Diophantine m-tuples with elements in arithmetic progressions

A. Dujella and N. Saradha

Abstract

In this paper, we consider the problem of existence of Diophantine m-tuples which are (not necessarily consecutive) elements of an arithmetic progression. We show that for $n \geq 3$ there does not exist a Diophantine quintuple $\{a, b, c, d, e\}$ such that $a \equiv b \equiv c \equiv d \equiv e$ $(\bmod n)$. On the other hand, for any positive integer n there exist infinitely many Diophantine triples $\{a, b, c\}$ such that $a \equiv b \equiv c \equiv 0$ $(\bmod n)$.

Keywords Diophantine m-tuples, arithmetic progressions, Pellian equations
Mathematics Subject Classification (2010) 11D09, 11B25

1 Introduction.

A set of m positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a Diophantine m-tuple if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$. The first Diophantine quadruple, the set $\{1,3,8,120\}$, was found by Fermat. Euler proved that there are infinitely many Diophantine quadruples. On the other hand, it is known that there does not exist a Diophantine sextuple, and there are only finitely many Diophantine quintuples (see [3]). The folklore conjecture is that there does not exist a Diophantine quintuple. There is a stronger version of this conjecture.

Conjecture 1. All Diophantine quadruples $\{a, b, c, d\}$ are regular, i.e. satisfy the relation $(a+b-c-d)^{2}=4(a b+1)(c d+1)$.

This stronger conjecture implies that the extension of a Diophantine triple to a Diophantine quadruple is essentially unique, namely if $d>$ $\max \{a, b, c\}$, then $d=a+b+c+2 a b c+2 \sqrt{(a b+1)(a c+1)(b c+1)}$.

Consider the Diophantine triple $\{1,8,15\}$. Its elements are consecutive elements in an arithmetic progression. It is easy to find infinitely many such triples (see $[1,4]$). Moreover, by using the fact that in a Diophantine triple $\{a, b, c\}$ with $a<b<c$ either $c=a+b+2 \sqrt{a b+1}$ or $c>4 a b$ (see [6, Lemma 4]), we see that there does not exist a Diophantine quadruple with elements which are consecutive elements in an arithmetic progression.

In this paper, we consider the problem of existence of Diophantine m tuples which are elements of an arithmetic progression, but not necessarily consecutive elements. More precisely, we fix integers $n \geq 2$ and k and ask for Diophantine m-tuples with all elements congruent to k modulo n.

It is easy to see that there does not exist a Diophantine triple with odd elements. Indeed, if we have three odd numbers, then there exist two of them, say a_{1} and a_{2}, which are congruent modulo 4 , but then $a_{1} a_{2}+1 \equiv 2$ $(\bmod 4)$ cannot be a square. On the other hand, there are infinitely many Diophantine quadruples with even elements, e.g.

$$
\begin{equation*}
\left\{2 k, 2 k+2,8 k+4,128 k^{3}+192 k^{2}+88 k+12\right\} \tag{1}
\end{equation*}
$$

is a Diophantine quadruple for any positive integer k. We conjecture that for $n \geq 3$ there does not exist a Diophantine quadruple $\{a, b, c, d\}$ such that $a \equiv b \equiv c \equiv d(\bmod n)$. However we can show that this conjecture is true under Conjecture 1. See Remark 1 for details. On the other hand, we can prove unconditionally that there is no Diophantine quintuple with this property in Theorem 1 below.

2 Diophantine quintuples in arithmetic progressions

Theorem 1. Let k and n be integers and $n \geq 3$. There does not exist a Diophantine quintuple $\{a, b, c, d, e\}$ such that $a \equiv b \equiv c \equiv d \equiv e \equiv k$ $(\bmod n)$.

Proof. Assume that $\{a, b, c, d, e\}$ is a Diophantine quintuple with $a<b<$ $c<d<e$ and $a \equiv b \equiv c \equiv d \equiv e \equiv k(\bmod n)$. Then, by [5], the Diophantine quadruple $\{a, b, c, d\}$ is regular. Therefore,

$$
d=a+b+c+2 a b c+2 r s t,
$$

where $a b+1=r^{2}, a c+1=s^{2}, b c+1=t^{2}$. First we consider the case $n=4$ (or more generally $4 \mid n$). From $k^{2}+1 \equiv r^{2}(\bmod 4)$, we see that k cannot
be odd, while for $k \equiv 2(\bmod 4)$ we get $r^{2} \equiv 5(\bmod 8)$, a contradiction. Finally, if $a \equiv b \equiv c \equiv 0(\bmod 4)$, then $d \equiv 2(\bmod 4)$. Thus we have shown that $4 \nmid n$.

Now without loss of generality we can assume that n is an odd prime (since n certainly has such factor). From $a \equiv b \equiv c \equiv d \equiv k(\bmod n)$ and $r^{2} \equiv s^{2} \equiv t^{2} \equiv k^{2}+1(\bmod n)$, we get
$4 r^{2} s^{2} t^{2}=(d-a-b-c-2 a b c)^{2} \equiv\left(-2 k-2 k^{3}\right)^{2}=4 k^{6}+8 k^{4}+4 k^{2} \quad(\bmod n)$.
On the other hand, $4 r^{2} s^{2} t^{2} \equiv 4\left(k^{2}+1\right)^{3}=4 k^{6}+12 k^{4}+12 k^{2}+4(\bmod n)$. Hence $4\left(k^{2}+1\right)^{2} \equiv 0(\bmod n)$ which implies that $k^{2}+1 \equiv 0(\bmod n)$.

Now, we claim that there does not exist a Diophantine triple $\{a, b, c\}$ such that $a \equiv b \equiv c \equiv k(\bmod n)$, where n is an odd prime and $k^{2}+1 \equiv 0$ $(\bmod n)$.

Assume that such triple exists and that, for fixed k and $n,\{a, b, c\}$ is such triple with minimal value of $a+b+c$. From $r^{2} \equiv k^{2}+1 \equiv 0(\bmod n)$, we get $r \equiv 0(\bmod n)$. From $a c+1=s^{2}$ and $b c+1=t^{2}$, we get

$$
\begin{equation*}
b s^{2}-a t^{2}=b-a . \tag{2}
\end{equation*}
$$

Consider the Pellian equation

$$
\begin{equation*}
b x^{2}-a y^{2}=b-a . \tag{3}
\end{equation*}
$$

Its corresponding Pell equation $u^{2}-a b w^{2}=1$ has fundamental solution $(u, v)=(r, 1)$. By [2, Lemma 1], there is a finite set $\left(x_{0}^{(i)}, y_{0}^{(i)}\right)$ of solutions of (3) such that all solutions of (3) are given by

$$
\begin{equation*}
x \sqrt{b}+y \sqrt{a}=\left(x_{0}^{(i)} \sqrt{b}+y_{0}^{(i)} \sqrt{a}\right)(r+\sqrt{a b})^{m}, \quad m \geq 0, \tag{4}
\end{equation*}
$$

where, for all i,

$$
\left\{\begin{array}{l}
0<x_{0}^{(i)}<\sqrt{\frac{r+1}{2}} \tag{5}\\
0<\left|y_{0}^{(i)}\right|<\sqrt{\frac{b \sqrt{b}}{2 \sqrt{a}}} .
\end{array}\right.
$$

Denote the solution (x, y) defined by (4) as $\left(x_{m}^{(i)}, y_{m}^{(i)}\right)$. Then

$$
x_{m}^{(i)}=2 r x_{m-1}^{(i)}-x_{m-2}^{(i)} .
$$

We know that $r \equiv 0(\bmod n)$. Hence by induction we get

$$
\left\{\begin{array}{l}
x_{2 j}^{(i)} \equiv \pm x_{0}^{(i)} \quad(\bmod n) \tag{6}\\
x_{2 j+1}^{(i)} \equiv \pm k y_{0}^{(i)} \quad(\bmod n)
\end{array}\right.
$$

We also know that $r^{2} \equiv 1(\bmod a)$. By comparing the coefficients of \sqrt{b} in (4), we get

$$
\left\{\begin{array}{l}
x_{2 j}^{(i)} \equiv x_{0}^{(i)} \quad(\bmod a) \tag{7}\\
x_{2 j+1}^{(i)} \equiv r x_{0}^{(i)} \quad(\bmod a)
\end{array}\right.
$$

so that

$$
\left(x_{m}^{(i)}\right)^{2} \equiv\left(x_{0}^{(i)}\right)^{2} \quad(\bmod a)
$$

It is clear from (3) that $\left(x_{0}^{(i)}\right)^{2} \equiv 1\left(\bmod \frac{a}{\operatorname{gcd}(a, b)}\right)$. We will show that $\left(x_{0}^{(i)}\right)^{2} \equiv 1(\bmod a)$. By (2), there exist i, m such that $s=x_{m}^{(i)}$. Since $s^{2}=a c+1 \equiv 1(\bmod a)$, we conclude from (7) that $\left(x_{0}^{(i)}\right)^{2} \equiv 1(\bmod a)$. Moreover, from $s \equiv 0(\bmod n)$ and (6), we get

$$
\begin{equation*}
x_{0}^{(i)} \equiv 0 \quad(\bmod n) \text { or } y_{0}^{(i)} \equiv 0 \quad(\bmod n) \tag{8}
\end{equation*}
$$

Hence, $x_{0}^{(i)} \geq n$ or $\left|y_{0}^{(i)}\right| \geq n$. In particular, $x_{0}^{(i)}>1$.
Consider the first possibility in (8), viz., $x_{0}^{(i)} \equiv 0(\bmod n)$. Define an integer c_{0} by

$$
c_{0}=\frac{\left(x_{0}^{(i)}\right)^{2}-1}{a}
$$

Then $c_{0}>0$ and $a c_{0}+1=\left(x_{0}^{(i)}\right)^{2}$. Since $\left(x_{0}^{(i)}, y_{0}^{(i)}\right)$ is a solution of (3), we also get $b c_{0}+1=\left(y_{0}^{(i)}\right)^{2}$. Since $x_{0}^{(i)} \equiv 0(\bmod n)$, we have $a c_{0}+1 \equiv k^{2}+1$ $(\bmod n)$, and so $c_{0} \equiv k(\bmod n)$. On the other hand, by (5),

$$
c_{0}<\frac{r-1}{2 a}<\sqrt{\frac{b}{a}}<b<c
$$

Hence, $\left\{a, b, c_{0}\right\}$ is a Diophantine triple with $a+b+c_{0}<a+b+c$ which contradicts the minimality of $a+b+c$.

It remains to consider the second case in (8) when $y_{0}^{(i)} \equiv 0(\bmod n)$. In this case we take $x_{1}=x_{0}^{(i)} r-a\left|y_{0}^{(i)}\right|$ and $x_{1}^{\prime}=x_{0}^{(i)} r+a\left|y_{0}^{(i)}\right|$. Observe that

$$
x_{1} \equiv x_{1}^{\prime} \equiv 0 \quad(\bmod n)
$$

As $\left(x_{0}^{(i)}, y_{0}^{(i)}\right)$ satisfies (3), we find that

$$
\begin{align*}
x_{1} x_{1}^{\prime} & =\left(x_{0}^{(i)}\right)^{2} r^{2}-a^{2}\left|y_{0}^{(i)}\right|^{2}=(a b+1)\left(x_{0}^{(i)}\right)^{2}-a^{2}\left(y_{0}^{(i)}\right)^{2} \\
& =a(b-a)+\left(x_{0}^{(i)}\right)^{2} \tag{9}
\end{align*}
$$

Then $x_{1}^{\prime}>0$ and $x_{1} \equiv 0(\bmod n)$ give

$$
x_{1}>1
$$

Also

$$
x_{1}^{2} \equiv\left(x_{0}^{(i)}\right)^{2} r^{2} \equiv r^{2} \equiv 1 \quad(\bmod a)
$$

Define an integer c_{1} by

$$
c_{1}=\frac{\left(x_{1}^{2}-1\right)}{a}
$$

Since $x_{1}>1$, we get $c_{1}>0$. Thus $a c_{1}+1=x_{1}^{2}$ and using the fact that $\left(x_{1}^{(i)}, y_{1}^{(i)}\right)$ satisfies (3), we get $b c_{1}+1=\left(b x_{0}^{(i)}-r\left|y_{0}^{(i)}\right|\right)^{2}$. Further $y_{0}^{(i)} \equiv 0$ $(\bmod n)$ gives $a c_{1}+1=x_{1}^{2} \equiv\left(x_{0}^{(i)}\right)^{2} r^{2} \equiv 0(\bmod n)$, so that $a c_{1}+1 \equiv k^{2}+1$ $(\bmod n)$ which shows that

$$
c_{1} \equiv k \quad(\bmod n)
$$

From (9) and (5), we get

$$
x_{1} x_{1}^{\prime}<a b+\left(x_{0}^{(i)}\right)^{2} \leq r^{2}-1+\frac{r+1}{2}<\frac{2 r^{2}+r}{2} .
$$

Since $x_{1}^{\prime}>x_{0}^{(i)} r \geq 2 r$, we have

$$
x_{1}<\frac{2 r^{2}+r}{2 x_{1}^{\prime}}<\frac{r+1}{2}
$$

and hence

$$
a c_{1}+1<\frac{(r+1)^{2}}{4}<r^{2}=a b+1
$$

so

$$
c_{1}<b
$$

Therefore, $\left\{a, b, c_{1}\right\}$ is a Diophantine triple with $a+b+c_{1}<a+b+c$, which contradicts the minimality of $a+b+c$. This completes the proof of Theorem 1.

Remark 1. Assuming Conjecture 1, we can show that there does not exist a Diophantine quadruple $\{a, b, c, d\}$ such that

$$
\begin{equation*}
a \equiv b \equiv c \equiv d \equiv k \quad(\bmod n) \tag{10}
\end{equation*}
$$

unless $(n, k)=(2,0)$. Indeed, the example (1) shows that there are infinitely many Diophantine quadruples with $a \equiv b \equiv c \equiv d \equiv 0(\bmod 2)$. Further we
have seen that there are no quadruples with all odd elements. Conjecture 1 implies the Diophantine quadruple $\{a, b, c, d\}$ is regular, i.e. $d=a+b+c+$ $2 a b c+2 r s t$ (assuming that $d=\max (a, b, c, d)$). But in the proof of Theorem 1 we have shown that a regular Diophantine quadruple cannot satisfy (10) with $n \geq 3$. Thus a Diophantine quadruple satisfying (10) is possible only when $(n, k)=(2,0)$.

3 Diophantine triples in arithmetic progressions

We have seen in the proof of Theorem 1 that for pairs (n, k) with n prime and $k^{2}+1 \equiv 0(\bmod n)$ there does not exist a Diophantine triple $\{a, b, c\}$ such that $a \equiv b \equiv c \equiv k(\bmod n)$, for example when $(n, k)=(5,2),(5,3),(13,5)$, $(13,8),(17,4),(17,13)$. On the other hand, the example $\{1,8,15\}$ given in the introduction shows that for $(n, k)=(7,1)$ such a triple exists. In this section, we prove a general result on existence of Diophantine triples in certain arithmetic progressions.
Theorem 2. For any positive integer n there exist infinitely many Diophantine triples $\{a, b, c\}$ such that $a \equiv b \equiv c \equiv 0(\bmod n)$.

Proof. Take two positive integers a, b such that $a \equiv b \equiv 0(\bmod n)$ and $a b+1$ is a perfect square. For example, we may take $a=\alpha n, b=\left(\alpha n^{2}+2\right) n$ for a positive integer α. We show that each such pair $\{a, b\}$ can be extended to a Diophantine triple $\{a, b, c\}$ with the property that $c \equiv 0(\bmod n)$. From the conditions $a c+1=x^{2}, b c+1=y^{2}$ we get the Pellian equation

$$
\begin{equation*}
b x^{2}-a y^{2}=b-a \tag{11}
\end{equation*}
$$

Consider the corresponding Pell equation

$$
\begin{equation*}
u^{2}-a b w^{2}=1 \tag{12}
\end{equation*}
$$

Note that $a b$ is not a perfect square. It is well known (see e.g. [7, Corollary, p.55]) that there exists a solution (u, w) (in fact, infinitely many solutions) of (12) with $w \equiv 0(\bmod d)$ for any positive integer d, hence in particular for $d=n$. Now $x=u+a w, y=u+b w$ is a solution of (11) and

$$
\begin{aligned}
& x^{2}=1+a b w^{2}+a^{2} w^{2}+2 a u w=1+a c \\
& y^{2}=1+a b w^{2}+b^{2} w^{2}+2 b u w=1+b c
\end{aligned}
$$

where

$$
c=a w^{2}+b w^{2}+2 u w
$$

which clearly satisfies $c \equiv 0(\bmod n)$. Hence, there are infinitely many triples with the desired property.

Acknowledgement: We like to thank Divyum Sharma for some useful comments. A.D. was supported by the Croatian Science Foundation under the project no. 6422 .

References

[1] M. N. Deshpande, Problem 10622, Amer. Math. Monthly 104 (1997), 870.
[2] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number Theory 89 (2001), 126-150.
[3] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
[4] Z. Franco, Solution of Problem 10622, Amer. Math. Monthly 106 (1999), 868.
[5] Y. Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129 (2009), 1678-1697.
[6] B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), 155-165.
[7] L. J. Mordell, Diophantine Equations, 1969, Academic Press, London.

Addresses of the authors:

Department of Mathematics, University of Zagreb,
Bijenička cesta 30,
10000 Zagreb, CROATIA
School of Mathematics,
Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai-400 005, INDIA

