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Abstract. It this paper, we study the problem of determining the el-
ements in the rings of integers of quadratic fields Q(

√
d) which are rep-

resentable as a difference of two squares. The complete solution of the
problem is obtained for integers d which satisfy conditions given in terms
of solvability of certain Pellian equations.

1. Introduction

It is well known that an integer n can be represented as a difference of
squares of two integers if and only if n 6≡ 2 (mod 4). Similar result holds in
the ring Z[i] of Gaussian integers. Namely, a Gaussian integer z = a + bi
is representable as a difference of squares of two Gaussian integers if and
only if b is even and not both a and b are congruent to 2 modulo 4 (see
[14] and [16, p. 449]). Actually, the result for Gaussian integers is usually
stated in terms of sums of two squares, but since −1 is a square in Z[i], these
two problems in Z[i] are identical. However, it seems that in more general
rings, the problem of representability as a sum of two squares is much better
studied. In particular, in [14] this problem was completely solved for integers
in quadratic fields.

It this paper, we will consider the problem of representability as a differ-
ence of two squares in the rings of integers of quadratic fields Q(

√
d). Let

d 6= 1 be a square-free integer. If d ≡ 2, 3 (mod 4), then algebraic integers of
the quadratic field Q(

√
d) form the ring Z[

√
d], while if d ≡ 1 (mod 4), then

they form the ring Z[1+
√

d
2 ]. Since the square-free assumption is not essen-

tial for our investigation, we will consider the problem of representability
as a difference of two squares in rings Z[

√
d] for non-square integers d and

in rings Z[1+
√

d
2 ] for non-square integers d ≡ 1 (mod 4). Some of our results

are valid for all such integers d, but the complete solution of the problem is
obtained only for integers which satisfy some additional conditions. These
conditions are given in terms of solvability of certain Pellian equations.
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Theorem 1. If d ≡ 3 (mod 4) and the equation x2 − dy2 = ±2 is solvable,
then z ∈ Z[

√
d] is representable as a difference of two squares in Z[

√
d] if

and only if z has one the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d, 4m + (4n + 2)
√

d, 4m + 2 + 4n
√

d.

If d ≡ 0 (mod 4) and the equation x2 − dy2 = ±4 is solvable with odd y,
then z ∈ Z[

√
d] is representable as a difference of two squares in Z[

√
d] if

and only if z has one the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d, 4m + (4n + 2)
√

d.

If d ≡ 2 (mod 4) and the equation x2 − dy2 = ±2 is solvable, then z ∈
Z[
√

d] is representable as a difference of two squares in Z[
√

d] if and only if
z has one the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d, 4m + 2 + 4n
√

d, z = 4m + 2 + (4n + 2)
√

d.

If d ≡ 5 (mod 8) and the equation x2−dy2 = ±4 is solvable in odd integers
x and y, then z ∈ Z[

√
d] is representable as a difference of two squares in

Z[
√

d] if and only if z has one the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d, 4m + 2 + (4n + 2)
√

d.

If d ≡ 1 (mod 8) and the equation x2 − dy2 = ±8 is solvable, then z ∈
Z[
√

d] is representable as a difference of two squares in Z[
√

d] if and only if
z has one the following forms

2m+1+2n
√

d, 4m+4n
√

d, 16m+l+(16n+l−δ)
√

d, 16m+l+(16n−l+δ)
√

d,

where l ∈ {2, 6, 10, 14} and δ = 0 if d ≡ 1 (mod 16), δ = 8 if d ≡ 9 (mod 16).

Let us note that d = −1 is the only negative integer d ≡ 3 (mod 4) which
satisfies the conditions of Theorem 1. In that way, the above mentioned
result on Gaussian integers becomes an immediate corollary of Theorem 1.

Theorem 2. If d ≡ 5 (mod 8) and the equation x2 − dy2 = ±4 is solvable
in odd integers x and y, then z ∈ Z[1+

√
d

2 ] is representable as a difference of
two squares in Z[1+

√
d

2 ] if and only if z has one the following forms

2m + 1 + 2n
√

d, 2m + (2n + 1)
√

d, 4m + 4n
√

d, 4m + 2 + (4n + 2)
√

d,

2m + 1
2

+
2n + 1

2

√
d.

One motivation for studying the problem of determination of elements
which are representable as a difference of two squares comes from its close
connection with the problem of the existence of Diophantine quadruples.

Let n be a given non-zero integer. A set of m positive integers
{a1, a2, . . . , am} is called a D(n)-m-tuple (or a Diophantine m-tuple with
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the property D(n)) if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. Dio-
phantus himself found the D(256)-quadruple {1, 33, 68, 105}, while the first
D(1)-quadruple, {1, 3, 8, 120}, was found by Fermat (see [3, Vol. 2, pp. 513–
520]). Using the theory on linear forms in logarithms of algebraic numbers
and a reduction method based on continued fractions, Baker and Davenport
[1] proved that this Fermat’s set cannot be extended to a D(1)-quintuple.
A famous conjecture is that there does not exist a D(1)-quintuple. The first
author proved recently that there does not exist a D(1)-sextuple and that
there are only finitely many, effectively computable, D(1)-quintuples (see
[6]). Furthermore, the first author and C. Fuchs proved that there does not
exist a D(−1)-quintuple (see [7]).

Considering congruences modulo 4, it is easy to prove that if n ≡
2 (mod 4), then there does not exist a D(n)-quadruple (see [2, 8, 12]). On
the other hand, if n 6≡ 2 (mod 4) and n 6∈ {−4, −3, −1, 3, 5, 8, 12, 20},
then there exists at least one D(n)-quadruple (see [4]). These results were
generalized to Gaussian integers in [5]. It was proved that if b is odd or
a ≡ b ≡ 2 (mod 4), then there does not exist a D(a + bi)-quadruple, and if
a+ bi is not of the above form and a+ bi 6∈ {2,−2, 1+ 2i, −1− 2i, 4i,−4i},
then there exists at least one D(a + bi)-quadruple. We see that in Z and
Z[i], the elements n for which there exist a D(n)-quadruple are exactly (up
to at most finitely many exceptions) the elements which are representable
as a difference of two squares.

Our goal in to investigate whether this analogy between differences of
two squares and existence of Diophantine quadruples is valid in some other
situations, e.g. in the ring of integers of (some) quadratic fields. Therefore,
the results of this paper can be viewed as the first step in that direction.

2. Differences of two squares in the ring Z[
√

d]

Let d be an integer which is not a perfect square and let

Z[
√

d] = {x + y
√

d : x, y ∈ Z}.

In this section, we will prove Theorem 1, i.e. we will describe a set of all
elements of the ring Z[

√
d] that can be represented as difference of squares

of two elements of Z[
√

d], for integers d which satisfy the conditions from
Theorem 1. We start with some results which are valid for all non-square
integers d.

Proposition 1. If b is odd, then z = a + b
√

d is not representable as a
difference of two squares in Z[

√
d].

Proof. Assume that z is a difference of two squares in Z[
√

d]. Then there
exist x1 + y1

√
d, x2 + y2

√
d ∈ Z[

√
d] such that

a + b
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

This gives b = 2(x1y1 − x2y2), a contradiction. �
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Proposition 2. If a is odd and b is even, then z = a+b
√

d can be represented
as difference of two squares in Z[

√
d].

Proof. Let z = 2m+1+2n
√

d, where m,n ∈ Z. The statement follows from

z = (m + 1 + n
√

d)2 − (m + n
√

d)2.

�

Proposition 3. If z ∈ Z[
√

d] is of the form 4m + 4n
√

d, then z can be
represented as a difference of two squares in Z[

√
d].

Proof. We have

z = 4m + 4n
√

d = (m + 1 + n
√

d)2 − (m− 1 + n
√

d)2.

�

If z ∈ Z[
√

d] has one of the following forms:

4m + (4n + 2)
√

d, (4m + 2) + 4n
√

d, (4m + 2) + (4n + 2)
√

d,

then we cannot give a simple general answer about representability of z as
a difference of two squares. The representability depends on properties of
the number d, which is not the case in Propositions 1, 2 and 3.

Suppose that a number z of the form 4m+(4n+2)
√

d can be represented
as a difference as two squares. Then there exist zi = xi + yi

√
d ∈ Z[

√
d],

i = 1, 2, such that

z = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

It follows that

4m = x2
1 − x2

2 + (y2
1 − y2

2)d,(1)
2n + 1 = x1y1 − x2y2.(2)

We conclude from (2) that x1 and y1 are odd, and at least one of the numbers
x2 and y2 is even or, conversely, x2 and y2 are odd, and at least one of the
numbers x1 and y1 is even. Further, equation (1) gives us following two sets
of conditions:

(3) x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ y2 ≡ 0 (mod 2), d ≡ 3 (mod 4),

or

(4) x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ 1 (mod 2), y2 ≡ 0 (mod 2), d ≡ 0 (mod 4)

(up to the order of numbers z1 and z2).
Unfortunately, the condition d ≡ 0 or 3 (mod 4) is not sufficient so that

all numbers of the form 4m + (4n + 2)
√

d are a difference of two squares.
The following proposition gives us necessary and sufficient conditions.
Proposition 4. All numbers of the form z = 4m + (4n + 2)

√
d are rep-

resentable as a difference of two squares in Z[
√

d] if and only if one of the
following conditions is satisfied:
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(i) d ≡ 3 (mod 4) and the equation x2 − dy2 = ±2 is solvable,
(ii) d ≡ 0 (mod 4) and the equation x2 − dy2 = ±4 has a solution with

odd y.

Proof. Assume that all numbers of the form 4m + (4n + 2)
√

d are repre-
sentable as a difference of two squares. Thus, for all m,n ∈ Z, there exist
x1, y1, x2, y2 ∈ Z satisfying the equations (1) and (2). Now, the proof natu-
rally falls into two parts, according to which set of conditions, (3) or (4), is
valid.

(i) Assume that conditions (3) are valid. If we make the substitutions
x1 = x2 + α and y1 = y2 + β in equations (1) i (2), we obtain

(5) αx2 + dβy2 = 2m− α2+dβ2

2 ,
βx2 + αy2 = 2n + 1− αβ,

which we will consider as a linear system in two unknowns x2 and y2. Solu-
tions of the system (5) are given by

(6) x2 = ((2m− α2+dβ2

2 )α− (2n + 1− αβ)dβ)/(α2 − dβ2),
y2 = ((2n + 1− αβ)α− (2m− α2+dβ2

2 )β)/(α2 − dβ2).

According to the assumption that xi, yi ∈ Z for i = 1, 2, this system must
have integral solutions for all m,n ∈ Z. Thus, the determinant of the system,
α2 − dβ2, divides numerators in (6). In fact, following conditions must be
satisfied

(7) α2 − dβ2 | 4mα− 2(2n + 1)dβ,
α2 − dβ2 | 4mβ − 2(2n + 1)α.

Specially, for m,n = 0 we obtain that there exist integers α0 i β0 such that

α0
2 − dβ0

2 | 2α0 and α0
2 − dβ0

2 |2dβ0.

If g = gcd(α0, dβ0), then

(8) α0
2 − dβ0

2 | 2g.

On the other hand, g2 | dα0
2 − d2β0

2 implies g2 | 2dg. Conditions (3) imply
that α0 and β0 are odd. Hence, g is also odd and thus g | d. So, there exist
two odd integers δ, a such that d = gδ and α0 = ga. From (8) we get that
ga2 − δβ0

2 | 2. Since ga2 − δβ0
2 is even, we conclude that

(9) ga2 − δβ0
2 = ±2.

Multiplying the equation (9) by ga2, we obtain:

(ga2 ∓ 1)2 − d(β0a)2 = 1,

which means that we have found a solution of the Pell equation s2−dt2 = 1
in even s and odd t.

Let now m,n ∈ Z be such that

(10) (2m)2 − d(2n + 1)2 = 1.
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For corresponding α and β, defined as before, relations (7) are satisfied.
Specially, the determinant α2 − dβ2 must divide the following expression

(2α(2n + 1)− 4βm)d(2n + 1) + (2dβ(2n + 1)− 4αm)2m.

Since the equation (10) holds, we get that α2 − dβ2 | 2α. Similarly, we show
that α2 − dβ2 | 2β. Therefore, α2 − dβ2 | 2q, where q = gcd(α, β). Since
q2 |α2 − dβ2, it follows that q2 | 2q. But q is an odd integer (because α and
β are odd), and we conclude that q = 1. This immediately implies that
α2 − dβ2 = ±2.

(ii) In this case we assume that conditions (4) are valid. Integers α and
β are defined as in a previous case and conditions (4) imply that α is even
and β is odd. The relation (7) implies that

α2 − dβ2 | 2((2m)2 − d(2n + 1)2)α,
α2 − dβ2 | 2((2m)2 − d(2n + 1)2)β.

Note that (2m)2 − d(2n + 1)2 ≡ 0 (mod 4). Let s be the smallest positive
integer s such that

(2m0)2 − d(2n0 + 1)2 = ±4s,

for some m0, n0 ∈ Z. It follows immediately that 2m0 and 2n0 + 1 are
relatively prime. Numbers α0 and β0, corresponding to m0 and n0, satisfy
the relations α0

2 − dβ0
2 | 8sα0, α0

2 − dβ0
2 | 8sβ0. The equation (5) implies

that integers α0 and β0 are also relatively prime. Hence, we obtain that

α0
2 − dβ0

2 | 8s.

By the minimality of s, it follows that we have only two possibilities:
(a) α0

2 − dβ0
2 = ±8s, or

(b) α0
2 − dβ0

2 = ±4s.
Now, let us define rational numbers x and y by the formula

x + y
√

d =
2m0 + (2n0 + 1)

√
d

α0 + β0

√
d

.

We have

x =
2m0α0 − (2n0 + 1)dβ0

α0
2 − dβ0

2 , y =
(2n0 + 1)α0 − 2m0β0

α0
2 − dβ0

2 ,

and

(11) x2 − dy2 =
(2m0)2 − d(2n0 + 1)2

α0
2 − dβ0

2 .

Since (6) implies that

α0
2 − dβ0

2 |x(α0
2 − dβ0

2)− α0
2 − dβ0

2

2
α0,

α0
2 − dβ0

2 | y(α0
2 − dβ0

2)− α0
2 − dβ0

2

2
β0,
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we conclude that x − α0
2 and y − β0

2 are integers. We define x1 = 2x, y1 =
2y. Obviously, x1 is even and y1 is odd (since α0 is even and β0 is odd).
If the case (a) is valid, then the right hand side of the equation (11) is
equal to ±1/2. Therefore x1

2 − dy1
2 = ±2, which contradicts the fact that

x1
2 − dy1

2 ≡ 0 (mod 4).
Suppose that the case (b) is valid. Since the right hand side of (11) is

equal to ±1, it follows that x1
2 − dy1

2 = ±4, and that is what we needed
to prove.

Now, we will show the converse. Suppose that α and β are odd integers
satisfying α2 − dβ2 = ±2. We will show that the system (5) has integral
solutions x2 and y2. Indeed, the numerators in (6) are even integers:

(2m− α2 + dβ2

2
)α− (2n + 1− αβ)dβ ≡ 2α− 2dβ ≡ 0 (mod 2),(12)

(2n + 1− αβ)α− (2m− α2 + dβ2

2
)β ≡ 2β − 2α ≡ 0 (mod 2).(13)

Let x1+y1

√
d = x2+α+(y2+β)

√
d. Then it follows that 4m+(4n+2)

√
d =

(x1 + y1

√
d)2 − (x2 + y2

√
d)2.

Similarly, if the equation α2 − dβ2 = ±4 is solvable with α even and β
odd, then it can be easily verified that the numerators in (6) are divisible by
4. Thus, we obtain again that solutions x2, y2 of the system (5) are integers,
which implies that 4m + (4n + 2)

√
d is representable as a difference of two

squares.
�

Proposition 5. All numbers of the form z = 4m + 2 + 4n
√

d can be repre-
sented as a difference of two squares if and only if the equation x2−dy2 = ±2
is solvable.

Proof. Assume there exist x1, y1, x2, y2 ∈ Z such that

4m + 2 + 4n
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2,

i.e.

4m + 2 = x2
1 − x2

2 + (y2
1 − y2

2)d,(14)
2n = x1y1 − x2y2.(15)

From these equations we get the following conditions:

(16) x1 ≡ y1 ≡ 0 (mod 2), x2 ≡ 0 (mod 2), y2 ≡ 1 (mod 2), d ≡ 2 (mod 4),

or

(17) x1 ≡ 0 (mod 2), y1 ≡ 1 (mod 2),
x2 ≡ 1 (mod 2), y2 ≡ 0 (mod 2), d ≡ 3 (mod 4)

(up to the order of numbers x1 + y1

√
d i x2 + y2

√
d).
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As in the proof of Proposition 4, let x1 = x2 + α, y1 = y2 + β. Equations
(14) and (15) can be written in the following form

(18) αx2 + dβy2 = 2m + 1− α2+dβ2

2 ,
βx2 + αy2 = 2n− αβ.

Solutions x2, y2 of the system (18) are given by

(19) x2 = (2m + 1− α2+dβ2

2 )α− (2n− αβ)dβ)/(α2 − dβ2),
y2 = ((2n− αβ)α− (2m + 1− α2+dβ2

2 )β)/(α2 − dβ2)

Since α is even, β is odd and d ≡ 2 (mod 4) (if the condition (16) is valid)
or α, β are odd and d ≡ 3 (mod 4)) (if the condition (17) is valid), the
determinant of the system (18), α2 − dβ2, is even. It remains to show that
there exist integers α and β such that the determinant is equal to 2 or −2.
The formulas (19) imply

α2 − dβ2 | 2(2m + 1)α− 4dnβ,
α2 − dβ2 | 4nα− 2(2m + 1)β.

Specially, for m = n = 0 we obtain integers α0 and β0 such that α0
2 −

dβ0
2 | 2α0 and α0

2 − dβ0
2 | 2β0. Let g = gcd(α0, β0). Then α0

2 − dβ0
2 | 2g.

On the other hand, we have g2 |α0
2 − dβ0

2. So, it follows that g2 | 2g. Since
g is odd, we have g = 1 and we obtain that α0

2 − dβ0
2 = ±2.

The converse of the statement can be shown in the same manner as in
the proof of Proposition 4. �

It remains to consider the case z = 4m + 2 + (4n + 2)
√

d. Suppose that
this number is representable as a difference of squares of two elements in
Z[
√

d], i.e.

(20) 4m + 2 + (4n + 2)
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

Then the numbers x1, y1, x2, y2 and d satisfy one of following conditions:

(21) x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ y2 ≡ 0 (mod 2), d ≡ 1 (mod 4),

or

(22) x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ 1 (mod 2), y2 ≡ 0 (mod 2), d ≡ 2 (mod 4).

As in the proofs of Propositions 4 and 5, let α = x1 − x2, β = y1 − y2. In
the case (21), we obtain

α ≡ 1 (mod 2), β ≡ 1 (mod 2) and α2 − dβ2 ≡ 0 (mod 4),

and in the case (22), we obtain

α ≡ 0 (mod 2), β ≡ 1 (mod 2) and α2 − dβ2 ≡ 2 (mod 4).

Proposition 6. All numbers of the form 4m + 2 + (4n + 2)
√

d are repre-
sentable as a difference of two squares if and only if one of the following
conditions is satisfied:
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(i) d ≡ 1 (mod 4) and the equation x2 − dy2 = ±4 is solvable in odd
integers x, y,

(ii) d ≡ 2 (mod 4) and the equation x2 − dy2 = ±2 is solvable.

Proof. First, we show that the conditions are necessary.
(i) Assume that (21) is satisfied. From (20) we obtain the following system

(23) αx2 + dβy2 = 2m + 1− α2+dβ2

2 ,
βx2 + αy2 = 2n + 1− αβ.

The solutions are

(24) x2 = ((2m + 1− α2+dβ2

2 )α− (2n + 1− αβ)dβ)/(α2 − dβ2)
y2 = ((2n + 1− αβ)α− (2m + 1− α2+dβ2

2 )β)/(α2 − dβ2).

Since x2 and y2 are integers, we have that

α2 − dβ2 | 2(2m + 1)α− 2(2n + 1)dβ,(25)
α2 − dβ2 | 2(2n + 1)α− 2(2m + 1)β.(26)

Multiplying the right hand sides of (25) and (26) by 2m + 1 and d(2n + 1),
resp., and then adding the results, we get

(27) α2 − dβ2 | 2α((2m + 1)2 − d(2n + 1)2).

Similarly, we obtain

(28) α2 − dβ2 | 2β((2m + 1)2 − d(2n + 1)2).

Now, the proof falls into two parts depending on whether d ≡ 5 (mod 8) or
d ≡ 1 (mod 8).

(a) Suppose that d ≡ 5 (mod 8). Then (2m+1)2−d(2n+1)2 ≡ 4 (mod 8),
for all m,n ∈ Z. Let s be the smallest positive integer with the property
that there exist m,n ∈ Z such that

(2m + 1)2 − d(2n + 1)2 = ±4s.

Obviously, s must be odd. According to the minimality of s, numbers 2m+1
and 2n+1 are relatively prime. Thus, from (23), it follows that corresponding
α and β are also relatively prime. Relations (27) and (28) imply that

α2 − dβ2 | 2((2m + 1)2 − d(2n + 1)2),

i.e. α2 − dβ2 | 8s. From the minimality of s, we conclude that

α2 − dβ2 = ±4s.

Let us define rational numbers x and y by

(29) x + y
√

d =
2m + 1 + (2n + 1)

√
d

α + β
√

d
,

i.e.

x =
(2m + 1)α− (2n + 1)dβ

α2 − dβ2
, y =

(2n + 1)α− (2m + 1)β
α2 − dβ2

.
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Then we have

(30) x2 − dy2 =
(2m + 1)2 − d(2n + 1)2

α2 − dβ2
=
±4s

±4s
= ±1.

Since x2 and y2 are integers, from (24) it follows that

α2 − dβ2 |x(α2 − dβ2)− α2 − dβ2

2
α,

α2 − dβ2 | y(α2 − dβ2)− α2 − dβ2

2
β.

Therefore, the numbers x − α
2 and y − β

2 are also integers. Let x1 = 2x,
y1 = 2y. It is obvious that x1 and y1 are odd and x1

2 − dy1
2 = ±4, which

proves our assertion.

(b) Assume now that d ≡ 1 (mod 8). Then (2m + 1)2 − d(2n + 1)2 ≡
0 (mod 8), for all m,n ∈ Z. Moreover, we can choose m,n ∈ Z such that

(2m + 1)2 − d(2n + 1)2 ≡ 8 (mod 16).

Indeed, if d ≡ 1 (mod 16), then the above relation is satisfied for m ≡
1 (mod 4) and n ≡ 0 (mod 4), and if d ≡ 9 (mod 16), then it is satisfied for
m ≡ n ≡ 0 (mod 4). Let s be the smallest odd positive integer such that
there exist m,n ∈ Z which satisfy the equation

(2m + 1)2 − d(2n + 1)2 = ±8s.

Numbers 2m+1 and 2n+1 are relatively prime, and so are the corresponding
numbers α and β (by (23)). From the minimality of s, as in the case (a),
we easily obtain that

α2 − dβ2 = ±8s or α2 − dβ2 = ±16s.

Now, let us define rational numbers x and y by the formula (29). Analogously
as in the case (a), we obtain that odd integers x1 = 2x and y1 = 2y satisfy
one of the following equations:

x1
2 − dy1

2 = ±4 or x1
2 − dy1

2 = ±2.

So, we obtain a contradiction with the fact that x1
2 − dy1

2 ≡ 0 (mod 8).
Hence, we have shown that if d ≡ 1 (mod 8), then there exist numbers of
the form 4m + 2 + (4n + 2)

√
d which are not representable as a difference

of two squares.

(ii) Assume now that the conditions (22) are satisfied.
Let m,n ∈ Z be such that

(2m + 1)2 − d(2n + 1)2 = p,

where p is a prime. Such m and n exist according to a fact, announced
by Dirichlet and proved by Meyer and Mertens, which says that among
the primes represented by the quadratic form ax2 + 2bxy + cy2, where
gcd(a, 2b, c) = 1, infinitely many of them are representable by any given
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linear form Mx + N , with gcd(M,N) = 1, where a, b, c, M,N are such that
the linear and quadratic forms can represent the same number ([3, Vol. I,
pp. 417–418]). In our case, we can conclude that for d ≡ 2 (mod 4) there are
infinitely many primes of the form x2−dy2 which also have the form 4k +3.
Obviously, if p = x2 − dy2 ≡ 3 (mod 4) and d ≡ 2 (mod 4), then x and y are
odd.

Further, it is clear that numbers 2m + 1 and 2n + 1 are relatively prime,
and so are the corresponding numbers α and β. Relations (27) and (28)
imply that α2 − dβ2 | 2p. Hence, we have two possibilities:

α2 − dβ2 = ±2 or α2 − dβ2 = ±2p.

If the second possibility is fulfilled, then we can define rational numbers x
and y by formula (29). The relation (30) implies that

x2 − dy2 = ± p

2p
= ±1

2
.

Similarly as in the case (i), we conclude that numbers x − α
2 and y − β

2
are integers. It implies that x1 = 2x is even and y1 = 2y is odd. Obviously,
integers x1 and y1 satisfy the desired equation x2

1 − dy2
1 = ±2.

It remains to prove that the conditions are sufficient. In order to do this,
we will show that numbers x2 and y2 defined in (24) are integral (under the
assumption that α and β are solutions of corresponding Pellian equation).
First, let us write the formulas from (24) in more appropriate form

x2 =
(2m + 1)α− (2n + 1)dβ

α2 − dβ2
− α

2
,(31)

y2 =
(2n + 1)α− (2m + 1)β

α2 − dβ2
− β

2
.(32)

Assume that α2 − dβ2 = ±2, where α is even, β is odd and d ≡ 2 (mod 4).
Now, it can be easily checked that x2 and y2 are integers.

Assume that α, β are odd integers such that α2 − dβ2 = ±4. Then we
have d ≡ 5 (mod 8). Assume first that the numbers 2m + 1 and 2n + 1 are
congruent to 1 modulo 4. Then the numbers x2 and y2 are integers if and only
if (2m+1)α−(2n+1)dβ ≡ 2 (mod 4) and (2n+1)α−(2m+1)β ≡ 2 (mod 4).
Evidently, those relations are fulfilled if and only if α ≡ 1 (mod 4), β ≡
3 (mod 4), or vice versa, and this can be always achieved (if e.g. α ≡ β ≡
1 (mod 4) then numbers α i −β are also the solutions of the same equation
and −β ≡ 3 (mod 4)).

In the same way, we can deal with the remaining cases: 2m+1 ≡ −(2n+
1) (mod 4) or 2m + 1 ≡ 2n + 1 ≡ 3 (mod 4). �

Let us discuss the case (i)(b) from the proof of the Proposition 6. We
will describe numbers of the form z = 4m + 2 + (4n + 2)

√
d which can be

represented as a difference of two squares in the case d ≡ 1 (mod 8). We will
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restrict our attention to the integers d which satisfy the condition that the
equation

(33) α2 − dβ2 = ±8

is solvable in odd integers α and β. We have to find conditions on m,n ∈ Z
such that the numbers x2 and y2 defined by formulas (31) and (32) are inte-
gers. These conditions will depend on the form of solutions of the equation
(33). Obviously, x2 and y2 are integers if the following relations are satisfied

(2m + 1)α− (2n + 1)dβ ≡ 4 (mod 8),(34)
(2n + 1)α− (2m + 1)β ≡ 4 (mod 8)(35)

(under the assumption (33)). Moreover, it is enough that one of these two
conditions is fulfilled. Indeed, the relation (35) multiplied by α gives the
relation (34). So, let us assume that the condition (35) is satisfied. Since α
and β are odd, one of the following congruences is valid: α ≡ β (mod 8),
α ≡ β + 4 (mod 8), α ≡ −β (mod 8) or α ≡ −β + 4 (mod 8). We will find
conditions on m and n in each of these cases. First, if α ≡ β (mod 8), than
(35) implies (2n + 1) − (2m + 1) ≡ 4 (mod 8), i.e. n − m ≡ 2 (mod 4). If
α ≡ β + 4 (mod 8), then (35) implies

(2n + 1)− (2m + 1) + 4(2m + 1) ≡ 2(m− n) + 4 ≡ 4 (mod 8),

i.e. n − m ≡ 0 (mod 4). Similarly, if α + β ≡ 4 (mod 8), then m + n ≡
3 (mod 4), and if α+β ≡ 0 (mod 8), then m+n ≡ 1 (mod 4). Further, it can
be shown that the form of solutions α, β of the equation (33) is completely
determined by d. To be more precise: α ≡ β (mod 8) or α+β ≡ 0 (mod 8) if
and only if d ≡ 9 (mod 16), and α + β ≡ 4 (mod 8) or α− β ≡ 4 (mod 8) if
and only if d ≡ 1 (mod 16). Those results follow easily if the equation (33)
is rearranged in the form (α2 − β2)− (d− 1)β2 = ±8.

Therefore, we proved the sufficiency part of the following proposition.

Proposition 7. Let d ≡ 1 (mod 8) and assume the equation x2 − dy2 = ±8
is solvable.

(i) If d ≡ 1 (mod 16), then the number z = 4m + 2 + (4n + 2)
√

d can
be represented as a difference of two squares if and only if m− n ≡
0 (mod 4) or m + n ≡ 3 (mod 4).

(ii) If d ≡ 9 (mod 16), then the number z = 4m + 2 + (4n + 2)
√

d can
be represented as a difference of two squares if and only m − n ≡
2 (mod 4) or m + n ≡ 1 (mod 4).

Proof. We have to prove that the conditions are necessary. We will consider
only the case d ≡ 1 (mod 16). The case d ≡ 9 (mod 16) can be handled in
the same way.

Let us assume that m,n ∈ Z are such that m− n 6≡ 0 (mod 4), m + n 6≡
3 (mod 4) and z = 4m + 2 + (4n + 2)

√
d is representable as a difference of

two squares. Than we obtain

(2m + 1)2 − d(2n + 1)2 ≡ 4(m− n)(m + n + 1) ≡ 8 (mod 16).
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Indeed, if m − n ≡ 1 (mod 4) or m − n ≡ 3 (mod 4), than m + n + 1 ≡
2 (mod 4), since m+n 6≡ 3 (mod 4). On the other hand, if m−n ≡ 2 (mod 4),
than m + n + 1 is odd.

Now, let s be an odd positive integer such that

(2m + 1)2 − d(2n + 1)2 = ±8s.

Corresponding (odd) numbers α and β satisfy relations (27) and (28), i.e.
α2−dβ2 | 16sα and α2−dβ2 | 16sβ. If we put g = gcd(α, β), we get g2 | 16sg.
Hence, g | s. Let us denote α = α1g, β = β1g, s = s′g. Since α1 and β1 are
relatively prime, we obtain α1

2 − dβ1
2 | 16s′. Since α1

2 − dβ1
2 ≡ 0 (mod 8),

there are only two possibilities

α1
2 − dβ1

2 = ±8s1 or α1
2 − dβ1

2 = ±16s1,

where s1 divides s, i.e. s = s1s2. Now, similarly as in the proof of Proposition
6, it can be shown that x1 = 2x and y1 = 2y, where x and y are defined by
the formula (29), satisfy one of the following equations: x1

2 − dy1
2 = ±4s2

or x1
2 − dy1

2 = ±2s2. Since both equations are impossible (because x1 and
y1 are odd and x1

2 − dy1
2 ≡ 0 (mod 8)), we obtain a contradiction. �

3. Differences of two squares in the ring Z[1+
√

d
2 ]

In this section we will prove Theorem 2. Therefore, we assume that d is
a non-square integer such that d ≡ 1 (mod 4). Only in one result in this
section (Proposition 11) we will also use the assumption that the equation
x2 − dy2 = ±4 is solvable in odd integers. Let

Z
[1 +

√
d

2

]
=

{x + y
√

d

2
: x, y ∈ Z, x ≡ y (mod 2)

}
.

We will describe a set of all elements of the ring Z[1+
√

d
2 ] that can be repre-

sented as difference of squares of two elements of Z[1+
√

d
2 ].

In the previous section, we have shown that elements of the ring Z[
√

d],
where d ≡ 1 (mod 4), which can be represented as a difference of two
squares are the elements of the form 2m + 1 + 2n

√
d, 4m + 4n

√
d or

4m+2+(4n+2)
√

d. (The last one under the assumption that the equation
x2 − dy2 = ±4 is solvable in odd x and y.) It remains to examine which
numbers of the form a+ b

√
d can be represented as a difference of squares of

two elements in Z[1+
√

d
2 ]\Z[

√
d]. Also, we have to consider a representability

of numbers of the form a+b
√

d
2 , where a and b are odd.

Let x1, y1, x2, y2 be odd integers. Then

(36) (
x1

2
+

y1

2

√
d)2 − (

x2

2
+

y2

2

√
d)2 = a + b

√
d,

where a, b ∈ Z. Moreover, a is even.
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Proposition 8. All numbers of the form 2m + (2n + 1)
√

d, m,n ∈ Z, are
representable as a difference of squares of two elements of Z[1+

√
d

2 ].

Proof. From the proof of Proposition 3, we have

4a + 4b
√

d = (a + 1 + b
√

d)2 − (a− 1 + b
√

d)2.

Specially, for a = 2m i b = 2n + 1, we obtain

2m + (2n + 1)
√

d = (
2m + 1

2
+

2n + 1
2

√
d)2 − (

2m− 1
2

+
2n + 1

2

√
d)2.

�

By Proposition 6, all numbers of the form 4m + 2 + (4n + 2)
√

d are
representable as a difference of squares in Z[

√
d] if and only if the equation

x2 − dy2 = ±4 is solvable in odd integers. Next proposition shows that
in Z[1+

√
d

2 ], numbers 4m + 2 + (4n + 2)
√

d are always representable as a
difference of two squares, i.e. no condition is required on d.

Proposition 9. All numbers of the form 4m + 2 + (4n + 2)
√

d, m,n ∈ Z,
are representable as a difference of two squares in Z[1+

√
d

2 ].

Proof. We have

8a + 8b
√

d = (a + 2 + b
√

d)2 − (a− 2 + b
√

2)2

for all a, b ∈ Z. Specially, for a = 2m + 1 and b = 2n + 1 we get

4m + 2 + (4n + 2)
√

d = (
2m + 3

2
+

2n + 1
2

√
d)2 − (

2m− 1
2

+
2n + 1

2

√
d)2.

�

Proposition 10. If z is of the form 4m + (4n + 2)
√

d or 4m + 2 + 4n
√

d,
then z cannot be represented as a difference of two squares in Z[1+

√
d

2 ].

Proof. Suppose that a + b
√

d = 4m + (4n + 2)
√

d = z2
1 − z2

2 . If z1 and
z2 belong to Z[

√
d], then by relations (3) and (4) we have d ≡ 0 (mod 4)

or d ≡ 3 (mod 4), a contradiction. Now, suppose that zi is of the form
xi+yi

√
d

2 , where xi and yi are odd, for i = 1, 2, i.e. suppose that the equality
(36) is valid. Then we obtain that x2

1 − x2
2 + y2

1d − y2
2d = 16m. Thus, x1 ≡

±x2 (mod 8) and y1 ≡ ±y2 (mod 8), or x1 ≡ ±x2+4 (mod 8) and y1 ≡ ±y2+
4 (mod 8). It follows that x1y1−x2y2 ≡ 0 (mod 8) or x1y1−x2y2 ≡ 2 (mod 4),
which implies that b ≡ 0 (mod 4) or b ≡ 1 (mod 2), a contradiction.

Similarly, relations (16) and (17) imply that if 4m+2+4n
√

d is a difference
of two squares in Z[

√
d], then d ≡ 2 (mod 4) or d ≡ 3 (mod 4), which is a

contradiction. Hence, the relation (36) is valid, and it implies that x1 ≡
±x2 (mod 8) and y1 ≡ ±y2 +4 (mod 8) (or vice versa: x1 ≡ ±x2 +4 (mod 8)
and y1 ≡ ±y2 (mod 8)). Now, we have x1y1 − x2y2 ≡ 4 (mod 8) or x1y1 −
x2y2 ≡ 2 (mod 4). So, b ≡ 2 (mod 4) or b ≡ 1 (mod 2), and we obtain a
contradiction again. �
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Proposition 11. All numbers of the form 2m+1
2 + 2n+1

2

√
d can be represented

as a difference of two squares in Z[1+
√

d
2 ] if and only if the equation x2−dy2 =

±4 is solvable in odd x and y.

Proof. Assume that the equation x2 − dy2 = ±4 is solvable in odd inte-
gers. Then by Proposition 6, all numbers of the form 4m + 2 + (4n + 2)

√
d

can be represented as a difference of two squares in Z[
√

d]. Suppose that
x1, y1, x2, y2 ∈ Z satisfy

(37) 4m + 2 + (4n + 2)
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

Then, x1 and y1 are odd, and x2 and y2 are even (or vice versa). Dividing
the equality (37) by 4, we obtain

2m + 1
2

+
2n + 1

2

√
d = (

2ξ1 + 1
2

+
2η1 + 1

2

√
d)2 − (ξ2 + η2

√
d)2,

where x1 = 2ξ1 + 1, y1 = 2η1 + 1, x2 = 2ξ2 and y2 = 2η2.
In order to prove the converse statement, suppose that 2m+1

2 + 2n+1
2

√
d

can be represented as a difference of two squares in Z[1+
√

d
2 ] for all m, n ∈ Z,

i.e. 2m+1
2 + 2n+1

2

√
d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2. Obviously, 4m + 2 +

(4n + 2)
√

d = (2x1 + 2y1

√
d)2− (2x2 + 2y2

√
d)2. Thus, 4m + 2 + (4n + 2)

√
d

is a difference of two squares in Z[
√

d] for all m, n ∈ Z. Now, Proposition 6
implies that the equation x2 − dy2 = ±4 is solvable in odd x and y. �

Proposition 12. Numbers 2m + 1 + (2n + 1)
√

d are not representable as a
difference of two squares in Z[1+

√
d

2 ].

Proof. By Proposition 1, a+b
√

d = 2m+1+(2n+1)
√

d is not representable
as a difference of two squares in Z[

√
d]. If a+ b

√
d satisfies the relation (36),

then a must be even. Finally, if a+b
√

d = (x1
2 + y1

2

√
d)2−(x2 +y2

√
d)2, then

a 6∈ Z. Hence, a + b
√

d is not representable as a difference of two squares in
Z[1+

√
d

2 ]. �

4. Certain Pellian equations

As we saw in the previous two sections, the representability of certain
integers in quadratic fields Q(

√
d) as a difference of two squares is closely

connected to the solvability of Pellian equations of the form

(38) x2 − dy2 = c,

where c = ±2,±4,±8. In this section we give some information on the solv-
ability of these equations. For an interpretation of the connection between
these equations and continued fractions see [13].

First, observe that the equation (38) is obviously solvable for d = n2 − c,
n ∈ Z. Therefore, all our conditions are satisfied by infinitely many
integers d.
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The condition that the equation

(39) x2 − dy2 = ±2

is solvable appeared in Propositions 4, 5 and 6, when we considered integers
d such that d ≡ 2 or 3 (mod 4). It is well known (see [10] or [15, §28]) that

• if p is a prime and p ≡ 3 (mod 8), then x2−py2 = −2 and x2−2py2 =
−2 are solvable,

• if p is a prime and p ≡ 7 (mod 8), then x2−py2 = 2 and x2−2py2 = 2
are solvable.

We list all positive integers d ≡ 2 (mod 4) up to 200 for which the equation
(39) is solvable:

2±, 6−, 14+, 18−, 22−, 34+, 38−, 46+, 54−, 62+, 66−, 86−, 94+, 98+,

102−, 114−, 118−, 134−, 146−, 158+, 162−, 166−, 170−, 178−, 194+, 198−.

Here the subscript + indicates that the equation x2 − dy2 = 2 is solvable,
while the subscript − indicates that the equation x2− dy2 = −2 is solvable.

Positive integers d ≡ 3 (mod 4) less than 200 for which the equation (39)
is solvable are:

3−, 7+, 11−, 19−, 23+, 27−, 31+, 43−, 51−, 59−, 67−, 71+, 79+, 83−, 103+,

107−, 119+, 123−, 127+, 131−, 143+, 151+, 163−, 167+, 179−, 187−, 191+, 199+.

The condition that the equation

(40) x2 − dy2 = ±4,

is solvable in odd integers appeared in Propositions 6 and 11. The prob-
lem of finding an a priori criterion for deciding whether the equation (40),
where d ≡ 5 (mod 8), is solvable in odd integers is known as Eisenstein’s
problem. A solvability criterion in the terms of the period-length of contin-
ued fraction of

√
d was given in [9]. Some empirical results in [17] indicates

that (40) is solvable in odd integers for about 2/3 of the values of square-
free d ≡ 5 (mod 8). Let us note that it suffices to consider the solvability
of the equation x2 − dy2 = 4, since if u any v are odd integers satisfying
u2−dv2 = −4, then x = (u2 +dv2)/2 and y = uv are odd integers satisfying
x2 − dy2 = 4.

Positive integers d ≡ 5 (mod 8) less than 200 for which the equation (40)
is solvable in odd integers are:

5±, 13±, 21+, 29±, 45+, 53±, 61±, 69+, 77+, 85±, 93+,

109±, 117+, 125±, 133+, 149±, 157+, 165+, 173±, 181±.

In Proposition 4 we had the condition that for d ≡ 0 (mod 4) the equation
(40) has a solution with odd y. Our condition is equivalent to solvability of
the equation x2− d

4y2 = ±1 with odd y. Although a solution of Pell equation

(41) x2 −Dy2 = 1
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always exists, we cannot be sure that there is a solution of such parity.
It is easy to see that such solution exists if and only if in the minimal
solution (u, v) of (41) the integer v is odd. This implies that if D is a prime
and D ≡ 3 (mod 4), then the equation (41) has a solution with odd y.
Indeed, if (u, v) is the minimal solution of (41) and v is even, then from
u2 − 1 = Dv2 we obtain u ± 1 = 2Dt2, u ∓ 1 = 2s2 and s2 − Dt2 = ∓1.
But, the minimality of (u, v) implies that + sign is not possible, while the
assumption D ≡ 3 (mod 4) implies that − sign is not possible. We conclude
that for d = 4p, where p is a prime such that p ≡ 3 (mod 4), the equation
(40) has a solution with odd y.

On the other hand, if the equation x2 − d
4y2 = −1 is solvable, then y

is necessarily odd. Thus, we are interested in solvability conditions for the
equation

(42) x2 −Dy2 = −1.

It is well known (see [10]) that the equation (42) is solvable if

• D = p, where p is a prime and p ≡ 1 (mod 4),
• D = 2p, where p is a prime and p ≡ 5 (mod 8),
• D = pq, where p, q are primes, p, q ≡ 1 (mod 4) and (p

q ) = −1,
• D = 2pq, where p, q are primes and p, q ≡ 5 (mod 8).

Positive integers d ≡ 0 (mod 4), 4 < d < 200, for which the equation (40)
is solvable with odd y are:

8−, 12+, 20−, 28+, 32+, 40−, 44+, 52−, 60+, 68−, 76+, 92+, 96+,

104−, 108+, 116−, 124+, 128+, 140+, 148−, 160+, 164−, 172+, 188+, 192+.

Finally, only very few is known about the solvability of the equation

(43) x2 − dy2 = ±8

for d ≡ 1 (mod 8), which appeared in our Proposition 7. Since, the equation
(39) is not solvable for such d, it follows that x and y have to be odd. In
[11], in studying a classical correspondence between algebraic K3 surfaces,
the conditions that d ≡ 1 (mod 8) and (43) is solvable also appeared. The
authors gave the list of all positive integers d ≤ 2009 which satisfy these
conditions. We list here only such non-square integers less than 200:

17±, 33−, 41±, 57−, 73±, 89±, 97±, 113±, 129−, 137±, 153−, 161+, 177−, 193±.

Here we may notice that there exist integers d for which the both equations
x2 − dy2 = 8 and x2 − dy2 = −8 are solvable.
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