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Abstract. In this paper, we give a nontrivial lower bound for the fun-
damental unit of norm −1 of a real quadratic field of class number 1.
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1. Introduction

Throughout this note, K = Q(
√
d) is a real quadratic field. Here, d > 1 is a

squarefree positive integer. We let OK be the ring of algebraic integers in K
and εK be a fundamental unit (the smallest unit > 1). We assume that εK
has norm −1. Then the 2-rank of its ideal class group is equal to t−1, where
t is the number of distinct prime divisors of its discriminant ∆K (see e.g. [6,
Section 26.8]). Hence hK, the class number of K, is odd if and only if ∆K = 8
or ∆K is a prime congruent to 1 modulo 4.

Theorem 1.1. Let 17 < d ≡ 1 (mod 4) be squarefree. Assume that there exists
a unit

ε =
U + V

√
d

2
≤ (2d)2/3

in K = Q(
√
d) with norm equal to −1 and with U, V > 0 and U ≡ 0 (mod 8).

Then hK > 1.

2. The proof of Theorem 1.1

Since d ≡ 1 (mod 4), we have ∆K = d and {1, (1 +
√
d)/2} is a basis for OK.

Write U = 2U1, V = 2V1 and then

U2
1 − dV 2

1 = −1. (2.1)
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From U2
1 = dV 2

1 −1 ≡ V 2
1 −1 (mod 4), we conclude that U1 is even and

V1 is odd. As stated in Theorem 1.1, we will assume that U1 ≡ 0 (mod 4).

Assume that hK = 1. Let p be an odd prime divisor of U1/4. Equa-

tion (2.1) reduced modulo p shows that
(d
p

)
= 1, where we use

(•
p

)
for

the Legendre symbol with respect to p. Equation (2.1) shows that dV 2
1 ≡ 1

(mod 16). In particular, d ≡ 1 (mod 8). It follows that all prime factors p of
U1/4 split completely in K. Since K has class number 1 and a unit of norm
−1, it follows that the Diophantine equation

x2 − dy2 = 4 · U1

4
= U1 (2.2)

has at least one (hence, infinitely many) positive integer solutions (x, y) with
gcd(x, y) = 1 or 2.

Lemma 2.1. Let 1 < d ≡ 1 (mod 4) be squarefree. Assume that there is a

unit ε = (U + V
√
d)/2, U, V > 0, of the real quadratic field K = Q(

√
d) with

the norm equal to −1 and such that U = 2U1 is even. If the equation

x2 − dy2 = U1 (2.3)

has at least one solution in positive integers, then U1 > 2−1/3d2/3, unless U1

is a perfect square, say U1 = r2, and gcd(x, y) = r.

Proof. Let (x, y) be a positive integer solution of (2.3). Put V2 = V1/gcd(y,V1)
and y1 = y/ gcd(y, V1). Multiplying both sides of equation (2.3) by V 2

2 we get

(xV2)
2 − (dV 2

1 )y
2
1 = 2U1V

2
2 . (2.4)

Let D = dV 2
1 and note that D = U2

1 + 1. Thus, equation (2.4) is of the form

X2 −DY 2 = U1V
2
2 , (2.5)

where X = xV2, Y = y1 may be assumed arbitrarily large. Equation (2.5)
can be rewritten as∣∣∣∣XY −

√
D

∣∣∣∣ = U1V
2
2

Y 2(X/Y +
√
D)

=
1

Y 2

(
1

2
√
D

+ o(1)

)
U1V

2
2 (2.6)

as X → ∞. We use the fact that
√
D =

√
U2
1 + 1 > U1, choose δ > 0

sufficiently small such that(
1

2
√
D

+ δ

)
U1V

2
2 <

V 2
2 + 1

2

holds, then choose X and Y sufficiently large so that the amount indicated
by o(1) in (2.6) is in absolute value smaller than δ, to conclude that if we put

K =
V 2
2 + 1

2
, (2.7)

then ∣∣∣∣XY −
√
D

∣∣∣∣ < K

Y 2
. (2.8)
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By results of Dujella [4] and Worley [8], there exist integers n, r, s with r
positive and r|s| < 2K = 2V 2

2 + 1 such that X = rpn + spn−1 and Y =

rqn + sqn−1. Here, pk/qk is the kth convergent to
√
D =

√
U2
1 + 1. With

these values for X and Y we have

X2 −DY 2 = (rpn + spn−1)
2 −D(rqn + sqn−1)

2,

which gives

U1V
2
2 = r2(p2n −Dq2n) + s2(p2n−1 −Dq2n−1) + 2rs(pnpn−1 −Dqnqn−1). (2.9)

It is easy to prove that

pn =
αn+1 + βn+1

2
and qn =

αn+1 − βn+1

α− β
(2.10)

hold for all n ≥ 0, where

(α, β) = (U1 +
√

U2
1 + 1, U1 −

√
U2
1 + 1).

Using (2.10), one checks that

p2n −Dq2n = (−1)n+1 and pnpn−1 −Dqnqn−1 = (−1)nU1

hold for all n ≥ 0. Thus, relation (2.9) is

U1V
2
2 = (−1)n(s2 − r2 + 2rsU1) (2.11)

(see also [5, Lemma 1]). If s = 0, then U1 = r2 and gcd(x, y) = r. Assume
now that s ̸= 0. From (2.11), we have r2 ≡ s2 (mod U1). If r2 = s2, we
then get U1V

2
2 = ±2r2U1, and therefore 2r2 = ±V 2, which does not have a

positive integer solution r. Thus, r2 ̸= s2, which together with the fact that
r2 ≡ s2 (mod U1) shows that max{r, |s|} ≥

√
U1. In particular,√

U1 ≤ max{r, |s|} ≤ r|s| ≤ V 2
2 ,

therefore V1 ≥ V2 ≥ (U1)
1/4. Since

√
dV1 =

√
U2
1 + 1, we get

√
U2
1 + 1 ≥√

d(U1)
1/4. We have U1 ≥ 4. Hence, d2 ≤ U4

1+2U2
1+1

U1
< 2U3

1 and U1 >

2−1/3d2/3. ⊓⊔

By the discussion at the beginning of this section, the assumptions of
Theorem 1.1 imply that equation (2.3) has a solution in positive integers x, y
such that gcd(x, y) = 1 or 2. In the case U1 = r2 and gcd(x, y) = r, we
get that r = 2 and dV 2

1 = U2
1 + 1 = 17 and thus d = 17. Otherwise, since

ε = U1 + V1

√
d > 2U1, we get from Lemma 2.1 that

ε > (2d)2/3,

which proves Theorem 1.1. ⊓⊔

Remark 2.2. In the case U ≡ 4 (mod 8), we cannot conclude that the equa-
tion x2 − dy2 = U1 is solvable, but we have only solvability of the equation
x2 − dy2 = 2U1, which follows already from (U1 + 1)2 − dY 2

1 = 2U1. Con-
sequently, in this case, and similarly in the case when U is odd, we cannot
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exclude the possibility that r2 = s2 in the above proof. That possibility cor-
responds to the equations X2−(U2

1 +1)Y 2 = 2U1 and X2−(U2+4)Y 2 = 4U
which indeed have (infinitely many) solutions.

Remark 2.3. Biró [1, 2] determined all real quadratic fields of class number
1 and discriminant of the form a2 + 1 or a2 + 4 for some integer a, and
Biró and Lapkova [3] obtained analogous results for the discriminant of the
form (ak)2 + 4k, where a and k are odd positive integers. One may ask
if there are other polynomials f(X) ∈ Z[X] for which one can prove that
there are only finitely many real quadratic fields having class number 1 of
the form Q(

√
f(a)) for some integer a such that f(a) is squarefree. There

are families of polynomials for which Theorem 1.1 gives such results, like
gc(k) = (2c2 +2c+1)2(2k+4)2 +2(4c+2)(c2 + c+1)(2k+4)+ 4c2 +4c+5
(corresponding to quadratic irrationals with continued fraction expansion of
period length 3) and

hc(k) = (256c8 − 512c7 + 1024c6 − 1024c5 + 960c4 − 512c3 + 256c2 − 64c

+ 16)k2 + (256c9 − 1024c8 + 2048c7 − 3008c6 + 2944c5 − 2304c4

+ 1248c3 − 544c2 + 160c− 32)k + 64c10 − 384c9 + 1024c8

− 1760c7 + 2192c6 − 1984c5 + 1396c4 − 736c3 + 304c2 − 92c+ 17,

(corresponding to quadratic irrationals with continued fraction expansion of
period length 7). However, it should be noted that the same results for these
families of polynomials follow also from the results of [7]. Namely, if d ≡ 1

(mod 8), then the prime 2 splits in the quadratic field Q(
√
d). Hence, if

hK = 1, then in the notation of [7], one of the Qi’s must be equal to 4, which
is not the case to the mentioned families. In fact, we were not be able to find
an integer d > 17 such that d ≡ 1 (mod 8), U ≡ 0 (mod 8), εK ≤ (2d)2/3

and one of the Qi’s is equal to 4 (in the notation of [7]).
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