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Abstract

Let Fk(x) =
∞∑

n=0

F k
nxn. Using the interpretation of Fibonacci num-

bers in the terms of Morse codes, we give a bijective proof of Riordan’s
formula

(1− Lkx + (−1)kx2)Fk(x) = 1 + kx

bk/2c∑
j=1

(−1)j

j
akjFk−2j((−1)jx),

where Lk = Fk + Fk−2, and akj is defined by means of

(1− x− x2)−j =
∞∑

k=2j

akjx
k−2j .

The Fibonacci numbers Fn may be defined by F0 = 1, F1 = 1, Fn =
Fn−1 + Fn−2, n ≥ 2. Their generating function is

F1(x) =
∞∑

n=0

Fnxn = (1− x− x2)−1.

More generally we may put

Fk(x) =
∞∑

n=0

F k
nxn.

Riordan [2] has proved that Fk(x) satisfies the following recurrence relation:

(1− Lkx + (−1)kx2)Fk(x) = 1 + kx

bk/2c∑
j=1

(−1)j

j
akjFk−2j((−1)jx), (1)
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k ≥ 1, where Lk = Fk + Fk−2 are Lucas numbers, and akj is defined by
means of

(1− x− x2)−j =
∞∑

k=2j

akjx
k−2j .

It is easy to verify that

akj =
j

k

bk/2c∑
m=1

bmk

(
m

j

)
,

where bmk = k
m

(k−m−1
m−1

)
. Therefore, relation (1) is an immediate consequence

of the relation

F k
n = LkF

k
n−1 − (−1)kF k

n−2 + δn,0 +
∑

m,j≥1

bmk

(
m

j

)
(−1)jnF k−2j

n−1 , (2)

where δn,0 = 1 if n = 0, and δn,0 = 0 if n > 0.
The purpose of the present paper is to give a bijective proof of relation

(2).
Our starting point is the proof due to Werman and Zeilberger [3] of

Cassini’s identity:
F 2

n − Fn−1Fn+1 = (−1)n.

Their proof is based on the fact that Fn = |A(n)|, where A(n) =
{(a1, . . . , ar) : r ≥ 0, ai = 1 or 2, a1 + · · · ar = n}. They defined the bi-
jection πn : A(n) × A(n) \ (e, e) → A(n − 1) × A(n + 1) \ (e, e), where
e = (2, . . . , 2), as follows. Let ((a1, . . . , ar), (b1, . . . , bs)) ∈ A(n) × A(n) and
look for the first 1 in a1, b1, a2, b2, . . . . If the first 1 is an ak, then delete
ak = 1 from the first vector and insert it between bk−1 and bk in the second
vector. If the first 1 is a bk, then exchange ak and bk.

An equivalent interpretation of Fibonacci numbers is that Fn is the num-
ber of Morse code sequences of length n, where each dot contributes 1 to
the length and each dash contributes 2 (see [1, p. 302]). There is a sim-
ilar interpretation of Lucas numbers. Namely, Ln is the number of cyclic
Morse codes of length n, i. e. we allow a dash connecting the last and the
first positions. Equivalently, Ln = |B(n)|, where B(n) = {(b1, . . . , br) :
r ≥ 0, bi = 1 or 2, b1 + · · · br = n or n− 2}.

Relation (2) suggest that the numbers F k
n and LkF

k
n−1 are close to each

other (the same follows also from Binet’s formula). Let

M (k)
n = A(n)× · · · ×A(n)︸ ︷︷ ︸

k times

, N (k)
n = A(n− 1)× · · · ×A(n− 1)︸ ︷︷ ︸

k times

×B(k).
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Since |M (k)
n | = F k

n , |N (k)
n | = LkF

k
n−1, we will try to construct a function

mk
n : N

(k)
n → M

(k)
n which would be an ”almost” bijection.

Denote by ρn the inverse of πn. Let (A1, . . . , Ak, B) ∈ N
(k)
n , Ai =

(ai
1, . . . , a

i
ri

), i = 1, . . . , k, B = (b1, . . . , bs).
Let cj = b1 + · · ·+ bj + ε, j = 1, . . . , s, where ε = 0 if b1 + · · ·+ bs = k,

and ε = 1 if b1 + · · ·+ bs = k − 2. Then we define the function mk
n by

mk
n(A1, . . . , Ak, B) = (D1, . . . , Dk),

such that if bj = 1 then Dcj = (acj

1 , a
cj

2 , . . . , a
cj
rcj

, 1), if bj = 2 then
(Dcj−1, Dcj ) = ρn(Acj−1, (a

cj

1 , . . . , a
cj
rcj

, 2)), and if ε = 1 then (Dk, D1) =
ρn(Ak, (a1

1, a
1
2, . . . , a

1
r1

, 2)).

Using the Morse code interpretation, we illustrate this function by an
example:

− − · − − · − − ·
· − · · − · · · − ·
· · · · | 7→ · · · · − 7→ · · · −
− · · − · · − − ·
− − | − − − − · −

The function mk
n is ”almost” bijection, but in general it is not nor injec-

tion nor surjection, and moreover it is not defined on entire set N
(k)
n . Let

us consider this three problem more precisely.

1) Domain of mk
n.

Let D(ρn) and D(mk
n) denote the domains of the functions ρn and mk

n.
If n is even, then D(ρn) = A(n−1)×A(n+1) and consequently D(mk

n) =
N

(k)
n .

If n is odd, then D(ρn) = A(n− 1)×A(n + 1) \ {(e, e)}. Thus mk
n is not

defined on configurations which contain a subconfiguration of the form

− − − . . . − − −
− − − − − − |

Let Bmk denotes the number of cyclic Morse codes of the length k with m
dashes. Then by the principle of inclusion-exclusion we obtain:

|N (k)
n \ D(mk

n)| =
∑
m≥1

bmk(m · F k−2
n−1 −

(
m

2

)
· F k−4

n−1 +

(
m

4

)
· F k−6

n−1 − · · ·).
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Furthermore,

bmk =

(
k −m

m

)
+

(
k − 1−m

m− 1

)
=

k

m

(
k −m− 1

m− 1

)
.

2) Injection.

Let x = (A1, . . . , Ak, B), x′ = (A′
1, . . . , A

′
k, B

′) ∈ N
(k)
n , x 6= x′, and

mk
n(x) = mk

n(x′) = (D1, . . . , Dk).
Assume that B 6= B′ and B 6= (2, . . . , 2). Then there exist indices

i, j such that bi = 1, b′j = 2 and ci = c′j − 1. Now we have: bi+1 = 2,
ci+1 = 2, bi+2 = 2, ci+2 = 2, . . . (the addition in indices is modulo k) which
leads to a contradiction (k would be simultaneously even and odd). Since
ρn is an injection we conclude that if x 6= x′ and mk

n(x) = mk
n(x′), then

B = (2, . . . , 2), b1 + · · ·+ bs = k, B′ = (2, . . . , 2), b′1 + · · ·+ b′s′ = k − 2, and
Di = (di

1, . . . , d
i
ti−1

, 2), i = 1, . . . , k.
This, first of all, implies that k is even. Thus, if k is odd then mk

n is an
injection. Let k be even. Since ρn is an injection, we have |(mk

n)−1(y)| ≤ 2,
for all y ∈ M

(k)
n . Furthermore, |{y : |(mk

n)−1(y)| = 2}| = F k
n−2−Znk, where

Znk = |{y = (D1, . . . , Dk) ∈ M
(k)
n : Di = (di

1, . . . , d
i
ti−1

, 2),
i = 1, . . . k, y 6∈ mk

n(N (k)
n )}|.

(3)

3) Surjection.

First of all, observe that if k is odd then y 6∈ mk
n(N (k)

n ) for all y of the
form (D1, . . . , Dk), Di = (di

1, . . . , d
i
ti−1

, 2), i = 1, . . . , k, and the number of
such y’s is F k

n−2.
Besides of this, observe that ρn(A(n − 1) × A(n + 1)) = A(n) × A(n) \

{(e, e)} if n is even. Thus, if n is even then we have some more elements in
M

(k)
n which are not in mk

n(N (k)
n ). The number of such elements is

∑
m≥1

bmk(m · F k−2
n−1 +

(
m

2

)
· F k−4

n−1 +

(
m

4

)
· F k−6

n−1 + · · ·)− Znk, (4)

where Znk is defined by (3). Indeed, given a cyclic Morse code of the length k
with m dashes, choose j dashes and put Morse code consisting of n

2 dashes in
corresponding 2j rows. In remaining k−2j rows, we have F k−2j

n−1 possibilities
for the first n − 1 columns and the we apply the function mk−2j

n to these
n− 1 columns and the remainder of the given cyclic Morse code in the last
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column. In this way, we obtain all elements with prescribed property, and
the elements with dashes in the last column are counted twice. This proves
formula (4).

From 1), 2) and 3) it follows that formula (2) is valid, and the proof is
complete.
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