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Abstract

In this paper we prove several results on connection between contin-
ued fractions and rational approximations of the form |α−a/b| < k/b2,
for a positive integer k.

1 Introduction

The classical Legendre’s theorem in Diophantine approximations states that
if a real number α and a rational number a

b (we will always assume that
b ≥ 1), satisfy the inequality

∣∣∣α− a

b

∣∣∣ <
1

2b2
, (1)

then a
b is a convergent of the continued fraction expansion of α = [a0; a1, . . .].

This result has been extended by Fatou [3] (see also [5, p.16]), who showed
that if

|α− a

b
| < 1

b2
,

then a
b = pm

qm
or pm+1±pm

qm+1±qm
, where pm

qm
denotes the m-th convergent of α.

In 1981, Worley [12] generalized these results to the inequality
∣∣α− a

b

∣∣ <
k
b2

, where k is an arbitrary positive real number. Worley’s result was slightly
improved in [1].
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Theorem 1.1 (Worley [12], Dujella [1]) Let α be a real number and let
a and b be coprime nonzero integers, satisfying the inequality

∣∣∣α− a

b

∣∣∣ <
k

b2
, (2)

where k is a positive real number. Then (a, b) = (rpm+1 ± spm, rqm+1 ± sqm),
for some m ≥ −1 and nonnegative integers r and s such that rs < 2k.

The original result of Worley [12, Theorem 1] contains three types of
solutions to the inequality (2). Two types correspond to two possible choices
for signs + and − in (rpm+1±spm, rqm+1±sqm), while [1, Theorem 1] shows
that the third type (corresponding to the case am+2 = 1) can be omitted.

In Section 3 we will show that Theorem 1.1 is sharp, in the sense that
the condition rs < 2k cannot be replaced by rs < (2 − ε)k for any ε > 0.
However, it appears that the coefficients r and s show different behavior.
So, improvements of Theorem 1.1 are possible if we allow nonsymmetric
conditions on r and s. Indeed, already the paper of Worley [12] contains an
important contribution in that direction.

Theorem 1.2 (Worley [12], Theorem 2) If α is an irrational number,
k ≥ 1

2 and a
b is a rational approximation to α (in reduced form) for which

the inequality (2) holds, then either a
b is a convergent pm

qm
to α or a

b has one
of the following forms:

(i) a
b = rpm+1+spm

rqm+1+sqm

r > s and rs < 2k, or

r ≤ s and rs < k + r2

am+2
,

(ii) a
b = spm+1−tpm

sqm+1−tqm

s < t and st < 2k, or
s ≥ t and st

(
1− t

2s

)
< k,

where r, s and t are positive integers.

Since the fraction a/b is in reduced form, it is clear that in the statements
of Theorems 1.1 and 1.2 we may assume that gcd(r, s) = 1 and gcd(s, t) = 1.

Worley [12, Corollary, p.206] also gave the explicit version of his result
for k = 2: |α − a

b | < 2
b2

implies a
b = pm

qm
, pm+1±pm

qm+1±qm
, 2pm+1±pm

2qm+1±qm
, 3pm+1+pm

3qm+1+qm
,

pm+1±2pm

qm+1±2qm
or pm+1−3pm

qm+1−3qm
. This result for k = 2 has been applied for solving

some Diophantine equations. In [7], it was applied to the problem of finding
positive integers a and b such that (a2 + b2)/(ab + 1) is an integer, and in
[2] it was used for solving the family of Thue inequalities

|x4 − 4cx3y + (6c + 2)x2y2 + 4cxy2 + y4| ≤ 6c + 4.
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On the other hand, Theorem 1.1 has applications in cryptography, too.
Namely, in [1], a modification of Verheul and van Tilborg variant of Wiener’s
attack ([10, 11]) on RSA cryptosystem with small secret exponent has been
described, which is based on Theorem 1.1.

We will extend Worley’s work and give explicit and sharp versions of
Theorems 1.1 and 1.2 for k = 3, 4, 5, . . . , 12. We will list the pairs (r, s)
which appear in the expression of solutions of (2) in the form (a, b) =
(rpm+1 ± spm, rqm+1 ± sqm), and we will show by explicit examples that
all pairs from the list are indeed necessary. We hope that our results will
also find applications on Diophantine problems, and in Section 4 we will
present such an application. In such applications, it is especially of interest
to have smallest possible list of pairs (r, s). It is certainly possible to extend
our result for k > 12. However, already our results make it possible to reveal
certain patterns, and they also suffice for our Diophantine applications.

2 Explicit versions of Worley’s theorem

We start by few details from the proof of Theorem 1.1 in [1], which will
be useful in our future arguments. In particular, we will explain how the
integer m appearing in the statement of Theorem 1.1 can be found. We
assume that α < a

b , since the other case is completely analogous. Let m be
the largest odd integer satisfying

α <
a

b
≤ pm

qm
.

If a
b > p1

q1
, we take m = −1, following the convention that p−1 = 1, q−1 = 0.

Since |pm+1qm − pmqm+1| = 1, the numbers r and s defined by

a = rpm+1 + spm,

b = rqm+1 + sqm

are integers, and since pm+1

qm+1
< a

b ≤ pm

qm
, we have that r ≥ 0 and s > 0. From

the maximality of m, we find that

sam+2 − r

bqm+2
=

∣∣∣∣
pm+2

qm+2
− a

b

∣∣∣∣ <
∣∣∣α− a

b

∣∣∣ <
k

b2
. (3)

From (3) we immediately have

am+2 >
r

s
, (4)
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and we can derive the inequality

r2 − sram+2 + kam+2 > 0 (5)

(see [1, proof of Theorem 1] for details, and note also that (5) is exactly the
inequality from Theorem 1.2(i) - the second case).

Let us define a positive integer t by t = sam+2 − r. Then we have

a = rpm+1 + spm = spm+2 − tpm+1,

b = rqm+1 + sqm = sqm+2 − tqm+1,

and s and t satisfy analogs of (4) and (5):

am+2 >
t

s
, (6)

t2 − stam+2 + kam+2 > 0. (7)

If r > t, i.e. rs > st, then we will represent a and b in terms of s and t
(which corresponds to − sign in Theorem 1.1).

Let us consider now the case k = 3. Hence, we are considering the
inequality

|α− a

b
| < 3

b2
. (8)

By Theorem 1.1, we have that (a, b) = (rpm+1 + spm, rqm+1 + sqm) or
(spm+2 − tpm+1, sqm+2 − tqm+1), where rs < 6, st < 6, gcd(r, s) = 1 and
gcd(s, t) = 1. However, the inequalities (5) and (7) for r = 1, resp. t = 1,
show that the pairs (r, s) = (1, 4), (1, 5) and (s, t) = (4, 1), (5, 1) can be
omitted. Therefore, we proved

Proposition 2.1 If a real number α and a rational number a
b satisfy the

inequality (8), then
a

b
=

rpm+1 + spm

rqm+1 + sqm
, where

(r, s) ∈ R3 = {(0, 1), (1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (4, 1), (5, 1)},

or
a

b
=

spm+2 − tpm+1

sqm+2 − tqm+1
, where

(s, t) ∈ T3 = {(1, 1), (2, 1), (3, 1), (1, 2), (1, 3), (1, 4), (1, 5)}

(for an integer m ≥ −1).
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Our next aim is to show that Proposition 2.1 is sharp, i.e. that if we omit
any of the pairs (r, s) or (s, t) appearing in Proposition 2.1, the statement
of the proposition will no longer be valid. More precisely, if we omit a
pair (r′, s′) ∈ R3, then there exist a real number α and a rational number
a
b satisfying (8), but such that a

b cannot be represented in the form a
b =

rpm+1+spm

rqm+1+sqm
nor a

b = spm+2−tpm+1

sqm+2−tqm+1
, where m ≥ −1, (r, s) ∈ R3 \ {(r′, s′)},

(s, t) ∈ T3 (and similarly for an omitted pair (s′, t′) ∈ T3).

We will show that by giving explicit examples for each pair. Although
we have found many such examples of different form, in the next table we
give numbers α of the form

√
d, where d is a non-square positive integer.

α a b m r s t√
10 3 1 0 0 1 6√
17 37 9 0 1 1 7√
2 5 4 0 1 2 3√
8 23 8 1 1 3 2√
17 70 17 0 2 1 6√
26 158 31 0 3 1 7√
26 209 41 0 4 1 6√
37 371 61 0 5 1 7

α a b m r s t√
17 235 57 0 7 1 1√
2 11 8 0 3 2 1√
8 37 13 1 2 3 1√
17 202 49 0 6 1 2√
26 362 71 0 7 1 3√
26 311 61 0 6 1 4√
37 517 85 0 7 1 5

For example, consider α =
√

8 = [2, 1, 4]. Its rational approximation 23
8

(the forth row of the table) satisfies
∣∣√8− 23

8

∣∣ ≈ 0.046572875 < 3
82 . The

convergents of
√

8 are 2
1 , 3

1 , 14
5 , 17

6 , 82
29 , 99

35 , 478
169 , . . . . The only representation

of the fraction 23
8 in the form rpm+1+spm

rqm+1+sqm
, (r, s) ∈ R3 or spm+2−tpm+1

sqm+2−tqm+1
, (s, t) ∈

T3 is 23
8 = 1·14+3·3

1·5+3·1 = 1·p2+3·p1

1·q2+3·q1
, which shows that the pair (1, 3) cannot be

omitted from the set R3.

Proposition 2.2 Let k ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12}. If a real number α and

a rational number a
b satisfy the inequality (2), then

a

b
=

rpm+1 + spm

rqm+1 + sqm
, where

(r, s) ∈ Rk = Rk−1 ∪ R′
k, or

a

b
=

spm+2 − tpm+1

sqm+2 − tqm+1
, where (s, t) ∈ Tk =

Tk−1 ∪ T ′k (for an integer m ≥ −1), where the sets R′
k and T ′k are given in

the following table. Moreover, if any of the elements in sets Rk or Tk is
omitted, the statement will no longer be valid.
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k R′k T ′k
4 {(1, 4), (3, 2), (6, 1), (7, 1)} {(4, 1), (2, 3), (1, 6), (1, 7)}
5 {(1, 5), (2, 3), (8, 1), (9, 1)} {(5, 1), (3, 2), (1, 8), (1, 9)}
6 {(1, 6), (5, 2), (10, 1), (11, 1)} {(6, 1), (2, 5), (1, 10), (1, 11)}
7 {(1, 7), (2, 5), (4, 3), (12, 1), (13, 1)} {(7, 1), (5, 2), (3, 4), (1, 12), (1, 13)}
8 {(1, 8), (3, 4), (7, 2), (14, 1), (15, 1)} {(8, 1), (4, 3), (2, 7), (1, 14), (1, 15)}
9 {(1, 9), (5, 3), (16, 1), (17, 1)} {(9, 1), (3, 5), (1, 16), (1, 17)}
10 {(1, 10), (9, 2), (18, 1), (19, 1)} {(10, 1), (2, 9), (1, 18), (1, 19)}
11 {(1, 11), (2, 7), (3, 5), (20, 1), (21, 1)} {(11, 1), (7, 2), (5, 3), (1, 20), (1, 21)}
12 {(1, 12), (5, 4), (7, 3), {(12, 1), (4, 5), (3, 7),

(11, 2), (22, 1), (23, 1)} (2, 11), (1, 22), (1, 23)}

Proof: By Theorem 1.1, we have to consider only pairs of nonnegative
integers (r, s) and (s, t) satisfying rs < 2k, st < 2k, gcd(r, s) = 1 and
gcd(s, t) = 1. Furthermore, as in the case k = 3, it follows directly from the
inequalities (5) and (7) for r = 1, resp. t = 1, that the pairs (r, s) = (1, s)
and (s, t) = (s, 1) with s ≥ k + 1 can be omitted. Similarly, for r = 2 or 3,
resp. t = 2 or 3, we can exclude the pairs (r, s) = (2, s) and (s, t) = (s, 2)
with s ≥ k

2 +2, and the pairs (r, s) = (3, s) and (s, t) = (s, 3) with s ≥ k
3 +3.

Now we show that all remaining possible pairs which are not listed in the
statement of Proposition 2.2 can be replaced with other pairs with smaller
products rs, resp. st. We give details only for pairs (r, s), since the proof
for pairs (s, t) is completely analogous (using the inequalities (6) and (7),
instead of (4) and (5)).

Consider the case k = 4 and (r, s) = (2, 3). By (5), we obtain am+2 < 2.
Thus, the pair (r, s) = (2, 3) can appear only for am+2 = 1. However, in
that case we have t = sam+2 − r = 1, and therefore the (r, s) = (2, 3) can
be replaced by the pair (s, t) = (3, 1).

Analogously we can show that for k = 7 the pair (r, s) = (3, 4) can be
replaced by (s, t) = (4, 1), for k = 8, 9, 10 the pair (r, s) = (3, 5) can be
replaced by (s, t) = (5, 2), while for k = 11, 12 the pair (r, s) = (4, 5) can be
replaced by (s, t) = (5, 1).

We have only three remaining pairs to consider: the pair (r, s) = (5, 3)
for k = 8 and the pairs (r, s) = (5, 4) and (r, s) = (7, 3) for k = 11. For
(r, s) = (5, 3) and k = 8, from (4) and (5) we obtain 5

3 < am+2 < 25
7 , and

therefore we have two possibilities: am+2 = 2 or am+2 = 3. If am+2 = 2, we
can replace (r, s) = (5, 3) by (s, t) = (3, 1), while if am+2 = 3, we can replace
it by (s, t) = (3, 4). Similar approach works for two pairs with k = 11. For
(r, s) = (5, 4), from (4) and (5) we obtain 5

4 < am+2 < 25
9 , which implies

am+2 = 2. Then we have t = 3 and the pair (r, s) = (5, 4) can be replaced by
the pair (s, t) = (4, 3). For (r, s) = (7, 3) we obtain 7

3 < am+2 < 49
10 , which
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yields am+2 = 3 or am+2 = 4. If am+2 = 3, we can replace (r, s) = (7, 3) by
(s, t) = (3, 2), while if am+2 = 4, we can replace it by (s, t) = (3, 5).

It remains to show that all pairs listed in the statement of the proposi-
tion are indeed necessary (they cannot be omitted). This is shown by the
examples from the following tables:

k = 4
α a b m r s t
√

35 89 15 1 1 4 3√
39 968 155 1 3 2 5√
50 601 85 0 6 1 8√
65 911 113 0 7 1 9√
35 219 37 1 3 4 1√
39 1580 253 1 5 2 3√
50 799 113 0 8 1 6√
65 1169 145 0 9 1 7

k = 5
α a b m r s t
√

80 197 22 1 1 5 4√
12 111 32 1 2 3 4√
82 1313 145 0 8 1 10√
101 1819 181 0 9 1 11√
80 653 73 1 4 5 1√
12 201 58 1 4 3 2√
82 1639 181 0 10 1 8√
101 2221 221 0 11 1 9

k = 6
α a b m r s t

√
194 6421 461 3 1 6 5√
84 5105 557 1 5 2 7√
122 2441 221 0 10 1 12√
145 3191 265 0 11 1 13√
194 989 71 1 5 6 1√
84 7103 775 1 7 2 5√
122 2927 265 0 12 1 10√
145 3769 313 0 13 1 11

k = 7
α a b m r s t

√
360 835 44 1 1 7 6√
48 215 31 1 2 5 3√
87 2136 229 1 4 3 5√
170 4081 313 0 12 1 14√
197 5123 365 0 13 1 15√
360 4345 229 1 6 7 1√
48 305 44 1 3 5 2√
87 2649 284 1 5 3 4√
170 4759 365 0 14 1 12√
197 5909 421 0 15 1 13

k = 8
α a b m r s t

√
674 39799 1533 3 1 8 7√
90 1129 119 1 3 4 5√
147 16574 1367 1 7 2 9√
226 6329 421 0 14 1 16√
257 7711 481 0 15 1 17√
674 4751 183 1 7 8 1√
90 1831 193 1 5 4 3√
147 21254 1753 1 9 2 7√
226 7231 481 0 16 1 14√
257 8737 545 0 17 1 15

k = 9
α a b m r s t

√
1088 2441 74 1 1 9 8√
105 4273 417 1 5 3 7√
290 9281 545 0 16 1 18√
325 11051 613 0 17 1 19√
1088 17449 529 1 8 9 1√
105 5933 579 1 7 3 5√
290 10439 613 0 18 1 16√
325 12349 685 0 19 1 17

k = 10
α a b m r s t

√
1762 163917 3905 3 1 10 9√
228 41207 2729 1 9 2 11√
362 13033 685 0 18 1 20√
401 15239 761 0 19 1 21√
1762 15909 379 1 9 10 1√
228 50297 3331 1 11 2 9√
362 14479 761 0 20 1 18√
401 16841 841 0 21 1 19

k = 11
α a b m r s t

√
2600 5711 112 1 1 11 10√
224 973 65 1 2 7 5√
240 2990 193 1 3 5 7√
442 17681 841 0 20 1 22√
485 20371 925 0 21 1 23√
2600 52061 1021 1 10 11 1√
224 2275 152 1 5 7 2√
240 6770 437 1 7 5 3√
442 19447 925 0 22 1 20√
485 22309 1013 0 23 1 21

k = 12
α a b m r s t

√
3842 518743 8369 3 1 12 11√
235 7159 467 1 5 4 7√
27 1933 372 1 7 3 8√
327 86564 4787 1 11 2 13√
530 23321 1013 0 22 1 24√
577 26543 1105 0 23 1 25√
3842 42335 683 1 11 12 1√
235 9949 649 1 7 4 5√
27 2198 423 1 8 3 7√
327 102224 5653 1 13 2 11√
530 25439 1105 0 24 1 22√
577 28849 1201 0 25 1 23

3 Cases r = 1, s = 1 and t = 1

The results from the previous section suggest that there are some patterns in
pairs (r, s) and (s, t) which appear in representations (a, b) = (rpm+1 + spm,
rqm+1 + sqm) and (a, b) = (spm+2 − tpm+1, sqm+2 − tqm+1) of solutions of
inequality (2). In particular, these patterns are easy to recognize for pairs
of the form (r, s) = (r, 1) or (1, s), and (s, t) = (s, 1) or (1, t). In this section
we will prove that the results on these pairs, already proved for k ≤ 12,
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are valid in general. These facts will allow us to show that the inequality
rs < 2k in Theorem 1.1 is sharp.

We will assume that k is a positive integer. From Theorem 1.1 it directly
follows that among the pairs of the form (r, 1), only pairs where r ≤ 2k − 1
can appear. Similarly, for pairs (1, t) we have t ≤ 2k − 1. On the other
hand, from (5) and (7) it follows that for pairs (1, s) we have s ≤ k, and for
pairs (s, 1) we have s ≤ k. These results follow also from Theorem 1.2. We
will show that all these pairs that do not contradict Theorem 1.2 can indeed
appear.

Let αm = [am; am+1, am+2, . . .] and 1
βm

= qm−1

qm−2
= [am−1, am−2, . . . , a1],

with the convention that β1 = 0. Then for a
b = rpm+1+spm

rqm+1+sqm
, we have

b2
∣∣α− a

b

∣∣ = b
∣∣∣(rqm+1 + sqm)αm+2pm+1+pm

αm+2qm+1+qm
− (rpm+1 + spm)

∣∣∣
= |sαm+2−r|(rqm+1+sqm)

αm+2qm+1+qm
= |sαm+2−r|(r+sβm+2)

αm+2+βm+2
. (9)

We start with the pairs of the form (r, 1). Let us consider the number
α =

√
4k2 + 1. Its continued fraction expansion has the form

√
4k2 + 1 = [2k; 4k]

(see e.g. [8, p.297]). Take first m = −1, i.e. consider the rational number a
b

defined by
a

b
=

r · p0 + 1 · p−1

r · q0 + 1 · q−1
=

2rk + 1
r

= 2k +
1
r
.

Hence, a = 2rk + 1 and b = r. We claim that for r ≤ 2k − 1 it holds∣∣α− a
b

∣∣ < k
b2

. By (9), this is equivalent to
(
1− r

α1

)
r < k. For m ≥

1 we have αm = [4k, 4k, . . .] < 4k + 1
4k . Thus, it suffices to check that

4kr2 − (16k2 + 1)r + 16k3 + k > 0, what is clearly satisfied for r ≤ 2k − 1.
More precisely, this is satisfied for r less than 16k2+1−√16k2+1

8k > 2k − 1
2 .

We can proceed similarly for m ≥ 0. The only difference is that 4k <
1

βm+2
= [4k, . . . , 4k] < 4k + 1

4k . Hence, by (9), we obtain that it suffices to
check that for r ≤ 2k − 1 it holds

(
4k +

1
4k
− r

)
r + 1

4k

4k + 2
4k+ 1

4k

< k.

But this condition is equivalent to (256k4 + 16k2)r2 − (1024k5 + 64k3)r +
(1024k6 − 64k4 − 32k2 − 1) > 0, which holds for r less than 2k − 3

4 , so it
certainly holds for r ≤ 2k − 1.
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The same example α =
√

4k2 + 1 can be used to handle the pairs (s, t) =
(1, t). The relation (9) can be reformulated in terms of s and t = sam+2− r:

b2
∣∣α− a

b

∣∣ =
(
t + s

αm+3

) ∣∣∣∣s−
t+ s

αm+3

αm+2+βm+2

∣∣∣∣ . (10)

Now, for m = −1 we are considering the rational number

a

b
=

s · p1 − t · p0

s · q1 − t · q0
=

8k2 + 1− 2tk

4k − t
= 2k +

1
4k − t

.

By (10), the condition
∣∣α− a

b

∣∣ < k
b2

leads to 16k2t2−64k3t+64k4−12k2−1 >
0. Similarly, for m ≥ 0, we obtain the condition 8k2t2−(32k3+2k)t+32k4−
4k2−1 > 0. It is easy to see that both conditions are satisfied for t ≤ 2k−1.

For pairs of the form (1, s) and (s, 1) we use α of the form α =
√

x2 − 1,
where the integer x will be specified later (if necessary). For x ≥ 2, we have
the following continued fraction expansion

√
x2 − 1 = [x− 1; 1, 2x− 2]

(see e.g. [8, p.297]). Let us consider the pairs of the form (r, s) = (1, s). We
take m = −1 and define the rational number

a

b
=

1 · p0 + s · p−1

1 · q0 + s · q−1
=

x− 1 + s

1
.

Hence, a = x− 1 + s and b = 1, and for s ≤ k it holds
∣∣α− a

b

∣∣ < (x− 1 + s)− (x− 1) = s ≤ k
b2

.

The same result for pairs (r, s) = (1, k) holds also if m ≥ 1 is odd and if x
is sufficiently large. Indeed, from (9) we obtain the condition

(
k

(
1 +

1
2x− 2

)
− 1

) (
1 + k

2x−2

1 + 2
2x−1

)
< k,

which is satisfied for x ≥ k2−2k+5
2 .

Finally, consider the pairs of the form (s, t) = (s, 1) for s ≤ k. Take
m = −1 and define the rational number

a

b
=

s · p1 − 1 · p0

s · q1 − 1 · q0
=

sx− x + 1
s− 1

= x +
1

s− 1
.
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Hence, a = sx − x + 1 and b = s − 1. We have
√

x2 − 1 > p2

q2
= x − 1

2x−1 .
Thus,

∣∣α− a
b

∣∣ < 1
s−1 + 1

2x−1 ,

and we obtain the condition

1
s− 1

+
1

2x− 1
<

k

(s− 1)2
. (11)

If we choose x to be greater than k2−2k+2
2 , then we have 1

2x−1 < 1
(k−1)2

,

while for s ≤ k it hold k
(s−1)2

− 1
s−1 ≥ k

(k−1)2
− 1

k−1 = 1
(k−1)2

, and we showed
that for such x’s the condition (11) is fulfilled.

Again, the analogous result for pairs (s, t) = (k, 1) holds for all odd
m ≥ 1, but x has to be larger than in the case m = −1. Namely, the
relation (10) yields the condition

(
1 +

k

2x− 2

) (
k − 1

1 + 2
2x−2

)
< k,

which is satisfied for x ≥ k2−k+6
2 .

Our results for the pairs (r, s) = (2k− 1, 1) and (s, t) = (1, 2k− 1) (with
α =

√
4k2 + 1) immediately imply the following result which shows that

Theorem 1.1 is sharp.

Proposition 3.1 For each ε > 0 there exist a positive integer k, a real
number α and a rational number a

b , such that

∣∣∣α− a

b

∣∣∣ <
k

b2
,

and a
b cannot be represented in the form a

b = rpm+1±spm

rqm+1±sqm
, for m ≥ −1 and

nonnegative integers r and s such that rs < (2− ε)k.

Proof: Take k > 1
ε , α =

√
4k2 + 1 and e.g. a

b = 2k(2k−1)+1
2k−1 . Then∣∣α− a

b

∣∣ < k
b2

. If m = −1, then r = 2k − 1, s = 1, t = 2k + 1, and thus
rs = 2k − 1 > 2k − kε = (2 − ε)k, while st = 2k + 1. If m ≥ 0, then from
s = −bpm+1+aqm+1 it follows that |s| ≥

∣∣∣a
b − p1

q1

∣∣∣ bq1 = 2k+1, and therefore
|rs| ≥ 2k + 1 and |st| ≥ 2k + 1.
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4 A Diophantine application

In [2], Dujella and Jadrijević considered the Thue inequality
∣∣x4 − 4cx3y + (6c + 2)x2y2 + 4cxy3 + y4

∣∣ ≤ 6c + 4,

where c ≥ 5 is an integer. In this section we will assume that c ≥ 5,
since the cases c = 3 and c = 4 require somewhat different details. Using
the method of Tzanakis [9], they showed that solving the Thue equation
x4 − 4cx3y + (6c + 2)x2y2 + 4cxy3 + y4 = µ, µ ∈ Z \ {0}, reduces to solving
the system of Pellian equations

(2c + 1)U2 − 2cV 2 = µ (12)
(c− 2)U2 − cZ2 = −2µ, (13)

where U = x2 + y2, V = x2 + xy − y2 and Z = −x2 + 4xy + y2. It suffices
to find solutions of the system (12) and (13) which satisfy the condition
gcd(U, V, Z) = 1. Then gcd(U, V ) = 1, and gcd(U,Z) = 1 or 2, since
4V 2 + Z2 = 5U2. It is clear that the solutions of the system (12) and
(13) induce good rational approximations of the corresponding quadratic
irrationals. More precisely, from [2, Lemma 4] we have the inequalities
given in the following lemma.

Lemma 4.1 Let c ≥ 5 be an integer. All positive integer solutions (U, V, Z)
of the system of Pellian equations (12) and (13) satisfy

∣∣∣∣∣

√
2c + 1

2c
− V

U

∣∣∣∣∣ <
2

U2
(14)

∣∣∣∣∣

√
c− 2

c
− Z

U

∣∣∣∣∣ <
6c + 4

U2
√

c (c− 2)
<

9
U2

. (15)

Using the result of Worley [12, Corollary, p. 206], in [2, Proposition 2]
the authors proved that if µ is an integer such that |µ| ≤ 6c + 4 and that
the equation (12) has a solution in relatively prime integers U and V , then

µ ∈ {1, −2c, 2c + 1, −6c + 1, 6c + 4}.

Analysing the system (12) and (13), and using the properties of convergents

of
√

2c+1
2c , they were able to show that the system has no solutions for

µ = −2c, 2c + 1,−6c + 1. Applying results from the previous sections to the
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equation (13), we will present here a new proof of that result, based on the
precise information on µ’s for which (13) has a solution in integers U and Z
such that gcd(U,Z) ∈ {1, 2}.

The simple continued fraction expansion of a quadratic irrational α =
e+
√

d
f is periodic. This expansion can be obtained using the following algo-

rithm. Multiplying the numerator and the denominator by f , if necessary,
we may assume that f |(d− e2). Let s0 = e, t0 = f and

an =
⌊

sn+
√

d
tn

⌋
, sn+1 = antn − sn, tn+1 =

d−s2
n+1

tn
for n ≥ 0 (16)

(see [6, Chapter 7.7]). If (sj , tj) = (sk, tk) for j < k, then

α = [a0; . . . , aj−1, aj , . . . , ak−1].

Applying this algorithm to
√

c−2
c =

√
c(c−2)

c , we find that
√

c− 2
c

= [0; 1, c− 2, 2].

According to our results (Proposition 2.2 for k = 9), applied to α =
√

c−2
c ,

all solutions of (13) have the form Z/U = (rpm+1 + spm)/(rqm+1 + sqm)
an index m ≥ −1 and integers r and s. For the determination of the
corresponding µ’s, we use the following result (see [2, Lemma 1]):

Lemma 4.2 Let αβ be a positive integer which is not a perfect square, and
let pm/qm denotes the mth convergent of the continued fraction expansion
of

√
α
β . Let the sequences (sm) and (tm) be defined by (16) for the quadratic

irrational
√

αβ
β . Then

α(rqm+1 + sqm)2 − β(rpm+1 + spm)2

= (−1)m(s2tm+1 + 2rssm+2 − r2tm+2). (17)

Since the period of continued fraction expansion of
√

c−2
c is equal to 2,

according to Lemma 4.2, we have to consider only the fractions (rpm+1 +
spm)/(rqm+1 + sqm) for m = 1 and m = 2. By checking all possibilities, we
obtain the following result.

Proposition 4.3 Let µ be an integer such that |µ| ≤ 6c + 4 and that the
equation

(c− 2)U2 − cZ2 = −2µ

has a solution in integers U and Z such that gcd(U,Z) = 1 or 2.
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(i) If c ≥ 15 is odd, then

µ ∈ M1 = {1, 4, 2c, 4c + 1, 6c + 4,−2c + 4,−4c + 9,−6c + 16}.

Furthermore, if c = 5, 11, 13, then µ ∈ M1 ∪{−8c+25}; if c = 9, then
µ ∈ M1 ∪ {−8c + 25,−10c + 36}; if c = 7, then µ ∈ M1 ∪ {−8c +
25,−10c + 36,−12c + 49}.

(ii) Let M = M1 ∪M2, where

M2 =
{
−11

2
c + 36,−9

2
c + 25,−7

2
c + 16,−5

2
c + 9,−3

2
c + 4,−1

2
c + 1,

1
2
c,

3
2
c + 1,

5
2
c + 4,

7
2
c + 9

}
.

If c ≥ 108 is even, then µ ∈ M ∪ {
9
2c + 16, 11

2 c + 25
}
.

For even c with 6 ≤ c ≤ 106, we have µ ∈ M ∪M (c), where M (c) can
be given explicitly, as in the case (i). E.g.

M (6) =
{
−21

2
c + 25,−10c + 36,−8c + 25,−15

2
c + 16

}
.

Comparing the set {1, −2c, 2c+1, −6c+1, 6c+4} from [2, Proposition 2]
with the sets appearing in Proposition 4.3, we obtain the desired conclusion.

Corollary 4.4 Let c ≥ 5 be an integer. If the system (12) and (13) has
a solution with |µ| ≤ 6c + 4 in relatively prime integers U , V and Z, then
µ = 1 or µ = 6c + 4.
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