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Abstract. In this paper, we prove that there does not exist a set with
more than 26 polynomials with integer coefficients, such that the product
of any two of them plus a linear polynomial is a square of a polynomial
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1. Introduction

Let n be a nonzero integer. A set of m positive integers {a1, a2, . . . , am}
is called a Diophantine m-tuple with the property D(n) or simply D(n)-
m-tuple, if the product of any two of them increased by n is a perfect square.

Diophantus [4] found the first quadruple {1, 33, 68, 105} with the
property D(256). The first D(1)-quadruple, the set {1, 3, 8, 120}, was
found by Fermat. The folklore conjecture is that there does not exist a
D(1)-quintuple. In 1969, Baker and Davenport [2] proved that the Fermat’s
set cannot be extended to a D(1)-quintuple. Recently, the first author
proved that there does not exist a D(1)-sextuple and there are only finitely
many D(1)-quintuples (see [7]).

The natural question is how large such sets can be. We define

Mn = sup{|S| : S has the propertyD(n)},
where |S| denotes the number of elements in the set S. The first author
proved that Mn is finite for all n ∈ Z\{0}. In his proof, he estimated the
number of “large” (greater than |n|3), “small” (between n2 and |n|3) and
“very small” (less than n2) elements of a set with the property D(n), using a
theorem of Bennett [3] on simultaneous approximations of algebraic numbers
and a gap principle in the first, a weaker variant of the gap principle in the
second and a large sieve method due to Gallagher [9] in the third case
respectively (cf. [6]). Let us introduce the following notation:

An = sup{|S ∩ [|n|3,∞〉| : S has the propertyD(n)},
Bn = sup{|S ∩ [n2, |n|3〉| : S has the propertyD(n)},
Cn = sup{|S ∩ [1, n2〉| : S has the propertyD(n)}.
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His result was (cf. [6, Theorems 1, 2, 3 and 4])

An ≤ 21,

Bn ≤ 0.65 log |n|+ 2.24,

Cn ≤
{

265.55 log |n|(log log |n|)2 + 9.01 log log |n| for |n| > 400,
5 for |n| ≤ 400.

Therefore

Mn ≤ 32 for |n| ≤ 400,

Mn < 267.81 log |n|(log log |n|)2 for |n| > 400.

A polynomial variant of the above problems was first studied by Jones
[10], [11], and it was for the case n = 1.
Definition 1. Let n ∈ Z[x] and let {a1, a2, . . . , am} be a set of m nonzero
polynomials with integer coefficients. We assume that there does not exist a
polynomial p ∈ Z[x] such that a1/p, . . . , am/p and n/p2 are integers. The set
{a1, a2, . . . , am} is called a polynomial D(n)-m-tuple if for all 1 ≤ i < j ≤ m
the following holds: ai · aj + n = b2

ij, where bij ∈ Z[x].

Let us mention that the assumption that there does not exist a polyno-
mial p such that a1/p, . . . , am/p and n/p2 are integers means for constant n
that not all elements a1, . . . , am of a polynomial D(n)-m-tuple are allowed
to be constant (compare with Definition 1 in [8]). For linear n the condition
under consideration is trivially always satisfied.

In analog to above results, we are interested in the size of

Pn = sup{|S| : S is a polynomial D(n)-tuple}.

From [6, Theorem 1], it follows that Pn ≤ 22 for all n ∈ Z. The above
mentioned result about the existence of only finitely many D(1)-quintuples
implies that P1 = 4. Recently, the first and the second author proved that
P−1 = 3 (cf. [8]) by succesfully transferring the needed methods to the
polynomial case.

The results of [6], by specialization, give a bound for Pn in terms of the
degree and the maximum of the coefficients of n. We conjecture that there
should exist a bound for Pn, which depends only on the degree of n. As we
have seen, this is true for constant polynomials, and in the present paper we
will prove this conjecture for linear polynomials.

We want to handle the case of linear polynomials, i.e. n = ax + b, with
integers a 6= 0 and b. Let us define

L = sup{|S| : S is a polynomial D(ax + b)-tuple for some a 6= 0 and b }.

It is easy to prove that L ≥ 4. E.g. the set

{x, 16x + 8, 25x + 14, 36x + 20}
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is a polynomial D(16x + 9)-quadruple and the set

{1, 9x2 + 8x + 1, 9x2 + 14x + 6, 36x2 + 44x + 13}

is a polynomial D(4x + 3)-quadruple (see [5]).
We intend to prove that L < ∞. More precisely, we want to find some

good upper bound for L.
The idea is to estimate the number of polynomials in S with given de-

gree and to consider separate cases whether the degree is “large” or “small”.

In analog to the classical case, we prove our result for “large” degree by
using a theorem due to Mason [12] on the polynomial solutions of hyperel-
liptic equations over function fields in one variable and a gap principle. Let
S be a polynomial D(ax + b)-m-tuple with integers a 6= 0 and b. We prove
Proposition 1. There are at most 15 polynomials in S with degree ≥ 4.

We want to remark that a weaker result can be shown by applying the
results from the classical integer case. From that, it is possible to show that
there are at most 21 polynomials in S with degree ≥ 4.

We have to estimate the number of constant, linear, quadratic and cubic
polynomials in S. We denote these numbers by L0, L1, L2, L3 respectively
and we will consider them separately. First of all it is trivial to see that we
have

L0 ≤ 1.

By using the mentioned gap principle once more, we get
Proposition 2. There are at most three polynomials in S of degree 3. There-
fore, we have

L3 ≤ 3.

Let us remark that in fact the proof gives us the following result: There is
no polynomial D(ax+b)-quadruple which consists of polynomials all having
the same degree µ ≥ 3. For the case n = 1 this was already proved by Jones
in [11].

By more detailed analysis we get
Proposition 3. There are at most five polynomials in S of degree 2. There-
fore, we have

L2 ≤ 5.

Proposition 4. There are at most eight linear polynomials in S. Therefore,
we have

L1 ≤ 8.

Altogether, we can prove the following bound for the size of polynomial
D(n)-m-tuples for linear polynomials n = ax + b.
Theorem 1.

L ≤ 26.
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In Section 2, we will collect auxiliary results which are needed to prove
our results. In Section 3, we handle Propositions 1 and 2 which are the cases
of large degrees. In Section 4, we prove the results for the small degrees, i.e.
Propositions 3 and 4 and therefore finally get Theorem 1.

2. Auxiliary results

Let K be an algebraically closed field with characteristic 0. Let us begin by
recalling the definitions of the discrete valuations on the field K(x) where x
is transcendental over K. For ξ ∈ K define the valuation νξ such that for Q ∈
K(x) we have Q(x) = (x − ξ)νξ(Q)A(x)/B(x) where A,B are polynomials
with A(ξ)B(ξ) 6= 0. Further, for Q = A/B with A,B ∈ K[x], we put
deg Q := deg A − deg B; thus ν∞ := −deg is a discrete valuation on K(x).
These are all discrete valuations on K(x). Now let L be a finite extension
of K(x). Each of the valuations νξ, ν∞ can be extended in at most [L :
K(x)] =: d ways to a discrete valuation on L and in this way one obtains
all discrete valuations on L. A valuation on L is called finite if it extends νξ

for some ξ ∈ K and infinite if it extends ν∞.
We need the following generalization of the degree from K[x] to L. We

define the height of f ∈ L by

H(f) = −
∑

ν

min{0, ν(f)}

where the sum is taken over all discrete valuations on L; thus for f ∈ K(x)
the height H(f) is just the number of poles of f counted according to mul-
tiplicity. We note that if f lies in K[x] then H(f) = d deg f . We also want
to define the height of a polynomial with coefficients in L. In order to do
this let us denote for any finite set S of elements of L

ν(S) = min
s∈S

{H(s)} and H(S) = −
∑

ν

min{0, ν(S)}

where the sum again runs over all valuations in L. If P ∈ L[T ] and S is the
set of its coefficients, then the quantities ν(P ) and H(P ) are defined to be
ν(S) and H(S) respectively.

Let O denote the ring of elements of L integral over K[x]. These elements
have the property that ν(f) ≥ 0 for all finite valutations on L.

Now we are able to state the following theorem on the solutions of a hy-
perelliptic equation over an algebraic function field. A proof of this theorem
can be found in the monograph of Mason (cf. [13, Theorem 6]).
Theorem 2. (R. C. Mason) Let α1, . . . , αn ∈ O. All the solutions X, Y ∈
O of the hyperelliptic equation

(1) Y 2 = (X − α1)(X − α2) · · · (X − αn)

satisfy
H(X) ≤ 26H + 8g + 4(r − 1);
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here H denotes the height of the polynomial on the right hand side of (1),
g denotes the genus of L/K and r denotes the number of infinite valuations
on L.

Let us note that this bound varies only as a linear function of the height
of the hyperelliptic equation, in contrast with the multiply exponential
bounds for the classical case obtained by Baker [1]. This shows that the
fundamental inequality due to Mason on which the proof of this theorem
is based and which is the function field analog of Baker’s method of linear
forms in logarithms is very sharp.

Before we can go to the proofs of the results, we need the following useful
construction with the elements of a polynomial D(n)-triple, where n is a
polynomial with integer coefficients. The construction is a direct modifica-
tion from the integer case (see [6, Lemma 3]). The analogous statement for
polynomial D(1)-triples was proved by Jones in [11] and we did already use
it in the case n = −1 (cf. [8]).
Lemma 1. Let {a, b, c} be a polynomial D(n)-triple and let ab+n = r2, ac+
n = s2, bc + n = t2. Then there exist polynomials e, u, v, w ∈ Z[x] such that

ae + n2 = u2, be + n2 = v2, ce + n2 = w2.

More precisely,
e = n(a + b + c) + 2abc− 2rst.

Furthermore, it holds:

c = a + b +
e

n
+

2
n2

(abe + ruv),

where u = at− rs, v = bs− rt.
Proof. We have

(ae + n2)− (at− rs)2 = an(a + b + c) + 2a2bc− 2arst + n2 −
−a2(bc + n) + 2arst− (ab + n)(ac + n) = 0.

Hence, we may take u = at − rs, and analogously y = bs − rt, z = cr − st.
We have

abe + ruv = abn(a + b + c) + 2a2b2c− 2abrst + abrst−
−a(ab + n)(bc + n)− b(ab + n)(ac + n) + rst(ab + n) =

= −abcn− n2(a + b) + rstn,

and finally

a+b+
e

n
+

2
n2

(abe+ruv) = 2a+2b+c+
2abc

n
−2rst

n
−2abc

n
−2a−2b+

2rst

n
= c.

�

If we also define

(2) e = n(a + b + c) + 2abc + 2rst,



6 ANDREJ DUJELLA, CLEMENS FUCHS AND ROBERT F. TICHY

then easy computation shows that

(3) e · e = n2(c− a− b− 2r)(c− a− b + 2r).

This relation will be very useful in the proof of Proposition 2, 3 and 4.

We conclude this section with the following definition: Let Z+[x] denote
the set of all polynomials with integer coefficients with positive leading coeffi-
cient. For a, b ∈ Z[x], a < b means that b−a ∈ Z+[x]. The usual fundamental
properties of inequality hold for this order. For a ∈ Z[x], we define |a| = a
if a ≥ 0, and |a| = −a if a < 0.

Observe that it is clear that all leading coefficients of the nonconstant
polynomials in a polynomial D(n)-m-tuple have the same sign. This implies
that there is no loss of generality in assuming that they are all positive, i.e.
that all polynomials are in Z+[x].

3. Elements with large degrees

Assume that the set {a, b, c, d} is a polynomial D(n)-quadruple with n ∈
Z[x]. Let ab + n = r2, ac + n = s2, bc + n = t2 where r, s, t ∈ Z+[x]. In this
paper, the symbols r, s, r will always have this meaning. Moreover, we have

ad + n = u2, bd + n = v2, cd + n = w2,

with u, v, w ∈ Z+[x]. Multiplying these equations, we get the following el-
liptic equation

(uvw)2 = (ad + n)(bd + n)(cd + n),
where we search for polynomial solutions d ∈ Z[x]. We will apply Mason’s
Theorem 2 to this equation.
Lemma 2. Let {a, b, c, d}, 0 < a < b < c < d be a polynomial D(n)-
quadruple with n ∈ Z[x]. Then

deg d ≤ 51(deg a + deg b + deg c) + 78 deg n.

Proof. Let us denote X = abcd and Y = abcuvw. Then by multiplying
the above equation with a2b2c2 we get

Y 2 = (X + nbc)(X + nac)(X + nab).

The polynomial on the left hand side becomes

(X + nbc)(X + nac)(X + nab) =
= X3 + n(ab + bc + ac)X2 + n2abc(a + b + c)X + n3a2b2c2

so this polynomial has coefficients and roots in Z[x]. Let S be the set of
coefficients of this polynomial, i.e.

S = {1, n(ab + bc + ac), n2abc(a + b + c), n3a2b2c2}.
Since the elements of S are polynomials, we get for each ξ ∈ C that

νξ(S) = min
s∈S

{0, νξ(s)} = 0.
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Moreover, we have

ν∞(S) = min
s∈S

{0, ν∞(s)) = min
s∈S

{−deg s} = −max
s∈S

deg s,

and by comparing the degrees of the elements of S we get

ν∞(S) = −2(deg a + deg b + deg c)− 3 deg n.

Therefore,

H(S) = −
∑

ν

min{0, ν(S)} = −
∑
ξ∈C

min{0, νξ(S)} −min{0, ν∞(S)} =

= −min{0, ν∞(S)} = 2(deg a + deg b + deg c) + 3 deg n.

Thus, we have for the height H of the polynomial on the right hand side of
our elliptic equation

H = 2(deg a + deg b + deg c) + 3 deg n.

By Mason’s Theorem 2 with L = C(x) and O = C[x] we therefore get

deg X ≤ 52(deg a + deg b + deg c) + 78 deg n,

where we have used that the genus of the rational function field C(x) is zero
(which can be found e.g. in [14], page 22) and that C(x) has only one infinite
valuation, namely ν∞. But now by the definition of X = abcd we get

deg d ≤ 51(deg a + deg b + deg c) + 78 deg n

as claimed in our lemma. �

Observe that due to the sharpness of the fundamental inequality this
bound is very good. Especially, it does not depend on a gap which has to
appear between the elements of the quadruple as in the classical case (cf.
[6, Lemma 2]).

We use Lemma 1 to prove the following gap principle. It is very similar
to [6, Lemma 4] in the classical case for integers.
Lemma 3. If {a, b, c, d} is a polynomial D(n)-quadruple, where n ∈ Z[x]
and 2n2 < a < b < c < d, then

n2d > 2bc.

Proof. We apply Lemma 1 to the triple {a, c, d}. Let e be defined as in
Lemma 1. Since ce+n2 is a perfect square, we have that ce+n2 ≥ 0. Assume
that e ≤ −1, then

ce + n2 < −2n2 + n2 = −n2 < 0,

a contradiction. Therefore, we have e ≥ 0. Observe that, if n > 0 we have

a2 < ac + r2 = ac + ab + n ⇐⇒ na2 < na(b + c) + n2 ⇐⇒
a2t2 = a2(n + bc) = na2 + a2bc < a2bc + na(b + c) + n2 =

= (ab + n)(ac + n) = r2s2 ⇐⇒
at < rs ⇐⇒ u < 0,
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and
b2 < bc + r2 = bc + ab + n ⇐⇒ nb2 < nb(a + c) + n2 ⇐⇒
b2s2 = b2(ac + n) = ab2c + b2n < ab2c + nb(a + c) + n2 =

= (ab + n)(bc + n) = r2t2 ⇐⇒
bs < rt ⇐⇒ v < 0.

In the same way, one can show that n < 0 implies

u > 0 and v > 0.

If e = 0, then d = a + c + 2s. If e ≥ 1, then

n2d = n2(a + b) + en + 2(abe + ruv) > 2ab.

Note that we need here that uv > 0 which follows from the comments just
made.

Analogously, we apply Lemma 1 to the triple {b, c, d} and obtain either
d = b + c + 2t or n2d > 2bc. However, d = b + c + 2t is impossible since s2 =
ac+n < bc+n = t2 and therefore s < t which implies a+ c+2s < b+ c+2t
and

n2(b + c + 2t) < n2 · 4c < 2ac,

which follows from

t2 = bc + n ≤ (c− 1)c + n = c2 + n− c < c2 + n− n2 < c2

since c > 2n2 and consequently t < c.
Hence, we proved

n2d > 2bc,

as claimed in our lemma. �

Proof of Proposition 1.
Assume that {a, b, c, a4, a5, . . . , a16} is a polynomial D(n)-16-tuple and

|n|3 ≤ a < b < c < a4 < a5 < . . . < a16. We apply Lemma 2 to the
quadruple {a, b, c, a16} and obtain

(4) a16 < (abc)52n78 < c156n78 < c182,

since |n|3 < c.
Lemma 3 implies n2a4 > bc > |n|3c and a4 > c|n|. Furthermore, n2a5 >

a4c > c2|n| and |n|a5 > c2. In the same manner, Lemma 3 gives

n2a6 > a5a4 > c3, |n|5a7 > |n|3a6a5 > c5, |n|9a8 > c8,
n16a9 > c13, |n|27a10 > c21, |n|45a11 > c34,
n74a12 > c55, |n|121a13 > c89, |n|197a14 > c144,
|n|320a15 > c233, |n|519a16 > c377,

which implies (since |n|3 < c) that

c173a16 > c377

and therefore
a16 > c204,
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a contradiction to (4). �

Proof of Proposition 2.
Let S = {a, b, c} with a < b < c be a polynomial D(n)-triple with linear

n ∈ Z[x] and let deg a = deg b = deg c = 3. Then by (2) we get deg e = 9.
But from (3) it follows that deg ee ≤ 8. Thus we have a contradiction unless
e = 0, i.e. c = a + b + 2r. Consequently, if we fix a and b, then c is unique,
which implies that S cannot be extended to a polynomial D(n)-quadruple.
Therefore,

L3 ≤ 3,

as claimed in our proposition. �

Observe that Proposition 2 follows directly from Lemma 3, but the above
proof gives more information on triples of cubic polynomials.

4. Elements with small degrees

First we prove Proposition 3. Here the argument from the proof of
Proposition 2 does not longer work. The polynomials e which are induced
by a polynomial D(ax + b)-triple in Lemma 1 are constants. The proof uses
the fact that u2 − n2 = (u − n)(u + n) is a complete factorization of the
polynomial a up to the constant factor.

Proof of Proposition 3.
Let {a, b, c} with a < b < c be a polynomial D(n)-triple with linear

n ∈ Z[x] and let deg a = deg b = deg c = 2. Then by (2) we get deg e = 6.
Now (3) implies that e is a constant. Assume that two distinct e’s exist. We
call them e and f . From ae + n2 = u2 we see that a is a product of two
linear polynomials:

a = α(x− a0)(x− a1).

Let us assume that we have

u− n = ε1(x− a0), u + n = ε2(x− a1),

where ε1ε2 = αε. It implies

2n = x(ε2 − ε1) + ε1a0 − ε2a1.

In the same manner, we can conclude from af + n2 = u2 that

u− n = ϕ1(x− a0), u + n = ϕ2(x− a1),

or
u− n = ϕ1(x− a1), u + n = ϕ2(x− a0)

holds. Let us first consider that the first of this equations holds. Then we
get

2n = x(ϕ2 − ϕ1) + ϕ1a0 − ϕ2a1,
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where ϕ1ϕ2 = αf . Hence, ε2 − ε1 = ϕ2 − ϕ1, ε1a0 − ε2a1 = ϕ1a0 − ϕ2a1.
Consequently, we have a0(ε1 − ϕ1) = a1(ε2 − ϕ2) = a1(ε1 − ϕ1). We have
two possibilities: ε1 = ϕ1 or a0 = a1.

Let first assume ε1 = ϕ1. This implies also ε2 = ϕ2 and therefore e = f ,
a contradiction. Now we assume that a0 = a1 holds. Then x − a0|n and
together with ab + n = r2 this implies x− a0|r. Therefore (x− a0)2|n, and
we obtained a contradiction since n is a linear polynomial.

Now let us consider the second case. So assume that we have

u− n = ϕ1(x− a1), u + n = ϕ2(x− a0),

where ϕ1, ϕ2 are as above. It implies

2n = x(ϕ2 − ϕ1) + ϕ1a1 − ϕ2a0.

Hence, ε2 − ε1 = ϕ2 − ϕ1, ε1a0 − ε2a1 = ϕ1a1 − ϕ2a0. This yields,
a0(ε1 + ϕ2) = a1(ϕ1 + ε2) = a0(ε1 + ϕ2). We have again two possibilities:
ε1 = −ϕ2 which implies ε2 = −ϕ1 and therefore e = f , a contradiction, or
a0 = a1. But as above this yields a contradiction with the assumption that
n is a linear polynomial.

Therefore, there is at most one such constant e. It follows that for fixed
a and b, there are at most three c, namely c = a + b + 2r and two possible
c(e) which come from

c = a + b +
e

n
+

2
n2

(abe + 2ruv),

where u, v satisfy ae + n2 = u2, be + n2 = v2. This last equations fix u and
v only up to the sign and therefore we get two possible c’s in this case.
Consequently we get

L2 ≤ 5,

which was claimed in the proposition. �

As in the proof of Proposition 3, we will see that also the proof of
Proposition 4 heavily depends on the fact that we are considering linear
polynomials. Especially, we will use that (3) is the complete factorization
of the product ee.

Proof of Proposition 4.
Let S = {a, b, c} with a < b < c be polynomial D(n)-triple with linear

n ∈ Z[x] and let deg a = deg b = deg c = 1. Then by (2) we get deg e = 3.
Now (3) implies that

deg e ≤ 1.

From ab+n = r2 it follows that at most one of the elements in S is divisible
by n. Indeed, assume that a and b are divisible by n. Then n|r and n2|n, a
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contradiction. Thus we may assume that a, b, c are not divisible by n. We
have

e + e = 2n(a + b + c) + 4abc.(5)
e− e = 4rst.(6)

If n|e, then (3) implies that n|e and therefore, by (5), we get n|abc, a con-
tradiction.

Therefore, e = δ · (c− a− b± 2r), δ ∈ Q. Assume that δ 6= 0. We have

e = n2(c− a− b∓ 2r)
1
δ
.

This implies
e

δ
− eδ

n2
= ±4r

or
n2e

δ
− eδ = ±4n2r

or
n2e

δ
− eδ = 4r(δst± n2).

This can be written as
e

δ
(n2 − δ2) = 4r(δst± n2).

Hence, there are two possibilities: r|e or r|n± δ.

If r|e, then by (6) we have r|e which yields

r2|n2(c− a− b− 2r)(c− a− b + 2r).

If r|n, then from ab + n = r2 we conclude r|a or r|b. Both cases lead to a
contradictions since this would imply n|a or n|b. Observe that r and n only
differ by a constant factor since they are both linear. Thus, r|c− a− b, say
c = a + b + r · ρ, ρ ∈ Q. But from this we get

ac + n = a2 + ab + arρ + n = a2 + r2 + ρar = s2

or
(2r + ρa)2 − (ρ2 − 4)a2 = (2s)2.

Now, if ρ = ±2 then c = a + b ± 2r. Observe that by considering leading
coefficients it is clear that a + b − 2r < b so this case is impossible and it
remains the possible case c = a + b + 2r. Otherwise, if ρ 6= ±2, we have

(ρ2 − 4)a2 = (2r + ρa− 2s)(2r + ρa + 2s)

which implies a|r and a|s, and moreover, using ab + n = r2, we get a|n or
equivalently n|a, a contradiction.

Therefore, it remains the case r|n ± δ. It means that δ is unique. It is
defined by n ≡ ∓δ (mod r). Let n ≡ δ0 (mod r). We have the following five
possibilities for c, namely c = a + b + 2r and c(e), where e = (c − a − b +
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2r)(−δ0) or e = (c− a− b− 2r) · δ0. Each of this two e’s induce at most two
c’s as we have seen at the end of the proof of Proposition 3. Therefore, we
have at most seven linear polynomials in S which are not divisible by n. We
get

L1 ≤ 8,

and so the proof is finished. �

Now we are ready to prove our bound for L.

Proof of Theorem 1.
Let S be a polynomial D(ax + b)-m-tuple with some integers a 6= 0 and

b. From the fact that the product of each two elements from S plus ax+ b is
a square of a polynomial with integer coefficients, it follows that if the set S
contains a polynomial with degree ≥ 2, then it contains either polynomials
with even or polynomials with odd degree only. Together with the upper
bound for the number of polynomials in S with degree ≥ 4, this implies that
we have

|S| ≤ 11 + 15 = 26.

This proves our theorem. �
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