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Abstract

In this paper, we consider the problem of existence of Diophan-
tine m-tuples which are (not necessarily consecutive) elements of an
arithmetic progression. We show that for n ≥ 3 there does not exist
a Diophantine quintuple {a, b, c, d, e} such that a ≡ b ≡ c ≡ d ≡ e
(mod n). On the other hand, for any positive integer n there exist
infinitely many Diophantine triples {a, b, c} such that a ≡ b ≡ c ≡ 0
(mod n).
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1 Introduction.

A set of m positive integers {a1, a2, ..., am} is called a Diophantine m-tuple
if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m. The first Diophantine
quadruple, the set {1, 3, 8, 120}, was found by Fermat. Euler proved that
there are infinitely many Diophantine quadruples. On the other hand, it
is known that there does not exist a Diophantine sextuple, and there are
only finitely many Diophantine quintuples (see [3]). The folklore conjecture
is that there does not exist a Diophantine quintuple. There is a stronger
version of this conjecture.

Conjecture 1. All Diophantine quadruples {a, b, c, d} are regular, i.e. sat-
isfy the relation (a+ b− c− d)2 = 4(ab+ 1)(cd+ 1).

This stronger conjecture implies that the extension of a Diophantine
triple to a Diophantine quadruple is essentially unique, namely if d >
max{a, b, c}, then d = a+ b+ c+ 2abc+ 2

√
(ab+ 1)(ac+ 1)(bc+ 1).
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Consider the Diophantine triple {1, 8, 15}. Its elements are consecutive
elements in an arithmetic progression. It is easy to find infinitely many such
triples (see [1, 4]). Moreover, by using the fact that in a Diophantine triple
{a, b, c} with a < b < c either c = a + b + 2

√
ab+ 1 or c > 4ab (see [6,

Lemma 4]), we see that there does not exist a Diophantine quadruple with
elements which are consecutive elements in an arithmetic progression.

In this paper, we consider the problem of existence of Diophantine m-
tuples which are elements of an arithmetic progression, but not necessarily
consecutive elements. More precisely, we fix integers n ≥ 2 and k and ask
for Diophantine m-tuples with all elements congruent to k modulo n.

It is easy to see that there does not exist a Diophantine triple with odd
elements. Indeed, if we have three odd numbers, then there exist two of
them, say a1 and a2, which are congruent modulo 4, but then a1a2 + 1 ≡ 2
(mod 4) cannot be a square. On the other hand, there are infinitely many
Diophantine quadruples with even elements, e.g.

{2k, 2k + 2, 8k + 4, 128k3 + 192k2 + 88k + 12} (1)

is a Diophantine quadruple for any positive integer k. We conjecture that
for n ≥ 3 there does not exist a Diophantine quadruple {a, b, c, d} such that
a ≡ b ≡ c ≡ d (mod n). However we can show that this conjecture is
true under Conjecture 1. See Remark 1 for details. On the other hand, we
can prove unconditionally that there is no Diophantine quintuple with this
property in Theorem 1 below.

2 Diophantine quintuples in arithmetic progres-
sions

Theorem 1. Let k and n be integers and n ≥ 3. There does not exist
a Diophantine quintuple {a, b, c, d, e} such that a ≡ b ≡ c ≡ d ≡ e ≡ k
(mod n).

Proof. Assume that {a, b, c, d, e} is a Diophantine quintuple with a < b <
c < d < e and a ≡ b ≡ c ≡ d ≡ e ≡ k (mod n). Then, by [5], the
Diophantine quadruple {a, b, c, d} is regular. Therefore,

d = a+ b+ c+ 2abc+ 2rst,

where ab+1 = r2, ac+1 = s2, bc+1 = t2. First we consider the case n = 4
(or more generally 4|n). From k2 + 1 ≡ r2 (mod 4), we see that k cannot
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be odd, while for k ≡ 2 (mod 4) we get r2 ≡ 5 (mod 8), a contradiction.
Finally, if a ≡ b ≡ c ≡ 0 (mod 4), then d ≡ 2 (mod 4). Thus we have shown
that 4 - n.

Now without loss of generality we can assume that n is an odd prime
(since n certainly has such factor). From a ≡ b ≡ c ≡ d ≡ k (mod n) and
r2 ≡ s2 ≡ t2 ≡ k2 + 1 (mod n), we get

4r2s2t2 = (d−a−b−c−2abc)2 ≡ (−2k−2k3)2 = 4k6+8k4+4k2 (mod n).

On the other hand, 4r2s2t2 ≡ 4(k2 + 1)3 = 4k6 + 12k4 + 12k2 + 4 (mod n).
Hence 4(k2 + 1)2 ≡ 0 (mod n) which implies that k2 + 1 ≡ 0 (mod n).

Now, we claim that there does not exist a Diophantine triple {a, b, c}
such that a ≡ b ≡ c ≡ k (mod n), where n is an odd prime and k2 + 1 ≡ 0
(mod n).

Assume that such triple exists and that, for fixed k and n, {a, b, c} is
such triple with minimal value of a+ b+ c. From r2 ≡ k2 + 1 ≡ 0 (mod n),
we get r ≡ 0 (mod n). From ac+ 1 = s2 and bc+ 1 = t2, we get

bs2 − at2 = b− a. (2)

Consider the Pellian equation

bx2 − ay2 = b− a. (3)

Its corresponding Pell equation u2 − abw2 = 1 has fundamental solution

(u, v) = (r, 1). By [2, Lemma 1], there is a finite set (x
(i)
0 , y

(i)
0 ) of solutions

of (3) such that all solutions of (3) are given by

x
√
b+ y

√
a = (x

(i)
0

√
b+ y

(i)
0

√
a)(r +

√
ab)m, m ≥ 0, (4)

where, for all i, 0 < x
(i)
0 <

√
r+1
2

0 < |y(i)0 | <
√

b
√
b

2
√
a
.

(5)

Denote the solution (x, y) defined by (4) as (x
(i)
m , y

(i)
m ). Then

x(i)m = 2rx
(i)
m−1 − x

(i)
m−2.

We know that r ≡ 0 (mod n). Hence by induction we get{
x
(i)
2j ≡ ±x

(i)
0 (mod n)

x
(i)
2j+1 ≡ ±ky

(i)
0 (mod n).

(6)
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We also know that r2 ≡ 1 (mod a). By comparing the coefficients of
√
b in

(4), we get {
x
(i)
2j ≡ x

(i)
0 (mod a)

x
(i)
2j+1 ≡ rx

(i)
0 (mod a),

(7)

so that
(x(i)m )2 ≡ (x

(i)
0 )2 (mod a).

It is clear from (3) that (x
(i)
0 )2 ≡ 1 (mod a

gcd(a,b)). We will show that

(x
(i)
0 )2 ≡ 1 (mod a). By (2), there exist i,m such that s = x

(i)
m . Since

s2 = ac + 1 ≡ 1 (mod a), we conclude from (7) that (x
(i)
0 )2 ≡ 1 (mod a).

Moreover, from s ≡ 0 (mod n) and (6), we get

x
(i)
0 ≡ 0 (mod n) or y

(i)
0 ≡ 0 (mod n). (8)

Hence, x
(i)
0 ≥ n or |y(i)0 | ≥ n. In particular, x

(i)
0 > 1.

Consider the first possibility in (8), viz., x
(i)
0 ≡ 0 (mod n). Define an

integer c0 by

c0 =
(x

(i)
0 )2 − 1

a
.

Then c0 > 0 and ac0 + 1 = (x
(i)
0 )2. Since (x

(i)
0 , y

(i)
0 ) is a solution of (3), we

also get bc0 + 1 = (y
(i)
0 )2. Since x

(i)
0 ≡ 0 (mod n), we have ac0 + 1 ≡ k2 + 1

(mod n), and so c0 ≡ k (mod n). On the other hand, by (5),

c0 <
r − 1

2a
<

√
b

a
< b < c.

Hence, {a, b, c0} is a Diophantine triple with a + b + c0 < a + b + c which
contradicts the minimality of a+ b+ c.

It remains to consider the second case in (8) when y
(i)
0 ≡ 0 (mod n). In

this case we take x1 = x
(i)
0 r − a|y(i)0 | and x′1 = x

(i)
0 r + a|y(i)0 |. Observe that

x1 ≡ x′1 ≡ 0 (mod n).

As (x
(i)
0 , y

(i)
0 ) satisfies (3), we find that

x1x
′
1 = (x

(i)
0 )2r2 − a2|y(i)0 |2 = (ab+ 1)(x

(i)
0 )2 − a2(y

(i)
0 )2

= a(b− a) + (x
(i)
0 )2. (9)
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Then x′1 > 0 and x1 ≡ 0 (mod n) give

x1 > 1.

Also
x21 ≡ (x

(i)
0 )2r2 ≡ r2 ≡ 1 (mod a).

Define an integer c1 by

c1 =
(x21 − 1)

a
.

Since x1 > 1, we get c1 > 0. Thus ac1 + 1 = x21 and using the fact that

(x
(i)
1 , y

(i)
1 ) satisfies (3), we get bc1 + 1 = (bx

(i)
0 − r|y(i)0 |)2. Further y

(i)
0 ≡ 0

(mod n) gives ac1+1 = x21 ≡ (x
(i)
0 )2r2 ≡ 0 (mod n), so that ac1+1 ≡ k2+1

(mod n) which shows that

c1 ≡ k (mod n).

From (9) and (5), we get

x1x
′
1 < ab+ (x

(i)
0 )2 ≤ r2 − 1 +

r + 1

2
<

2r2 + r

2
.

Since x′1 > x
(i)
0 r ≥ 2r, we have

x1 <
2r2 + r

2x′1
<

r + 1

2
,

and hence

ac1 + 1 <
(r + 1)2

4
< r2 = ab+ 1,

so
c1 < b.

Therefore, {a, b, c1} is a Diophantine triple with a+ b+ c1 < a+ b+ c, which
contradicts the minimality of a+b+c. This completes the proof of Theorem
1.

Remark 1. Assuming Conjecture 1, we can show that there does not exist
a Diophantine quadruple {a, b, c, d} such that

a ≡ b ≡ c ≡ d ≡ k (mod n), (10)

unless (n, k) = (2, 0). Indeed, the example (1) shows that there are infinitely
many Diophantine quadruples with a ≡ b ≡ c ≡ d ≡ 0 (mod 2). Further we
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have seen that there are no quadruples with all odd elements. Conjecture 1
implies the Diophantine quadruple {a, b, c, d} is regular, i.e. d = a+ b+ c+
2abc+2rst (assuming that d = max(a, b, c, d)). But in the proof of Theorem
1 we have shown that a regular Diophantine quadruple cannot satisfy (10)
with n ≥ 3. Thus a Diophantine quadruple satisfying (10) is possible only
when (n, k) = (2, 0).

3 Diophantine triples in arithmetic progressions

We have seen in the proof of Theorem 1 that for pairs (n, k) with n prime and
k2 + 1 ≡ 0 (mod n) there does not exist a Diophantine triple {a, b, c} such
that a ≡ b ≡ c ≡ k (mod n), for example when (n, k) = (5, 2), (5, 3), (13, 5),
(13, 8), (17, 4), (17, 13). On the other hand, the example {1, 8, 15} given in
the introduction shows that for (n, k) = (7, 1) such a triple exists. In this
section, we prove a general result on existence of Diophantine triples in
certain arithmetic progressions.

Theorem 2. For any positive integer n there exist infinitely many Diophan-
tine triples {a, b, c} such that a ≡ b ≡ c ≡ 0 (mod n).

Proof. Take two positive integers a, b such that a ≡ b ≡ 0 (mod n) and
ab+1 is a perfect square. For example, we may take a = αn, b = (αn2+2)n
for a positive integer α. We show that each such pair {a, b} can be extended
to a Diophantine triple {a, b, c} with the property that c ≡ 0 (mod n). From
the conditions ac+ 1 = x2, bc+ 1 = y2 we get the Pellian equation

bx2 − ay2 = b− a. (11)

Consider the corresponding Pell equation

u2 − abw2 = 1. (12)

Note that ab is not a perfect square. It is well known (see e.g. [7, Corollary,
p.55]) that there exists a solution (u,w) (in fact, infinitely many solutions)
of (12) with w ≡ 0 (mod d) for any positive integer d, hence in particular
for d = n. Now x = u+ aw, y = u+ bw is a solution of (11) and

x2 = 1 + abw2 + a2w2 + 2auw = 1 + ac,

y2 = 1 + abw2 + b2w2 + 2buw = 1 + bc,

where
c = aw2 + bw2 + 2uw,
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which clearly satisfies c ≡ 0 (mod n). Hence, there are infinitely many triples
with the desired property.

Acknowledgement: We like to thank Divyum Sharma for some useful
comments. A.D. was supported by the Croatian Science Foundation under
the project no. 6422.

References

[1] M. N. Deshpande, Problem 10622, Amer. Math. Monthly 104 (1997),
870.

[2] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J.
Number Theory 89 (2001), 126–150.

[3] A. Dujella, There are only finitely many Diophantine quintuples, J.
Reine Angew. Math. 566 (2004), 183–214.

[4] Z. Franco, Solution of Problem 10622, Amer. Math. Monthly 106 (1999),
868.

[5] Y. Fujita, Any Diophantine quintuple contains a regular Diophantine
quadruple, J. Number Theory 129 (2009), 1678–1697.

[6] B. W. Jones, A second variation on a problem of Diophantus and Dav-
enport, Fibonacci Quart. 16 (1978), 155–165.

[7] L. J. Mordell, Diophantine Equations, 1969, Academic Press, London.

Addresses of the authors:
Department of Mathematics,
University of Zagreb,
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