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Abstract. Extending earlier research of Erdős and Graham, we
consider the problem of products of factorials yielding perfect pow-
ers. On the one hand, we describe how the representability of ℓ-th
powers behaves when the number of factorials is smaller than, equal
to or larger than ℓ, respectively. On the other hand, we investigate
the problem that, for which fixed n = b1 it is possible to find in-
tegers b2, . . . , bk at most b1 (obeying certain conditions) such that
b1!b2! · · · bk! is a perfect power. Here we distinguish the cases where
the factorials may be repeated or are distinct.

1. Introduction

A famous result of Erdős and Selfridge [3] from 1975 states that the
product of a block of at least two positive integers cannot be a perfect
power. In particular, this implies that the product of two factorials
b1!b2! cannot be a square if b1 − b2 > 1. As a continuation, in 1976,
Erdős and Graham [4] made a systematic study of the problem of
products of factorials being a square. At the end of their paper they
wrote that they would extend their studies to products of factorials
being ℓ-th powers with ℓ > 2. We did not find any paper of Erdős and
Graham or anybody else on this topic.

The aim of this paper is to extend the investigations in this direction.
First we describe how the representability of ℓ-th powers behaves when
the number of factorials is smaller than, equal to or larger than ℓ,
respectively. Then, we investigate the problem that, for which fixed
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n = b1 it is possible to find integers b2, . . . , bk at most b1 (obeying some
natural conditions) such that b1!b2! · · · bk! is a perfect power. Observe
that for ℓ = 2, it is pointless to allow exponents of the factorials bi!,
that is, every factorial occurs only to the power ℓ− 1 = 1. Hence there
are two natural ways to extend the problem investigated in [4]: we
may allow that bi! appears to some power hi < ℓ, or we may strictly
assume that every factorial appears only once. Sections 2-4 contain our
statements and examples. The proofs are given in Section 5.

2. Relation between representability of ℓ-th powers and
the number of factorials

Consider the equation

(1) b1! · · · bk! = yℓ

in positive integers b1, . . . , bk, y and ℓ with ℓ ≥ 2. Without loss of
generality we shall always assume that ℓ is a prime, unless it is stated
otherwise. By collecting together equal factorials which occur to an
ℓ-th power, and omitting all the bi’s which equal 1, we may rewrite the
equation in the form

(2) (a1!)
h1 · · · (ak!)hk = yℓ

with a1 > · · · > ak ≥ 2 and 1 ≤ hi < ℓ (1 ≤ i ≤ k). Set N =
h1 + · · · + hk. For later use, observe that a1 ≥ k + 1 and is not a
prime, and that k ≥ 2, since otherwise a1! would be an ℓ-th power
contradicting Bertrand’s postulate.

Our first theorem describes the connection between the solvability
of (2), and the relation between ℓ and N . This statement is a general-
ization of results of Erdős and Graham p. 342, [4], concerning the case
ℓ = 2 and serves as a kind of starting point for the next section.

Theorem 2.1. Equation (2) with N < ℓ has no solutions. When
N = ℓ, the solutions of (2) are precisely those satisfying

a1 = xℓ, a2 = xℓ − 1, h1 + h2 = ℓ

where x > 1 is an integer. Finally, equation (2) has infinitely many
solutions for any N > ℓ.

Equation (2) with ℓ = 2 has been studied by Erdős and Graham [4]
in great detail. (Note that in that case we have h1 = · · · = hk = 1
and N = k.) They showed that if k = 2, then a1 has to be a square.
Obviously, if a1 > 1 is a square, then a1!(a1−1)! is a square, too. When
k = 3 and a1 − a2 = 1, 2, infinitely many solutions are shown in [4].
When a1 − a2 = 3 then only finitely many solutions are known. The
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list of solutions found in [4] has been extended by Dujella, Najman,
Saradha and Shorey [2], by solving

(3) a1!a2!a3! = y2

completely for a3 < 100.
As we see, in the last result above, one of the factorials is fixed.

This motivates us to give the following statement, which is a partial
extension of Theorem 2.1.

Theorem 2.2. Let t be a given positive integer and ℓ a given prime.
Consider the equation

(4) t(a1!)
h1 · · · (ak!)hk = yℓ

in positive integers a1, . . . , ak and h1, . . . , hk with a1 > · · · > ak ≥ 2
1 ≤ hi < ℓ (i = 1, . . . , k). Put N = h1 + · · · + hk. If N < ℓ, or N = ℓ
and

a1 − ak >

{
2, if ℓ = 2,

1, otherwise,

then equation (4) has only finitely many solutions. Further, all these
solutions can be effectively determined.

Remark. By Theorem 2.1, the condition that N ≤ ℓ is clearly nec-
essary. Further, in view of the above mentioned results of Erdős and
Graham [4] for ℓ = 2 and k = 3, and Theorem 2.1 in case of general ℓ,
the condition prescribed for a1 − ak when N = ℓ is also necessary.

Finally, we mention that it is also necessary to fix ℓ in this generality.
This is shown by the infinitude of the solutions

t(x2!)h1((x2 − 1)!)h2 = yℓ

with ℓ being an odd prime, t = y = x((x2−1)!) and h1 = h2 = (ℓ−1)/2
(whence N < ℓ).

3. Products of factorials with fixed starting term
yielding ℓ-th powers

This is the case where we can follow the arguments and treatment
of Erdős and Graham [4]. First we extend their result concerning the
case ℓ = 2, to the general situation.

Theorem 3.1. If n is not prime and ℓ ≥ 2, then there exist positive
integers n = a1 > a2 > · · · > ak ≥ 2 and h1, . . . , hk with k ≤ 6 for
which 1 ≤ hi ≤ (ℓ + 1)/2 (i = 1, . . . , k) and h1 + · · · + hk ≤ 3ℓ, such
that (a1!)

h1(a2!)
h2 · · · (ak!)hk is an ℓ-th power.
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Remark. It is obvious that in the above theorem the condition that
n is not a prime is necessary. Moreover, if n − 1 is prime, then the
bound for the hi’s cannot be improved upon. Indeed, the prime n− 1
occurs at most to the power h1 + h2, while it should occur at least to
the power ℓ. So h1 or h2 has to be at least ℓ/2.

We introduce some notation similar to that in [4]. We shall also use
the notation from the previous section.

For fixed ℓ, put F
(ℓ)
0 = ∅, and for i = 1, 2, . . . set

F
(ℓ)
i = {n : (2) has a solution with a1 = n and N = N(ℓ, n) ≤ i}

and
D

(ℓ)
i = F

(ℓ)
i \ F (ℓ)

i−1.

Thus if n ∈ D
(ℓ)
i , then N(ℓ, n) = i. These sets in case of ℓ = 2 have

been intensively studied by Erdős and Graham [4]. They showed that

D
(2)
k = ∅ for k > 6. They investigated the sets D

(2)
k for 1 ≤ k ≤ 6

in detail. For instance they proved that D
(2)
3 is sparse by showing

|D(2)
3 (X)| = o(X) for any X > 1. This has been recently improved by

Luca, Saradha and Shorey [5] to

|D(2)
3 (X)| = O

(
X

exp(c(logX)1/4(log logX)3/4)

)
with some absolute constant c. The proofs of the above mentioned
results in [4] and [5] depend upon estimates from prime number theory.
We shall consider the case ℓ ≥ 3.

Observe that by the classical result of Erdős and Selfridge [3] men-

tioned in the introduction, we have F
(ℓ)
1 = D

(ℓ)
1 = {1} for any ℓ. Fur-

ther, by Theorem 2.1 we also have

F
(ℓ)
2 = · · · = F

(ℓ)
ℓ−1 = {1}, whence D

(ℓ)
2 = · · · = D

(ℓ)
ℓ−1 = ∅,

F
(ℓ)
ℓ = {xℓ : x is a positive integer}

and
D

(ℓ)
ℓ = {xℓ : x is a positive integer greater than 1}.

As we observed earlier, if n is a prime then n /∈ F
(ℓ)
i for any i. Thus

the following result is an immediate consequence of Theorem 3.1.

Corollary 3.1. Let n be a composite integer. Then there exists an i

with ℓ ≤ i ≤ 3ℓ such that n ∈ D
(ℓ)
i .

In what follows, we shall be concerned with problems involving D
(ℓ)
i

and F
(ℓ)
i for the ”extremal” choices of i, that is for i = ℓ+ 1 and 3ℓ.

The following theorem shows that the set ∩ℓ primeD
(ℓ)
3ℓ is not empty.
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Theorem 3.2. We have 17× 419 ∈ ∩ℓ primeD
(ℓ)
3ℓ .

We think that n ∈ F
(ℓ)
ℓ+1 may be valid only in special cases. We pose

the following

Problem 1. Let n be a given integer such that n ∈ F
(ℓ)
ℓ+1 for some ℓ

being large enough in terms of n. Is it true that n ∈ F
(ℓ)
ℓ+1 for all ℓ?

The following result gives an affirmative answer to the above problem
in a special case.

Theorem 3.3. Let n be a positive integer such that n − 1 is a prime

and n ∈ F
(ℓ0)
ℓ0+1 for some ℓ0 >

n(logn)2

(log 2)2
. Then n ∈ F

(ℓ)
ℓ+1 for all ℓ.

Remarks. 1. The set ∩ℓ primeD
(ℓ)
ℓ+1 is infinite. Indeed, for any a ≥ 2,

n = a! belongs to this set: on the one hand, by Theorem 2.1, n /∈ D
(ℓ)
ℓ

for any ℓ ≥ 2, and on the other hand, as ((a!)!)ℓ−1(a!− 1)!a! = (a!(a!−
1)!)ℓ, n ∈ F

(ℓ)
ℓ+1 for every ℓ ≥ 2.

2. The above theorem does not hold if F
(ℓ0)
ℓ0+1 and F

(ℓ)
ℓ+1 are replaced by

D
(ℓ0)
ℓ0+1 and D

(ℓ)
ℓ+1, respectively. Indeed, let n−1 = 2p−1 be a Mersenne-

prime. Further, choose a such that ℓ0 := ap + 1 is a prime. (Clearly,
ℓ0 can be arbitrarily large.) Putting b = ap− a+ 1, we have

(n!)a((n− 1)!)b2! = 2ap+1((2p − 1)!)a+b = (2 · (2p − 1)!)ℓ0 ,

so n ∈ F
(ℓ0)
ℓ0+1. Since n is not an ℓ0-th power, Theorem 2.1 shows that

n /∈ D
(ℓ0)
ℓ0

, thus n ∈ D
(ℓ0)
ℓ0+1. On the other hand, we have by Theorem

2.1 that n ∈ D
(p)
p and therefore n /∈ D

(p)
p+1.

4. Products of distinct factorials with fixed starting
term yielding ℓ-th powers

For any n ≥ 1 write Qℓ for the ℓ-th power free part of n, with
Qℓ(1) = 1, for any ℓ ≥ 2.

In this section we are interested in the following

Problem 2. Let ℓ ≥ 2. For what n ≥ 1 do there exist positive integers
n = a1 > · · · > ak ≥ 2 such that a1! · · · ak! is an ℓ-th power?

Since 1! = 1ℓ for any ℓ, we shall assume that n ≥ 2. Observe that if
any of the numbers n, n− 1, . . . , n− ℓ+ 2 is a prime, then n obviously
does not have the required property.

The next theorem shows that for ℓ = 3, apart from the above men-
tioned exceptions, all integers n have the property described in Problem
2.
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Theorem 4.1. Let n > 1 such that neither n nor n − 1 is a prime.
Then there exist positive integers n = a1 > · · · > ak ≥ 2 such that
a1! · · · ak! is a perfect cube.

The following result gives an upper bound for the number of facto-
rials needed to get a cube starting from n!, for infinitely many values
of n.

Theorem 4.2. There exists infinitely many integers n such that for
some positive integers n = a1 > · · · > ak ≥ 2 we have that a1! · · · ak! is
a perfect cube, and k < 1.5 lnn.

Remark. Let ℓ ≥ 4 not necessarily a prime. Suppose that p is such a
prime that p+2 is also a prime but none of 2p−1, 2p−2, . . . , 2p−ℓ+1
is a prime. If we take n = 2p, then n does not have the property de-
scribed in Problem 2. Indeed, in M := a1! · · · ak! with positive integers
n = a1 > · · · > ak ≥ 2, we clearly have 0 < ordp(M)− ordp+2(M) < 4,
where ordq(m) denotes the exponent of the prime q in the prime fac-
torization of the positive integer m. This shows that a1! · · · ak! cannot
be an ℓ-th power with ℓ ≥ 4. Hence it seems to be a safe conjec-
ture that for any ℓ ≥ 4 there are infinitely many n, such that none of
n, n− 1, . . . , n− ℓ+1 is a prime, but n still does not have the property
described in Problem 2. As interesting examples, we mention that

16! · 15! · 14! · 13! · 9! · 5! · 4! = 627683696640004,

and

28! · 26! · 25! · 24! · 23! · 15! · 14! · 13! · 12! · 11! · 9! · 8! · 6! · 2! =
= 973613365935748786149314789376000000005.

5. Proofs

Later on, we shall use the following standard notation. For any
integer n > 1 let P (n) denote the greatest prime factor of n and put
P (1) = 1. Further, let p(n) denote the least prime satisfying p(n) ≥ n.

To prove Theorems 2.1 and 2.2 the following deep result of Erdős
and Selfridge [3] will be needed.

Lemma 5.1. Let s, ℓ,m be integers such that s ≥ 3, ℓ ≥ 2 and m+s ≥
p(s). Then there is a prime p ≥ s for which ℓ - ordp((m+1) · · · (m+s)).

Proof of Theorem 2.1. Suppose first that N < ℓ. Then for any a1 by
Bertrand’s postulate, there exists a prime p with a1/2 < p ≤ a1 and
it is easy to see that p occurs at most to the first power in each ai!
(1 ≤ i ≤ k). Hence the order of p on the left hand side of (2) is at
most N < ℓ which contradicts (2).
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Assume next that N > ℓ. Let h = N − ℓ, and take arbitrary positive
integers c1 > · · · > ch > 2. Put

n = c1! · · · ch!.

Observe that n− 1 > c1. Then

(n!)ℓ−1(n− 1)!c1! · · · ch!

is a product of ℓ + h = N factorials yielding an ℓ-th power. Since
c1, . . . , ch can be chosen arbitrarily, (2) has infinitely many solutions in
this case.

Finally, takeN = ℓ. Then after cancelling (ak!)
ℓ, (2) can be rewritten

as

(5) au1
1 (a1 − 1)u2 · · · (ak + 1)ua1−ak = zℓ

with some positive integers z and ui with 1 ≤ ui < ℓ (i = 1, . . . , a1−ak).
If a1 < p(a1−ak) would hold, then by Bertrand’s postulate we would have
a1 < 2(a1 − ak), thus also a1/2 > ak. Then by Bertrand’s postulate
again, we could find a prime q such that ak + 1 ≤ a1/2 < q ≤ a1.
However, then q would divide the left hand side of the above equation
to the power ui for some i with 1 ≤ i ≤ a1−ak, which is a contradiction.
Thus we may assume that a1 ≥ p(a1−ak). Now if a1 − ak > 2 then
by Lemma 5.1 we can take a prime p with p > a1 − ak such that
ℓ - ordp(a1 − j) for some j with 0 ≤ j < a1 − ak. Then p | a1 − j,
but p - a1 − j′ for 0 ≤ j′ < a1 − ak with j′ ̸= j. Thus (5) implies that
ℓ | uj+1ordp(a1 − j). However, as uj+1 < ℓ and ℓ is a prime, this is
a contradiction. On the other hand, if a1 − ak = 2, then (5) reads as
au1
1 (a1−1)u2 = zℓ. Since gcd(au1

1 , (a1−1)u2) = 1, from this we get that
both au1

1 and (a1 − 1)u2 are ℓ-th powers, whence both a1 and a1 − 1
are ℓ-th powers, which is impossible. So we are left with a1 − ak = 1.
Then (2) reduces to

(a1!)
h1((a1 − 1)!)ℓ−h1 = zℓ.

Thus ah1
1 must be an ℓ-th power. Since 1 ≤ h1 < ℓ, we get a1 = xℓ for

some integer x > 1. On the other hand, one can readily check that for
any a1, a2, h1, h2 with

a1 = xℓ, a2 = xℓ − 1, h1 + h2 = ℓ

(2) holds. Hence the theorem follows. �

Proof of Theorem 2.2. Assume first that N < ℓ. As hi < ℓ for all
i = 1, . . . , k, we may clearly assume that a1 > 2t. Let p be a prime
with a1/2 < p < a1; note that p - t. Then, since the exponent of p
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on the left hand side of (4) is at most N , the statement follows in this
case.

Suppose next that N = ℓ. Let first P (t) ≥ a1 − ak. Then, letting
x = ak + 1 and s = a1 − ak, (4) can be reduced to

txu0(x+ 1)u1 · · · (x+ s− 1)us−1 = zℓ,

where 1 ≤ ui < N for i = 0, . . . , s−1. As P (t) ≥ s = a1−ak, the above
equation is a superelliptic or hyperelliptic equation, and by a result of
Brindza [1], the theorem follows. So we may suppose that P (t) < s =
a1 − ak. Clearly, we may further assume that P (t) < a1/2. Suppose
that a1 < p(a1−ak). Then by Bertrand’s postulate a1 < 2(a1 − ak).
Then again using Bertrand’s postulate, there is a prime q such that
ak + 1 ≤ a1/2 < q ≤ a1. This q divides the left hand side of the
above equation to the power ui for some i = 1, . . . , a1 − ak, which is a
contradiction. Thus we may assume that a1 ≥ p(a1−ak). Now if s ≥ 3,
then since ℓ is a prime, the theorem immediately follows from Lemma
5.1. If s ≤ 2, then by our assumptions s = 2 and ℓ is an odd prime. In
this case the statement again follows from the result of Brindza [1]. �
Proof of Theorem 3.1. Let n = p2 with p prime. If ℓ = 2, then

n!(n− 1)! = (p(n− 1)!)2

is a square. If ℓ is odd, then

(n!)(ℓ−1)/2((n− 1)!)(ℓ+1)/2p!((p− 1)!)ℓ−1 = (p!(n− 1)!)ℓ

is an ℓ-th power. Otherwise we can write n = ab with a > b > 1. Then,
for ℓ = 2

n!(n− 1)!a!(a− 1)!b!(b− 1)! = ((n− 1)!a!b!)2

is a square. If ℓ is odd, then

(n!)
ℓ+1
2 ((n−1)!)

ℓ−1
2 (a!)

ℓ−1
2 ((a−1)!)

ℓ+1
2 (b!)

ℓ−1
2 ((b−1)!)

ℓ+1
2 = ((n−1)!a!b!)ℓ

is an ℓ-th power. �
Proof of Theorem 3.2. We find it more convenient to use notation (1)
with b1 ≥ · · · ≥ bk in our arguments. To prove the statement, by

Theorem 3.1 it suffices to show that n /∈ F
(ℓ)
3ℓ−1. For this, suppose that

we have an equality of the form (1) with b1 = n = 17× 419.
We have n − 1 = 2 × 3 × 1187, and n − 2 = 7121 is a prime. This

shows that bℓ ∈ {n− 1, n− 2}. We split the proof into several cases.
I) Assume first that bℓ = n − 2. Then the ℓ-th power free part of

b1! · · · bℓ! is
nu(n− 1)v = 2v × 3v × 17u × 419u × 1187v
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with some 1 ≤ u ≤ v ≤ ℓ − 1. This shows that k > ℓ, and also that
bℓ+1 ≥ 1187 should be valid. Observe that if bℓ+1 = n−2, then similarly
as above, we must also have

bℓ+2 = · · · = b2ℓ = n− 2.

However, then as n − 2 = bℓ = bℓ+1 = · · · = b2ℓ, the term (n − 2)!
would occur at least ℓ+1 times, which is impossible. So we must have
bℓ+1 < n− 2.

I.1) Suppose that n − 2 > bℓ+1 ≥ 1193, which is the smallest prime
greater than 1187. Observe that bℓ+1 cannot be a prime, since otherwise
we should have bℓ+1 = · · · = b2ℓ which is not possible. So let p and q
be two consecutive primes with p > bℓ+1 > q. Clearly, we must have
bℓ+1 ≥ · · · ≥ b2ℓ ≥ q. We check the possible pairs (p, q) one by one.
Write S for the set of prime divisors of the integers strictly between p
and q.

If 1187 is not contained in S, then we see that k > 2ℓ must be
valid, and b2ℓ+1 ≥ 1187 should hold. With a simple computer program
we checked that for all such candidates for b2ℓ+1, there is a prime r
outside S ∪ {2, 3, 17, 419, 1187} such that b2ℓ+1 > r > b2ℓ+1/2. This
gives that r divides the ℓ-th power free part of b1! · · · b2ℓ+1! precisely
on the first power. Hence we get that k ≥ 3ℓ must be valid (and
b2ℓ+2 ≥ · · · ≥ b3ℓ ≥ r). For example, if p = 1201 and q = 1193, then

S = {2, 3, 5, 7, 11, 13, 19, 23, 109, 199, 239, 599},
and taking e.g. r = 997 for any possible choice of b2ℓ+1, our claim
follows.

If 1187 ∈ S, but 1187 does not divide bℓ+1(bℓ+1−1) · · · (b2ℓ−1+1), then
a similar argument applies. For example, if p = 2377 and q = 2371,
then

S = {2, 3, 5, 7, 11, 19, 113, 593, 1187}.
However, if

2377 > bℓ+1 ≥ · · · ≥ b2ℓ ≥ 2374 = 2× 1187

then 1187 does not divide the ℓ-th power free part of bℓ+1! · · · b2ℓ!. Thus
similarly as before, we see that k > 2ℓ and 2374 ≥ b2ℓ+1 ≥ 1187. For
all such values of b2ℓ+1 we can find a prime r as before, and our claim
follows also in this case.

If 1187 ∈ S, and 1187 divides bℓ+1(bℓ+1 − 1) · · · (b2ℓ−1 + 1), then
(again with a simple computer program) we could always find a prime
t also dividing this product on a power less than ℓ, with the following
property: for any a with p > a ≥ t there exists a prime r outside
S∪{2, 3, 17, 419, 1187} such that a > r > a/2. This shows that k > 2ℓ,
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and b2ℓ+1 ≥ t. Further, for any such b2ℓ+1 taking the appropriate prime
r we conclude that k ≥ 3ℓ must hold also in this case. For example, if
p = 2377, q = 2371, and bℓ+1 = 2376, b2ℓ = 2373, then the primes

5, 7, 11, 19, 113, 1187.

(possibly together with 2, 3) divide the ℓ-th power free part of

bℓ+1! · · · b2ℓ! .

So our claim follows with t = 113.
I.2) If p = 1193 > bℓ+1, then bℓ+1, . . . , b2ℓ must be between p and

q = 1181, which is the largest prime less than 1187. Now again, a
simple check as before assures the statement.

II) Assume now that bℓ = n− 1. Then we have that the ℓ-th power
free part of b1! · · · bℓ! is 17u × 419u for some u with 1 ≤ u ≤ ℓ− 1. Now
the same procedure as before can be used, with 1187 replaced by 419,
and our claim follows. �

Proof of Theorem 3.3. Assume that n ∈ F
(ℓ0)
ℓ0+1 for some ℓ0 > n(logn)2

(log 2)2
.

If n ∈ D
(ℓ0)
ℓ0

, then n is an ℓ0-th power by Theorem 2.1. However, as

n− 1 is a prime, this yields that n = 2ℓ0 should be valid, contradicting

the assumption made for ℓ0. Thus n ∈ D
(ℓ0)
ℓ0+1, whence

(n!)h1(a2!)
h2 · · · (ak!)hk

is an ℓ0-th power with some positive integers h1, . . . , hk and a2, . . . , ak
with ℓ0 > hi (i = 1, . . . , k), h1 + · · · + hk = ℓ0 + 1 and n > a2 > · · · >
ak > 1. Recalling that n − 1 is a prime, this implies that a2 = n − 1,
h1 + h2 = ℓ0 and k = 3, h3 = 1. Thus in fact nha! is an ℓ0-th power for
some h, a with 1 ≤ h < ℓ0 and 1 < a < n− 1. This gives

(6) h · ordp(n) + ordp(a!) ≡ 0 (mod ℓ0)

for each prime p with p | n. That is,

h ≡ −ordp(a!)/ordp(n) (mod ℓ0),

for each prime p with p | n. Observe that we have ℓ0 > ordp(n)
and by log n! ≤ n log n also ℓ0 > ordp(a!) for any p | n; even ℓ0 >
ordp(a!)ordq(n) for p, q | n. So for all primes p, q dividing n we get

ordp(a!)ordq(n) ≡ ordq(a!)ordp(n) (mod ℓ0).

Hence noting that both sides of the above congruence are positive and
smaller than ℓ0, we conclude

(7) ordp(a!)ordq(n) = ordq(a!)ordp(n) for all p, q | n.



PRODUCTS OF FACTORIALS WHICH ARE POWERS 11

Now let ℓ be arbitrary. If ℓ | ordp(n) for all p | n, then n is an ℓ-th

power, and by Theorem 2.1 we have n ∈ D
(ℓ)
ℓ ⊆ F

(ℓ)
ℓ+1. So we may

assume that ℓ - ordp(n) for some p | n. Then for this p we can find a
unique h with 1 ≤ h < ℓ satisfying (6) with ℓ0 replaced by ℓ. Then
by (7), the congruence (6) with ℓ in place of ℓ0 holds for all q | n for
which ℓ - ordq(n) with the same h. On the other hand, by (7) again, if
ℓ | ordq(n) for some q | n, since ℓ - ordp(n) we have ℓ | ordq(a!), which
gives again (6) with p replaced by q and ℓ0 replaced by ℓ. Hence we
get that with this h, (6) holds with ℓ0 replaced by ℓ, for all p | n. From
this the statement follows. �

Proof of Theorem 4.1. For n < 9, either n or n − 1 is a prime. For
n = 9 we have that 9!8!7!4! is a cube, and for n = 10 we have that
10!8!7!6!5!3! is a cube. So we may assume that n > 10.

Let n be such that neither n nor n − 1 is a prime. Put n = a1,
and let p = P (a1!). Clearly, ordp(a1!) = 1. Take a2 = p + 1 and
a3 = p. Put q = P (Q3(a1!a2!a3!)). If q = 1, we are finished. Otherwise
q is a prime with q ≤ p − 2. If ordq(Q3(a1!a2!a3!)) = 1 then put
a4 = q + 1 and a5 = q, and if ordq(Q3(a1!a2!a3!)) = 2 then let a4 = q.
Clearly, in this way we have a1 > a2 > a3 > a4(> a5). Continuing
this procedure, we can find n = a1 > a2 > · · · > as > 10 such that
P (Q3(a1!a2! · · · as!)) < 11. Now an exhaustive search shows that for
any i2, i3, i5, i7 with ij ∈ {0, 1, 2} (j = 2, 3, 5, 7) we can find a subset H
of {2, 3, . . . , 10} such that

ordj

(∏
h∈H

h!

)
≡ ij (mod 3) for j = 2, 3, 5, 7.

Hence the theorem follows. �

Proof of Theorem 4.2. Take n = 26s with s ≥ 1. Then we have

Q3(2
6s!(26s − 1)!(26s − 2)!) = Q3(2

6s(26s − 1)2) =

= Q3(2
6s(23s + 1)2(23s − 1)2).

We also have

Q3((2
3s + 1)!(23s − 2)!(23s − 3)!) = Q3((2

3s + 1)23s(23s − 1)(23s − 2)2).

Hence

Q3(2
6s!(26s−1)!(26s−2)!(23s+1)!(23s−2)!(23s−3)!) = Q3(2

2(23s−1−1)2).

Further, we have

Q3((2
3s−1 − 1)!(23s−1 − 2)!(23s−1 − 3)!) = Q3((2

3s−1 − 1)(23s−1 − 2)2).
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Combining the last two assertions, we get

(8) Q3(2
6s!(26s − 1)!(23s − 2)!(23s + 1)!(23s − 2)!(23s − 3)!×
× (23s−1 − 1)!(23s−1 − 2)!(23s−1 − 3)!) = Q3(2

4(23s−2 − 1)2).

Hence proceeding by induction, we obtain

(9) Q3(2
6s!(26s − 1)!(26s − 2)!(23s + 1)!(23s − 2)!(23s − 3)!×

×
3s−3∏
i=1

{(23s−i − 1)!(23s−i − 2)!(23s−i − 3)!)} = Q3(2
6s−4 · 9).

Now multiplying by 3!, the statement follows. The number of factorials
is less than 9s. �
Remark. As an example, we mention that for s = 1 we obtain that
64! · 63! · 62! · 9! · 6! · 5! · 3! is a cube. We also note that as one can easily
check, if we start with 22s in place of 26s in the proof of Theorem 4.2,
then by a similar argument, with some adjustments at the end of the
proof (using 2!, 3!, 4!) we get a similar conclusion.
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