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1 Introduction

In [2], answering to a question from [1], Ayad and Luca proved that there
does not exist an odd integer n > 1 and two positive divisors d1 and d2 of
(n2 + 1)/2 such that d1 + d2 = n+ 1. In this paper, we consider the similar
problem but with n + 1 replaced by an arbitrary linear polynomial δn + ε,
where δ > 0 and ε are given integers. Since the number (n2 + 1)/2 is odd
and both numbers d1 and d2 are congruent to 1 modulo 4, it follows that
d1 + d2 ≡ 2 (mod 4). Hence, if d1 + d2 = δn + ε, then either δ ≡ ε ≡ 1
(mod 2), or δ ≡ ε + 2 ≡ 0, 2 (mod 4). Here, we will restrict our attention
to the first case, namely when both δ and ε are odd.

We will give some evidence for the following conjecture.

Conjecture 1 If δ > 0 and ε are coprime odd integers and (δ, ε) 6= (1, 1),
then there exist infinitely many positive odd integers n with the property
that there exist a pair of positive divisors d1 and d2 of (n2 + 1)/2 with
d1 + d2 = δn+ ε.

We prove Conjecture 1 for δ = 1. For general linear polynomials, we give
a conditional proof relying on some known conjectures from the distribution
of prime numbers. Both our unconditional and conditional proofs rely on
known facts from the theory of Pell equations.

2 Monic polynomials – parametric solution

In this section, we look at polynomials of the form n+ ε, where ε is an odd
integer. We will show that the polynomial n+ 1 studied in [2] is the unique
polynomial of this form for which there do not exist n, d1 and d2 with the
property that we are considering.
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Theorem 1 For any odd integer ε 6= 1 there exist infinitely many odd pos-
itive integers n with the property that there exist a pair of positive divisors
d1 and d2 of (n2 + 1)/2 such that d1 + d2 = n+ ε.

Proof. Let ε be an odd integer. We want to find an odd positive
integer n and positive divisors d1 and d2 of (n2+1)/2 such that d1+d2 = n+ε.
Let g := gcd(d1, d2) and write d1 = gd′1 and d2 = gd′2. Since gd′1d

′
2 =

lcm[d1, d2] divides (n2+1)/2, we conclude that there exists a positive integer
d such that

d1d2 =
g(n2 + 1)

2d
.

From the identity (d2 − d1)2 = (d1 + d2)2 − 4d1d2, we obtain easily that the
equation

X2 − d(d− 2g)Y 2 = 2dgε2 + 2dg − 4g2 (1)

holds, where X := (d−2g)n+ εd and Y := d2−d1. Let us assume first that
g = 1. Then equation (1) becomes

X2 − d(d− 2)Y 2 = 2d(ε2 + 1)− 4. (2)

The right hand side of equation (2) above is zero only when 2d(ε2 + 1) = 4,
leading to d = 1, ε = ±1, and X2 + Y 2 = 0. This is possible only when
X = Y = 0, so, in particular, d1 = d2, which is not allowed. Thus, the right
hand side in (2) is nonzero. Assuming further that d > 2, we get that (2) is
a Pellian equation and therefore it will have infinitely many positive integer
solutions (X,Y ) provided that it has at least one such solution. To ensure
that (2) has a solution, we take d such that the right hand side of (2) is a
perfect square. This condition can be satisfied by taking

d =
1
2

(ε2 − 4ε+ 5).

With this choice for d, the well-known identity

z4 + 1 = (z2 − 2z + 2)(z2 + 2z + 2),

yields easily that
2d(ε2 + 1)− 4 = (ε− 1)4.

Now we are left to search for the integer solutions (X,Y ) of equation (2) of
the form X = (ε− 1)2U , Y = (ε− 1)2V 2; i.e., such that

U2 − d(d− 2)V 2 = 1. (3)
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All the positive integer solutions (U, V ) of equation (3) are given by (U, V ) =
(Um, Vm) for some m ≥ 0, where

U0 = 1, U1 = d− 1, Um = 2(d− 1)Um−1 − Um−2, for m ≥ 2, (4)
V0 = 0, V1 = 1, Vm = 2(d− 1)Vm−1 − Vm−2, for m ≥ 2.

It remains to compute the corresponding values of n arising from

(d− 2)n+ dε = X = (ε− 1)2U2 = (ε− 1)2Um2. (5)

By induction on m using recurrence (4), one gets that Um ≡ 1 (mod (d−2))
for every m ≥ 0. Thus,

(ε− 1)2Um2 − dε ≡ (ε− 1)2 − 2ε ≡ 2(d− 2) ≡ 0 (mod (d− 2)).

Hence, the numbers n defined by (5) are integers, and since both d and ε
are odd, the numbers n are also odd. The first few values of n with the
corresponding divisors d1 and d2 of (n2 + 1)/2 are listed below:

n = ε2 − 3ε+ 3,
d1 = 1,
d2 = ε2 − 2ε+ 2,


n = ε4 − 6ε3 + 14ε2 − 15ε+ 7,
d1 = ε2 − 2ε+ 2,
d2 = ε4 − 6ε3 + 13ε2 − 12ε+ 5,

n = ε6 − 10ε5 + 41ε4 − 88ε3 + 104ε2 − 65ε+ 18
d1 = ε4 − 6ε3 + 13ε2 − 12ε+ 5
d2 = ε6 − 10ε5 + 40ε4 − 82ε3 + 91ε2 − 52ε+ 13.

Of course, as we already said, the above construction works only when d > 2,
which is equivalent to ε2−5ε+1 > 0. This is true for all odd integers ε except
when ε ∈ {1, 3}. Thus, we actually proved Theorem 1 for all ε 6∈ {1, 3}. The
case ε = 1 is excluded, so let us deal now with ε = 3.

For the case ε = 3, we allow that g 6= 1. Certainly, g divides both n+ ε
and n2 + 1, so g divides ε2 + 1. Thus, for ε = 3, the only possibility is g = 5.
With these particular values, equation (1) becomes

X2 − d(d− 10)Y 2 = 100d− 100. (6)

Equation (6) has solutions. For example, when d = 101, the fundamental
solutions are (X,Y ) = (100, 0), (1920,±20), (47168,±492). For us, we need
solutions with X = 91n + 303 and n + 3 ≡ 0 (mod 5). The smallest such
solution is X = 1810020. By periodicity, it is easy to see that there are
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infinitely many such solutions. The first few values of n, with corresponding
divisors d1 and d2 of (n2 + 1)/2 are:

n = 19887,
d1 = 505,
d2 = 19385,


n = 763267,
d1 = 19385,
d2 = 743885,


n = 29289687,
d1 = 743885,
d2 = 28545805.

3 Polynomials with coprime coefficients – heuris-
tic results

In this section, we consider general linear polynomials of the form δn + ε,
where δ > 0 and ε are coprime odd integers.

As in the previous section, we first transform our problem into a Pellian
equation with an additional congruence condition on its solution. Define
again the numbers g and d by

g := gcd(d1, d2) and d1d2 =
g(n2 + 1)

2d
.

Since g divides both δn + ε and (n2 + 1)/2, we find that g divides also
(δ2 + ε2)/2. Furthermore, g ≡ d ≡ 1 (mod 4). In this general case, the
equation (1) takes the form

X2 − d(dδ2 − 2g)Y 2 = 2dg(δ2 + ε2)− 4g2, (7)

where X := n(dδ2 − 2g) + δεd.
Taking g := (δ2 + ε2)/2, the right hand side of equation (7) becomes

4g2(d− 1). We take d = k2 + 1 with some even positive integer k and then
the right hand side of equation (7) becomes the perfect square (2gk)2. Now
we have

dδ2 − 2g = (k2 + 1)δ2 − (δ2 + ε2) = k2δ2 − ε2 = (δk + ε)(δk − ε),

and the equation (7) takes the form

X2 − (k2 + 1)(δk + ε)(δk − ε)Y 2 = (2gk)2. (8)

It is now clear that the equation (8) has infinitely many positive integer
solutions (X,Y ), but we need solutions which satisfy the additional condition

X ≡ δεd (mod (δk + ε)(δk − ε)). (9)
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Thus, we have to find even positive integers k for which there exists a solution
of the Pell equation (8) that satisfies the condition (9). It is easy to see that
if there exists one solution, then there will be infinitely many such solutions
by the fact that binary recurrences related to solutions of Pell equations and
norm form equations in real quadratic fields are totally periodic modulo any
positive integer m.

To achieve the required goal, we take a positive integer k with the fol-
lowing properties:

(i) δk + ε ≡ 5 (mod 8);

(ii) if ε ≡ 1 (mod 4), then
(
δ2+ε2

k2+1

)
= −1;

(iii) if ε ≡ 3 (mod 4), then
(
δ2+ε2

δk−ε

)
= −1;

(iv) δk + ε is a prime;

(v) δk − ε is a prime;

(vi) k2 + 1 is a prime.

First, let us see whether the above conditions can all be fulfilled simul-
tenously. Observe that if (i) and (ii) are satisfied, then 4 | k, therefore
k2 + 1 ≡ 1 (mod 8). Since δ and ε are both odd, it follows that δ2 + ε2 ≡ 2
(mod 8), so (δ2 + ε2)/2 is an odd integer which in fact is congruent to 1
(mod 4). Now by Quadratic Reciprocity, we have that in case (i) and (ii)
hold, then

−1 =
(
δ2 + ε2

k2 + 1

)
=
(

2
k2 + 1

)(
k2 + 1

(δ2 + ε2)/2

)
=
(

k2 + 1
(δ2 + ε2)/2

)
.

We see that if (δ2 + ε2)/2 is a perfect square, then the above equality is not
possible. However, if (δ2 + ε2)/2 is not a perfect square, then there exists k
such that the above equality is possible. Indeed, clearly,(

k2 + 1
(δ2 + ε2)/2

)
=

s∏
i=1

(
k2 + 1
pi

)
,

where p1, . . . , ps are all the distinct primes appearing in the factorization of
(δ2 + ε2)/2 at odd exponents. Assume that s ≥ 1. There exists a nonzero
residue x (mod p1) such that

(
x
p1

)
= 1 but

(
x+1
p1

)
= −1. Indeed, otherwise
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since
(

1
p1

)
= 1, we would get that

(
2
p1

)
= 1, next that

(
3
p1

)
= 1, and so

on. Thus,
(
x
p1

)
= 1 for all x = 1, . . . , p1 − 1, which is a contradiction. So

indeed there is a nonzero congruence class x modulo p1 such that
(
x
p1

)
= 1

and
(
x+1
p1

)
= −1. Taking k such that k2 ≡ x (mod p1) and k ≡ 0 (mod pi)

for i = 2, . . . , s, which is possible by the Chinese Remainder Lemma, we get
that there is a residue class of k modulo (δ2 + ε2)/2 such that condition (ii)
holds.

An even easier argument shows that it is always possible to choose k
modulo (δ2 + ε2)/2 such that both conditions (i) and (iii) hold except when
(δ2 + ε2)/2 is a square. Indeed, by (i) and (iii), we get that δk − ε ≡ 7
(mod 8), so

−1 =
(
δ2 + ε2

δk − ε

)
=
(

2
δk − ε

)(
δk − ε

(δ2 + ε2)/2

)
=
(

δk − ε
(δ2 + ε2)/2

)
,

and now a similar argument shows that indeed there is a value of k modulo
(δ2 + ε2)/2 such that both (i) and (iii) hold provided that (δ2 + ε2)/2 is not
a perfect square.

Next, let us recall a conjectural statement referred to as Schinzel’s Hy-
pothesis H (see [7]).

Conjecture 2 Let f1(x), . . . , fs(x) be polynomials with integer coefficients
and positive leading terms such as the following two conditions are satisfied:

(i) fi(x) is irreducible for all i = 1, . . . , s.

(ii) For each prime p there is a positive integer n such that

f1(n)f2(n) · · · fs(n) 6≡ 0 (mod p).

Then there exist infinitely many positive integers t such that

f1(t), f2(t), . . . , fs(t)

are simultaneously prime numbers.

From the above arguments and invoking again the Chinese Remainder
Lemma, it follows assuming that (δ2 + ε2)/2 is not a perfect square, that
conditions (i) and (ii) (or (i) and (iii), respectively) are satisfied for all n in
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a certain residue class a modulo 4(δ2 + ε2). Schinzel’s Hypothesis H now
applied to the three polynomials of t

δ(4(δ2 + ε2)t+ a) + ε, δ(4(δ2 + ε2)t+ a)− ε, (4(δ2 + ε2)t+ a)2 + 1

yields infinitely many values of t such that the numbers shown at (iv)–(vi)
are simultaneously prime. Thus, all conditions (i)–(vi) should be fulfilled
for infinitely many such positive integers k. In fact, an effective version
of Schinzel’s Hypothesis H due to Bateman and Horn [3] asserts that the
number of such positive integers k ≤ T should be

� T

(log T )3
,

for large values of T , where the implied constant depends on δ and ε.

With such values of k, consider now the Pell equation

U2 − (k2 + 1)(δk − ε)(δk + ε)V 2 = 1. (10)

We next show that the assumptions (i)–(vi) ensure that its fundamental
solution in positive integers (U0, V0) satisfies

U0 ≡ 1 (mod δk − ε), and U0 ≡ −1 (mod δk + ε).

Indeed, with the notation a := k2 + 1, b := δk + ε, c := δk − ε, we have

U2
0 − 1 = abcV 2

0 .

Since a, b and c are prime numbers, we have the following possibilities for
the factors U0 ± 1:

1±) U0 ± 1 = 2abcs2, U0 ∓ 1 = 2t2;

2±) U0 ± 1 = 2abs2, U0 ∓ 1 = 2ct2;

3±) U0 ± 1 = 2acs2, U0 ∓ 1 = 2bt2;

4±) U0 ± 1 = 2bcs2, U0 ∓ 1 = 2at2;

5±) U0 ± 1 = abcs2, U0 ∓ 1 = t2;

6±) U0 ± 1 = abs2, U0 ∓ 1 = ct2;

7±) U0 ± 1 = acs2, U0 ∓ 1 = bt2;
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8±) U0 ± 1 = bcs2, U0 ∓ 1 = at2.

We want to show that only the cases 2+), 3−), 6+) and 7−) are possible.
The case 1+) implies t2 − abcs2 = −1, which is impossible since bc =

δ2k2 − ε2 ≡ 3 (mod 4).
The case 1−) gives t2 − abcs2 = 1, which contradicts the minimality of

(U0, V0).
In the case 2−), we have the equation ct2−abs2 = 1, which is impossible

modulo 4 since a ≡ b ≡ 1 (mod 4) and c ≡ 3 (mod 4), so that ct2−abs2 6≡ 1
(mod 4).

The equation in the case 3+) is bt2 − acs2 = −1, and this is again
impossible modulo 4 since b ≡ 1 (mod 4) and ac ≡ 3 (mod 4).

The case 4+) leads to at2 − bcs2 = −1, which is impossible modulo 4.
In the case 4−), we have at2 − bcs2 = 1, which implies the conditions

( bca ) = 1 and (ac ) = 1. But(
bc

a

)
=
(
δ2k2 − ε2

k2 + 1

)
=
(
δ2(k2 + 1)− (δ2 + ε2)

k2 + 1

)
=
(
δ2 + ε2

k2 + 1

)
,

(a
c

)
=
(

(k2 + 1)
δk − ε

)
=
(

(k2 + 1)δ2 − (k2δ2 − ε2)
δk − ε

)
=
(
δ2 + ε2

δk − ε

)
,

and the assumptions (ii) and (iii) show that both conditions above cannot
be satisfied simultaneously.

The cases 5±) lead to t2 − abcs2 = ∓2. Hence, (±2
b ) = 1, contradicting

the assumption that b ≡ 5 (mod 8).
The case 6−) leads to ct2 − abs2 = 2, which implies

1 =
(
−2ac
b

)
= −

(
2
c

)(a
c

)(b
c

)
;

1 =
(

2c
a

)
=
(

2
a

)( c
a

)
;

1 =
(

2c
b

)
= −

(
2
b

)
.

Multiplying the above three relations, we get ( 2
ac) = 1. But from bc =

δ2k2−ε2, we conclude that if k ≡ 0 (mod 4), then a ≡ 1 (mod 8) and c ≡ 3
(mod 8), while if k ≡ 2 (mod 4), then a ≡ 5 (mod 8) and c ≡ 7 (mod 4).
Hence, we always have ac ≡ 3 (mod 8), so ( 2

ac) = −1, a contradiction.
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The case 7+) leads to bt2 − acs2 = −2, which implies

1 =
(

2ac
b

)
= −

(a
b

)(c
b

)
;

1 =
(
−2b
a

)
=
(

2
a

)(
b

a

)
;

1 =
(
−2b
c

)
= −

(
2
c

)(
b

c

)
.

Multiplying the above three relations, we get ( 2
ac) = 1, contradicting the

fact that ac ≡ 3 (mod 8)).
In the case 8+); i.e., when at2 − bcs2 = −2, proceeding in a way similar

to the previous two cases, we obtain the relation ( 2
ac) = 1, which leads to a

contradiction.
In case 8−); i.e., when at2 − bcs2 = 2, the relations become ( 2

a)( bca ) = 1,
(ab ) = −1 and (2

c )(
a
c ) = 1. If ε ≡ 1 (mod 4), then a ≡ 1 (mod 8), and the

first relation is in contradiction with the assumption (ii). If ε ≡ 3 (mod 4),
the assumption (iii) gives (ac ) = −1, and since c ≡ 7 (mod 8), we find that
the third relation cannot hold.

Now take X0 := 2kgU0 and Y0 := 2kgV0. Then (X0, Y0) satisfies (7).
Moreover,

X0 ≡ 0 (mod g);
X0 ≡ 2kg (mod δk − ε);
X0 ≡ −2kg (mod δk + ε).

We have to check that the number n defined by

X0 := n(dδ2 − 2g) + δεd

is an integer. Let

D := dδ2 − 2g = (δk − ε)(δk + ε).

We have
δX0 ≡ 2kgδ ≡ 2gε ≡ dδ2ε (mod (δk − ε)).

Since gcd(δ, ε) = 1, we obtain

X0 ≡ δεd (mod (δk − ε)).
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Similarly,

δX0 ≡ −2kgδ ≡ −2g · (−ε) ≡ dδ2ε (mod (δk + ε)),

and we obtain
X0 ≡ δεd (mod (δk + ε)).

Finally, we need that δn+ ε ≡ 0 (mod g). But X0 ≡ 0 (mod g) implies
ndδ2 + δεd = (δn+ ε)δd (mod g). Hence, δn+ ε ≡ 0 (mod g).

Thus, we obtained the following conditional result.

Proposition 1 If Schinzel’s Hypothesis H Conjecture 2 on prime values
of polynomials is true, then for all coprime integers δ > 0 and ε such that
2(δ2 + ε2) is not a perfect square, there exist infinitely many odd positive
integers n with the property that there exist a pair of positive divisors d1 and
d2 of (n2 + 1)/2 such that d1 + d2 = δn+ ε.

Next, we give a particular example supporting Proposition 1.

Example 1 Let us consider the case δ = 3 and ε = 1. There are 598 values
of k < 106 which satisfy the properties (i)–(vi). The smallest such values
are 4, 36, 116, 556, 644.

Let us take k = 4. We then get g = 5 and d = 17. The fundamental
solution of the equation (10) is (U0, V0) = (189161350676, 3836541735). So,
we obtain X0 = 2gkU = 7566454027040, Y0 = 2kgV = 153461669400, which
gives the solution (n, d1, d2) with the desired property:

n =
X0 − 51

143
= 52912265923, d1 = 2637564185, d2 = 156099233585.

4 The case when 2(δ2 +ε2) is a square - experimen-
tal results

The construction of the previous section cannot be applied to linear poly-
nomials δn + ε when 2(δ2 + ε2) is perfect square. We have seen that in
this case the properties (i)–(vi) cannot be simultaneously satisfied. How-
ever, the properties (iv)–(vi) are (conjecturally) satisfied by infinitely many
values of k. This means that the fundamental solution (U0, V0) the equation
(10), satisfies one of the systems 1±) – 8±); i.e, we have four possibilities for
U0 mod δk ± ε:

U0 ≡ ±1 (mod δk − ε), U0 ≡ ±1 (mod δk + ε).
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It seems plausible to assume that as the numbers k with properties (iv)–(vi)
vary, the congruences U0 ≡ 1 (mod δk−ε), U0 ≡ −1 (mod δk+ε) hold with
positive probability. Our experimental results support this assumption.

In particular, for all δ, |ε| < 100, |δε| 6= 1, gcd(δ, ε) = 1, we have found
several numbers k with the desired property. For this purpose, we solved the
corresponding Pell equations. When the larger values for k are needed, the
solutions become too large to be found by the standard continued fraction
algorithm. Instead, we used the compact representation algorithm recently
implemented by F. Najman [6]. Here are some numerical data.

Example 2 For (δ, ε) = (7, 1), we have k = 384, and we obtain the fun-
damental solution U0 ≈ 2.23797987 · 1023417 which satisfies the required
congruences and leads to a solution n ≈ 5.94701365 · 1023414.

In the table below, we give the smallest k for each pair (δ, ε).
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(δ, ε) k (δ, ε) k

(1, 7) 54 (1,−7) 816
(1, 41) 1440 (1,−41) 150
(7, 1) 384 (7,−1) 1494
(7, 23) 210 (7,−23) 1080
(7, 17) 6480 (7,−17) 1350
(17, 7) 270 (17,−7) 1080
(17, 31) 306 (17,−31) 8424
(17, 73) 240 (17,−73) 5850
(23, 7) 270 (23,−7) 120
(23, 47) 11970 (23,−47) 25560
(23, 89) 4056 (23,−89) 150
(31, 17) 24 (31,−17) 126
(31, 49) 9120 (31,−49) 8670
(41, 1) 10560 (41,−1) 570
(47, 23) 54 (47,−23) 6360
(47, 79) 1290 (47,−79) 1320
(49, 71) 90 (49,−71) 240
(71, 49) 30720 (71,−49) 270
(71, 97) 240 (71,−97) 270
(73, 17) 10560 (73,−17) 2700
(79, 47) 66 (79,−47) 1176
(89, 23) 66 (89,−23) 11520
(97, 71) 54 (97,−71) 6360

5 Polynomials of the form δn+ δ

In this section, we consider a different generalization of the original problem
from [2]. Namely, we replace the polynomial n+ 1 by the polynomial δn+ δ
for some positive integer δ.

Theorem 2 Let δ be a positive integer. There does not exist an odd positive
integer n with the property that there exist a pair of positive divisors d1 and
d2 of (n2 + 1)/2 such that d1 + d2 = δn+ δ.

Proof. By the main result from [2], we know that the statement is true
for δ = 1. From the relation d1 +d2 = δ(n+ 1), as well as the fact that d1 ≡
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d2 ≡ 1 (mod 4), we conclude that δ is odd. Let δ be the smallest positive
integer for which the statement is not true, and let the triple (n, d1, d2)
satisfy the property from the theorem. Put g := gcd(d1, d2). Then g | δ2.
Assume that g > 1. Then there exists a prime p dividing both g and δ. Let
d1 = pd′1, d2 = pd2, δ = pδ′. Then d′1 and d′2 are divisors of (n2 + 1)/2 and
d′1 + d′2 = δ′n+ δ′, contradicting the minimality of δ.

Thus, g = 1 and the equation (7) takes the form

X2 − (d2δ2 − 2d)Y 2 = 4(dδ2 − 1). (11)

We need a positive integer solution X of the above equation satisfying the
congruence

X ≡ dδ2 ≡ 2 (mod dδ2 − 2). (12)

From d1d2 = (n2+1)/(2d), we find that d ≡ 1 (mod 4). Hence, d2δ2−2d ≡ 7
(mod 8), and this implies that X ≡ Y ≡ 0 (mod 4). Let X = 4S, Y = 4T ,
so that

S2 − (d2δ2 − 2d)T 2 =
dδ2 − 1

4
. (13)

Let u := gcd(S, T ), S := uU , T := uV . From (13), we find that∣∣∣∣√d2δ2 − 2d− U

V

∣∣∣∣ < (dδ2 − 1)/(4u2)
2
√
d2δ2 − 2d

V −2 <
δ + 1
8u2

V −2.

From Worley’s theorem from Diophantine approximations (see [8, Theorem
1] and [4, Theorem 1]), we conclude that there exist nonnegative integers
k, r, s, rs < (δ + 1)/(4u2), such that

U = rpk ± spk−1, and V = rqk ± sqk−1,

where pk/qk denotes the kth convergent in the continued fraction expansion
of
√
d2δ2 − 2d. Since δ ≥ 3, the continued fraction expansion of

√
d2δ2 − 2d

is
[dδ − 1; 1, δ − 2, 1, 2dδ − 2].

By [5, Lemma 1], we have

(rpk + spk−1)2 − (d2δ2 − 2d)(rqk + sqk−1)2 =
(−1)k(s2τk + 2rsσk+1 − r2τk+1), (14)
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where

(σ0, τ0) = (0, 1),
(σ1, τ1) = (dδ − 1, 2dδ − 2d− 1),
(σ2, τ2) = (2δ − 2d, 2d),
(σ3, τ3) = (dδ − 2d, 2dδ − 2d− 1),
(σ4, τ4) = (dδ − 1, 1),

(σk+4, τk+4) = (σk, τk) for all k ≥ 1.

The sequence {pk}k≥0 modulo dδ2 − 2 is periodic with the period length 4.
Indeed,

p0 = dδ − 1, p1 = dδ, p2 ≡ −dδ + 1 mod dδ2 − 2, p3 ≡ 1 mod dδ2 − 2,

and
pk ≡ pk−4 (mod dδ2 − 2) for k ≥ 4.

Hence, we have

rpk + spk−1 ∈ {dδ(r ± s)∓ s, dδ(−r ± s) + r, ∓ dδs+ r, dδr + (−r ± s)}

modulo dδ2 − 2.

Assume first that u >
√

(δ − 1)/2. Then rs ≤ (δ − 1)/(4u2) < 1, and
thus U = pk, V = qk. By (14), we have

p2
k − (d2δ2 − 2d)q2k = (−1)k+1tk+1 ∈ {1,−2dδ + 2d+ 1, 2d}.

It is clear that (dδ2 − 1)/(4u2) 6= −2dδ + 2d + 1 since these numbers have
different signs. Also, the equality (dδ2 − 1)/(4u2) = 2d is not possible unless
d = 1. So let us consider the equation

U2 − (d2δ2 − 2d)V 2 = 1.

The sequence of its positive integer solutions {Um}m≥0 starts as

1, dδ2 − 1, 2(dδ2 − 1)2 − 1, . . . .

From here, we see easily that U ≡ 1 (mod dδ2 − 2). Hence, X ≡ 4u
(mod dδ2 − 2). But, by (12), we should have also X ≡ 2 (mod dδ2 − 2).
Hence, dδ2−2 divides 4u−2. However, this implies that 4u2−1 = dδ2−2 ≤
4u− 2, a contradiction.
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Assume now that u ≤
√

(δ − 1)/2. We have X = 4uU ≡ 4u(dδA + B)
(mod dδ2 − 2), where |A|, |B| ≤ r + s. We have r + s ≤ (δ − 1)/(4u2) + 1,
and thus,

4u(dδA+B) ≤ 16
3
udδ

(
δ − 1
4u2

+ 1
)
≤ 16

3
dδ

(
δ − 1

4u
+ u

)
.

On the other hand, by (12), 4u(dδA + B) = 2 + C(dδ2 − 2), for some even
integer C. If δ is large enough, say δ > 7, then 4u(dδA+B) < 2+2(dδ2−2),
and therefore we must have 4u(dδA+B) = 2, which is a contradiction.

Therefore, it only remains to consider small values for d and δ. For δ =
3, 5, 7, we have u ≤

√
(δ − 1)/2 < 2; i.e., u = 1. Also, rs ≤ (δ − 1)/4 < 1;

i.e., U = pk and V = qk, and we obtain a contradiction as before.
Finally, let d = 1. It remains to consider the possibility that (δ2 − 1)/(4u2) =

2; i.e., δ2 − 1 = 8u2. Now the equation (13) becomes

U2 − (δ2 − 2)V 2 = 2. (15)

The sequence of positive integer solutions {Um}m≥1 of (15) starts as

δ, 2δ3 − 4δ, 4δ5 − 10δ3 + 5δ, . . . .

Hence, we have U ≡ δ (mod δ2−2). But we should also have X = 4uU ≡ 2
(mod δ2−2). Thus, δ2−2 divides 4uδ−2, which implies (δ2−2)z = 4uδ−2
for an even integer z. However,

4uδ − 2 < 4δ · δ√
8
− 2 =

√
2δ2 − 2 < 2(δ2 − 2),

a contradiction.
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C.P. 58089, Morelia, Michoacán
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