α

2
=

α + β

4
,

which finishes the proof of iv.
For v, let us notice first that formula (34) can be written as

U2 − 1
b

=
V 2 − 1

a
(44)
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So, if b | U2 − 1, it follows that the rational function appearing on the left hand side of equation
(44) is, in fact, a polynomial, therefore the function appearing on the right hand side of equation
(44) must be a polynomial as well. Hence a | V 2 − 1 when b | U2 − 1. To prove the similar
statement about the pair (U0, V0), it suffices to show, by induction on m ≥ 0 from formula (35),
that if b | U2 − 1 and

U
√

a + V
√

b = (U∗
√

a + V∗
√

b)(R +
√

ab)

then b | U2
∗ − 1 as well. But obviously,

U∗
√

a + V∗
√

b = (U
√

a + V
√

b)(R−
√

ab),

therefore
U∗ = UR− V b,

and
U2
∗ = (UR− V b)2 = U2R2 − 2URV b + b2V 2 = U2(ab + 1)− 2URV b + b2V 2,

therefore
U2
∗ ≡ U2 (mod b). (45)

Since U2 ≡ 1 (mod b), relation (45) implies that U2
∗ ≡ 1 (mod b) as well, and the proof of v follows

by induction on m. Hence, if b | U2 − 1, then b | U2
0 − 1. In particular, if U0 is not constant (i.e.,

not ±1), then U2
0 − 1 is non-zero and a multiple of b, therefore 2deg(U0) = deg(U2

0 − 1) ≥ β. The
statement about deg(V0) being at least

α

2
when a | V 2

0 −1 and V0 is not ±1 is obtained in a similar
way. Lemma 4 is therefore proved.

Assume now that (a, b, c) is a kth power diophantine triple. Then (U, V ) = (tk0 , sk0) is a solution
of equation (34). Let (U0, V0) be a solution of equation (34) arising from the solution (U, V ) as
explained in the proof of Lemma 4, and with U0 of minimal possible degree. Then, by Lemma

4, we have deg(U0) ≤
3β − α

4
and deg(V0) ≤

α + β

4
, and if V0 = 0, then deg(U0) =

β − α

2
. Let

(Un)n≥0 and (Vn)n≥0 be the sequences of polynomials given by

Un

√
a + Vn

√
b = (U0

√
a + V0

√
b)(R +

√
ab)n. (46)

It is easy to see that both (Un)n≥0 and (Vn)n≥0 are binary recurrent sequences satisfying

U1 = RU0 + bV0 and V1 = U0a + V0b, (47)

Un+2 = 2RUn+1 − Un and Vn+2 = 2RVn+1 − Vn for all n ≥ 0. (48)

In what follows, we will gather some more of the properties of the sequences (Un)n≥0 and (Vn)n≥0.

Lemma 5. Let the sequences (Un) and (Vn) be defined by (48), and let m ≥ 0 be an integer such
that (tk0 , sk0) = (Um, Vm). Then:
i. U2

n ≡ 1 (mod b) and V 2
n ≡ 1 (mod a) for all n ≥ 0. In particular, if (U0, V0) 6= (±1, ±1), then

deg(U0) ≥
β

2
and deg(V0) ≥

α

2
.

ii. m ≥ 1.
iii. deg(U1) ≥ max(deg(U0), β/2) , deg(V1) ≥ max(deg(V0), α/2).
iv. The relations

deg(Un) = (n− 1)
α + β

2
+ deg(U1), (49)

10



deg(Vn) = (n− 1)
α + β

2
+ deg(V1), (50)

hold for all n ≥ 1 and
2deg(Un) + α = 2deg(Vn) + β (51)

holds for all n ≥ 1 as well and even for n = 0 except for the case in which (U0, V0) = (±1, ±1).

Proof. For part i, notice that since bc + 1 = tk = U2
m, it follows that b | U2

m − 1, and now, by v of
Lemma 4, it follows that b | U2

0 − 1. One may now use induction of n to show that this divisibility
relation holds for all n ≥ 0. Thus, by v of Lemma 4 again, b | U2

n − 1 and a | V 2
n − 1 hold for all

n ≥ 0. The remaining assertions of part i follow from part v of Lemma 4.
For part ii, notice that since U2

m = tk = bc + 1, it follows that 2deg(Um) = β + γ ≥ 2β, therefore

deg(Um) ≥ β. Since by iv of Lemma 4, deg(U0) ≤
3β − α

4
< β, it follows that m = 0 is impossible,

therefore m ≥ 1.
For part iii, notice first of all that the fact that deg(U1) ≥ deg(U0) follows from the fact that U0

has been chosen to have minimal degree. If deg(U1) = 0, then both U1 and U0 are constants,
therefore U1 = U0 = ±1. In particular, V1 = V0 = ±1. But

U1 = RU0 + bV0

therefore
±R = ±1± b

and
ab + 1 = R2 = (±1± b)2 = b2 ± 2b + 1,

or
a = b± 2.

By simultaneously changing the signs of all three (a, b, c), if needed, we may assume that b = a+2,
therefore α = β > 0, and now relation (30) becomes

atk − (a + 2)sk = −2. (52)

In particular, t and s have the same degree deg(t) = deg(s) =
α + γ

k
, and no common root.

Applying Mason’s theorem to the equation (52) we obtain

(k − 2)(α + γ) ≤ kα− k.

Thus
2(k − 2)α ≤ (k − 2)(α + γ) ≤ kα− k,

or
(k − 4)α ≤ −k,

which is impossible for k ≥ 4. Thus, we have shown that deg U1 > 0, therefore deg(U1) ≥
max(deg(U0), β/2). To prove the similar relation for the degree of V1, notice first that V1 6= ±1.
Indeed, for if V1 = ±1, then U1 = ±1, which is a contradiction. So, V1 6= ±1 and we get that
deg(V1) ≥

α

2
. To prove that deg(V1) ≥ deg(V0), we first show that V1 6= 0. Indeed, for if V1 = 0,

then the relation
U0

√
a + V0

√
b = (U1

√
a + V1

√
b)(R−

√
ab)

11



with V1 = 0 gives U0 = U1R, contradicting the fact that deg(R) > 0 and deg(U1) ≥ deg(U0).
Finally, assume that V1 6= 0, ±1. From the relation

a(U2
1 − 1) = b(V 2

1 − 1)

we get
2deg(U1) + α = 2deg(V1) + β. (53)

If V0 = ±1, then obviously deg(V0) = 0 ≤ deg(V1). Finally, if V0 6= ±1, then from the relation

a(U2
0 − 1) = b(V 2

0 − 1), (54)

we also get
2deg(U0) + α = 2deg(V0) + β. (55)

Finally, (53), (55), and the fact that deg(U1) ≥ deg(U0) imply that deg(V1) ≥ deg(V0). This
completes the proof of part iii.

For part iv, notice that by recurrence formulae (48), the fact that deg(R) =
α + β

2
, and the fact that

deg(U1) ≥ deg(U0) and deg(V1) ≥ deg(V0), we get, by induction on n, that deg(Un+1) > deg(Un)
and deg(Vn+1) > deg(Vn) hold for all n ≥ 1, and that

deg(Un+2) = deg(R) + deg(Un+1) and deg(Vn+2) = deg(R) + deg(Vn+1) (56)

hold for all n ≥ 0. Obviously, relations (56) imply (49) and (50). Finally, relation (51) follows
from identifying degrees in the formula

a(U2
n − 1) = b(V 2

n − 1).

Lemma 5 is therefore proved.

We now have sufficient information of the sequences (Un)n≥0 and (Vn)n≥0 to be able to complete
the proof of our Theorem.

5. The proof of the Theorem: Part iv

Let m ≥ 1 and recall that Um = tk0 , Vm = sk0 , and R = rk0 . Here, m ≥ 1 by Lemma 5. By the
same Lemma 5, we have

β + γ

2
= k0deg(t) = deg(Um) = (m− 1)

α + β

2
+ deg(U1)

and
α + γ

2
= k0deg(s) = deg(Vm) = (m− 1)

α + β

2
+ deg(V1),

therefore

α + 2β + γ

2k0
= deg(ts) = deg(t) + deg(s) =

1
k0

((m− 1)(α + β) + deg(U1) + deg(V1)). (57)

However, by Lemma 2, we have

(2k0 − 2)γ ≤ (2k0 + 1)β + α− 2k0,

12



and it is easy to see that the above inequality implies(k0 − 1
2k0

)
(α + 2β + γ) ≤ (α + 3β)

(1
2
− 1

4k0

)
− 1

2
<

α + 3β

2
. (58)

The combination of (57) with (58) gives(k0 − 1
k0

)
((m− 1)(α + β) + deg(U1) + deg(V1)) <

α + 3β

2
. (59)

Relation (59) obviously implies that m ≤ 2 for k0 ≥ 3 (i.e., k ≥ 6). Indeed, if k0 ≥ 3, and m ≥ 3
then (k0 − 1

k0

)
((m− 1)(α + β) + deg(U1) + deg(V1)) ≥

2
3
·
(
2(α + β) +

β

2
+

α

2

)
=

5
3
(α + β),

therefore inequality (59) would be
5
3
(α + β) <

α + 3β

2
,

therefore
10α + 10β < 3α + 9β, (60)

which is obviously impossible. Thus, m ≤ 2. We now want to eliminate the case m = 2. What we
do, we show that the case m = 2 is possible only when (U0, V0) = (±1, ±1). Assume first that
α = β and m = 2. Then, since deg(U1) ≥ β/2 and deg(V1) ≥ α/2, we get deg(U1) + deg(V1) ≥ β.
Now inequality (59) with k0 ≥ 3 implies

2β =
2
3
((α + β) + β) ≤ k0 − 1

k0
· ((m− 1)(α + β) + deg(U1) + deg(V1)) <

α + 3β

2
= 2β,

which is a contradiction. So α < β.
Assume now that (U0, V0) 6= (±1, ±1). Since

U1 = RU0 + bV0,

it follows that either
deg(U1) =

α + β

2
+ deg(U0), (61)

or
deg(U1) <

α + β

2
+ deg(U0). (62)

We treat the first instance. In this case,

deg(V1) =
α + β

2
+ deg(V0),

therefore
deg(U1) + deg(V1) = α + β + deg(U0) + deg(V0).

Since (U0, V0) 6= (±1, ±1), we get that

deg(U0) + deg(V0) ≥
α + β

2
,

13



therefore

deg(U1) + deg(V1) ≥
3(α + β)

2
.

Thus, inequality (59) implies that

5
3
(α + β) =

2
3
·
(
(α + β) +

3
2
(α + β)

)
≤ k0 − 1

k0
· ((m− 1)(α + β) + deg(U1) + deg(V1)) <

α + 3β

2
,

and we get again inequality (60), which is impossible. We now treat the second instance. For this,
we will assume that k0 ≥ 4 (i.e., that k ≥ 8). From α < β,

U1(U0R− bV0) = U2
0 R2 − b2V 2

0 = (ab + 1)U2
0 − b2V 2

0 = b(aU2
0 − bV 2

0 ) + U2
0 = b(a− b) + U2

0 ,

inequality (62), and the fact that deg(U0) < β, we get

deg(U1) +
α + β

2
+ deg(U0) = 2β,

therefore
deg(U1) =

3β − α

2
− deg(U0).

Since
deg(V1) = deg(U1) +

α− β

2
,

we get

deg(U1) + deg(V1) = 2deg(U1) +
α− β

2
= 3β − α +

α− β

2
− 2deg(U0) =

5β − α

2
− 2deg(U0).

Thus, inequality (59) with k0 ≥ 4 tells us that

3
4
·
(
(α + β) +

5β − α

2
− 2deg(U0)

)
<

α + 3β

2
,

or
21β + 3α

8
− α + 3β

2
<

3
2
deg(U0),

or
deg(U0) >

9β − α

12
. (63)

On the other hand, by Lemma 4 we have deg(U0) ≤
3β − α

4
, which is obviously in contradiction

with (62).

The conclusion so far is that either m = 2 in which case (U0, V0) = (±1, ±1) must hold, or m = 1.

The Case m = 2. In this case, by simultaneously changing the signs of both U0 and V0, we may
assume that U0 = 1. Thus, V0 = ±1. We write

tk0
√

a + sk0
√

b = U2 = (
√

a±
√

b)(R +
√

ab)2 = (2ab + 1± 2Rb)
√

a + (2ab + 1± 2Ra)
√

b, (64)
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therefore {
tk0 = 2r2k0 − 1± 2rk0b,

sk0 = 2r2k0 − 1± 2rk0a,
(65)

Clearly s and t are coprime, because if not, U2 and V2 will have a non-trivial common divisor
which, by an argument employed earlier, should also be a common divisor of both U0 and V0,
which is impossible because U0 = V0 = 1. From (65), we get

2rk0(b− a) = tk0 − sk0 . (66)

With (66) and Mason’s theorem, we get

max(deg((b− a)rk0 , tk0 , sk0)) ≤ N((b− a)rst)− 1. (67)

Identifying degrees, we get that the only relevant inequality from (67) is

deg((b− a)rk0) = deg(b− a) +
α + β

2
≤ N((b− a)rst)− 1 ≤ deg(b− a) +

α + β + γ

k0
− 1.

If α < β, then (65) implies
β + γ

2
=

α + β

2
+ β and γ = 2β + α. On the other hand, Lemma 2 for

k0 ≥ 3 implies γ <
k0 + 1
k0 − 1

β ≤ 2β, a contradiction. Therefore, we may assume that α = β. But

now we have
α <

2α + γ

k0
,

which implies
γ > (k0 − 2)α. (68)

But for k0 ≥ 4, Lemma 2 implies γ <
5
3

α, which clearly contradicts (68).

The Case m = 1. In this case, we get U1 = tk0 , V1 = sk0 , and since

U1

√
a + V1

√
b = (U0

√
a + V0

√
b)(R +

√
ab),

we also have

U0

√
a + V0

√
b = (U1

√
a + V1

√
b)(R +

√
ab)−1 = (U1

√
a + V1

√
b)(R−

√
ab),

and we read
U0 = RU1 − bV1 and V0 = RV1 − aU1, (69)

or
U0 = (rt)k0 − bsk0 and V0 = (rs)k0 − atk0 (70)

We look at the second relation (69). Notice that since R2 = 1+ab and V 2
1 = 1+ac, it follows that

RV1 and a are coprime. So, if RV1 and aU1 are not coprime, then their greatest common divisor
will be exactly the greatest common divisor of RV1 and U1. The greatest common divisor of U1

and V1 is the same as the greatest common divisor of U0 and V0. Let this divisor be Λ1 = λk0
1 .
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Finally, let Λ2 be the greatest common divisor of U1/Λ1 and R. In particular, Λ2 = λk0
2 (because

both R and U1/Λ1 = (t/λ1)k0 are k0th powers). We may thus write the second relation (70) as

V0

(λ1λ2)k0
=

( r

λ2

)k0

·
( s

λ1

)k0

− a
( t

λ1λ2

)k0

. (71)

The polynomials appearing in (71) are all coprime. In order to apply Mason’s theorem, it suffices
to show that they are all non-zero and that they are not all constant. We shall first treat the case
in which one of them is zero. In this case, since U1 6= 0 and V1 6= 0 (see Lemmas 4 and 5), we get
V0 = 0, therefore RV1 = aU1. But we have just said that both R and V1 are coprime to a which
leaves us with the case in which a is constant. With a constant and V0 = 0, we get

a− b = aU2
0 ,

therefore
b = aU2

0 − a.

In particular, we get that deg(U0) = β/2, and that

rk = R2 = ab + 1 = a(aU2
0 − a) + 1 = (aU0)2 + (1− a2),

and since the degrees of U0 and R are positive, the above relation gives, via Lemma 1, a = ±1.
Now we have R2 = U2

0 = V 2
1 (the last equality here follows from V1 = RV0 + aU0, with a = ±1

and V0 = 0). Hence, ab + 1 = ac + 1, therefore b = c, a contradiction.

So, we know that all polynomials appearing in formula (71) are non-zero. Let us deal with the case
in which they are all constant. In this case, a is a constant and s/λ1 is a constant. In particular,
V1/Λ1 is a constant, and since Λ1 = gcd(U1, V1) = gcd(U0, V0), and deg(V1) ≥ deg(V0) we get that
V0/Λ1 is constant. Relation (71) now shows that Λ2 is constant, and since R/Λ2 is also constant,
we now get that R is constant, which contradicts the fact that deg(R) > 0. Since we took care of
the degenerate instance, we may apply Mason’s theorem to relation (71) to conclude that

deg
(
a
( t

λ1λ2

)k0
)

= α +
β + γ

2
− k0(deg(λ1) + deg(λ2)) <

α + deg(V0)− k0(deg(λ1) + deg(λ2)) +
α + β + γ

k0
− 2(deg(λ1) + deg(λ2)),

or
β + γ

2
< deg(V0) +

α + β + γ

k0
. (72)

If V0 = ±1, we then get
(k0 − 2)(β + γ) < 2α

which is impossible for k0 ≥ 3. So, we may assume that V0 6= ±1, therefore U0 6= ±1 and the
relation

deg(U0)− deg(V0) =
β − α

2
. (73)

holds. Inequality (72) and relation (73) give us

β + γ

2
< deg(U0) +

α− β

2
+

α + β + γ

k0
. (74)
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From the formula
U1 = RU0 + bV0

it follows that
β + γ

2
= deg(U1) ≤ deg(U0) +

α + β

2
. (75)

If (75) holds with equality, then

β + γ

2
= deg(U0) +

α + β

2
,

and with (74) we get

deg(U0) +
α + β

2
< deg(U0) +

α− β

2
+

α + β + γ

k0
,

therefore
β <

α + β + γ

k0
,

or
(k0 − 1)β < α + γ ≤ β + γ,

or
(k0 − 2)β < γ. (76)

It is clear that (76) contradicts Lemma 2 for k0 ≥ 4.

Assume now that (75) holds with strict inequality. Then, since

U1(U0R− bV0) = (U0R+ bV0)(U0R− bV0) = (R2U2
0 − b2V 2

0 ) = ((ab+1)U2
0 − b2V 2

0 ) = b(b−a)+U2
0 ,

we get

deg(U1) +
α + β

2
+ deg(U0) = β + deg(b− a) ≤ 2β,

therefore
deg(U1) ≤

3β − α

2
− deg(U0).

By Lemma 5, we have

β

2
≤ deg(U0) ≤

3β − α

2
− β + γ

2
=

2β − α− γ

2
,

which implies α+γ ≤ β, and this is possible only if α = 0 and β = γ. But now (72), together with

deg(V0) ≤
α + β

4
=

β

4
,

leads to
β <

β

4
+

2β

k0
,

which gives a contradiction for k0 ≥ 3.
This finishes the proof of the last assertion of the Theorem.
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