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Abstract

Here, we study positive integers n such that nφ(n) ≡ 2 (mod σ(n)),
where φ(n) and σ(n) are the Euler function and the sum of divisors
function of the positive integer n, respectively. We give a general inef-
fective result showing that there are only finitely many such n whose
prime factors belong to a fixed finite set. When this finite set consists
only of the two primes 2 and 3 we use continued fractions to find all
such positive integers n.
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1 Introduction

We write φ(n) and σ(n) for the Euler function and the sum of divisors func-
tion of the positive integer n, respectively. There are many open problems
concerning the characterization of the positive integers n fulfilling certain
congruences involving φ(n) and σ(n). For example, a known open problem
due to Lehmer asks if there are any composite integers n such that n ≡ 1
(mod φ(n)) (see [7]). A different problem due to Subbarao concerns finding
composite integers n such that nσ(n) ≡ 2 (mod φ(n)) (see [9]). See also
section B37 in [4] for other problems and results of a similar kind.

In this paper, we study a congruence similar to Subbarao’s congruence,
namely

nφ(n) ≡ 2 (mod σ(n)). (1)

Congruence (1) was recently proposed and investigated by Dı́az in [3]. It is
easy to see that prime numbers n satisfy (1). In [3], it was shown that the
only positive integers n which are prime powers of exponent a ≥ 1 satisfying
(1) are n = 8, 9. It was also shown that if n is a composite integer satisfying
(1) and if we put

k :=
nφ(n)− 2
σ(n)

,

then n can be bounded in terms of k. This follows from the minimal order
φ(n) � n/ log log n of the Euler function, as well as the maximal order
σ(n) � n log logn of the sum of divisors function, which together imply
that

k =
nφ(n)− 2
σ(n)

� nφ(n)
σ(n)

� n

(log log n)2
,

yielding that n� k(log log k)2.
Here, we prove two results about congruence (1). First, we let P =

{p1, . . . , pk} be a finite set of primes and let SP = {pa1
1 · · · p

ak
k : ai ≥ 0} be

the set of all positive integers whose prime factors belong to P. Our first
result is the following:

Theorem 1 For any finite set of primes P there are only finitely many
positive integers n ∈ SP satisfying congruence (1).

For a positive integer n let P (n) be the largest prime factor of n. Theo-
rem 1 has the following immediate corollary.

Corollary 1 We have P (n)→∞ as n goes to infinity through solutions of
congruence (1).
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The proof of Theorem 1 uses a result of Hernández and Luca [6] whose
proof uses Schmidt’s Subspace Theorem and finiteness results about the
number of non-degenerate solutions to S–unit equations. As such, it is
ineffective. That is, given P, we do not know how to write down a specific
upper bound depending on P on the largest solution n ∈ SP of congruence
(1). Our next result is an effective version of Theorem 1 when P = {2, 3}.
Quite likely, our method of proof extends to all sets P consisting of only two
primes but we have not worked out the details of such an extension.

Theorem 2 If P = {2, 3}, then the only n ∈ SP satisfying congruence (1)
are n = 1, 2, 3, 8, 9.

2 The proof of Theorem 1

Let us comment on the situation when n = pa for some a ≥ 2. Put D :=
σ(pa) = (pa+1 − 1)/(p − 1). Then pa+1 ≡ 1 (mod D). But also nφ(n) ≡
2 (mod D), or p2a−1(p − 1) ≡ 2 (mod D). Hence, p2(a+1)(p − 1) ≡ 2p3

(mod D). Using also pa+1 ≡ 1 (mod D), we get that 2p3 ≡ p− 1 (mod D).
Thus, D | 2p3 − p + 1. The expression 2p3 − p + 1 is never 0 when p is a
prime, so D ≤ 2p3 − p+ 1. Thus,

pa+1 − 1 ≤ (p− 1)(2p3 − p+ 1).

If a ≥ 4, we then get that p5 − 1 ≤ pa+1 − 1 ≤ (p − 1)(2p3 − p + 1),
which is impossible for p ≥ 2. Thus, a ∈ {2, 3}. If a = 2, we then get
p2 + p + 1 | 2p3 − p + 1, which leads to p2 + p + 1 | p − 3. This is possible
only when p = 3, which gives the solution n = 9. If a = 3, we then get
p3 + p2 + p + 1 | 2p3 − p + 1, which leads to p3 + p2 + p + 1 | 2p2 + 3p + 1.
Thus, p3 ≤ p2 +2p, so p ≤ 2. This leads to the solution n = 8 to congruence
(1).

Now let P = {p1, . . . , pk}. We assume that p1 < p2 < · · · < pk. There
is no loss of generality in assuming that P consists of all primes p ≤ pk.
Hence, pj is just the jth prime number. Now say n = pa1

i1
· · · pas

is
∈ SP

satisfies congruence (1), where 1 ≤ i1 < · · · < is ≤ k and aj are positive
for j = 1, . . . , s. There is no loss of generality in assuming that s ≥ 2. Put
uj := p

aj+1
ij

for j = 1, . . . , s and put v := nφ(n)/2 = p2a1−1
i1

· · · p2as−1
s (pi1 −

1) · · · (pis − 1)/2. Observe that uj and v are all members of SP for j =
1, . . . , s. Moreover, uj and v are multiplicatively independent because uj is
a prime power and v has at least two distinct prime factors, namely pi1 and
pi2 . Let j be such that uj = max{ut : 1 ≤ t ≤ s}. We may assume that
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aj ≥ 3, otherwise ut ≤ p3
k, for all i = 1, . . . , s, so we have only finitely many

possibilities for n. Then

v < p2a1
i1
· · · p2as

is
< u2

1 · · ·u2
s < u2k

j ,

giving that uj > v1/2k. Since (uj − 1)/(pij − 1) divides 2(v − 1), it follows
that

gcd(uj − 1, v − 1) ≥ uj − 1
2(pij − 1)

> u
1/2
j > v1/4k,

where we used the fact that aj ≥ 3. However, a result of Hernández and
Luca from [6] asserts that if ε > 0 is fixed, then there are only finitely many
pairs of elements (u, v) in SP such that

gcd(u− 1, v − 1) < max{u, v}ε,

and such that u and v are multiplicatively independent. Note that uj < v for
aj ≥ 3. Since we have already established that uj and v are multiplicatively
independent, the above result applied with ε := 1/4k gives us only finitely
many possibilities for v. Hence, only finitely many possibilities for nφ(n),
and in particular for n, which is what we wanted to prove. The theorem is
therefore proved.

3 Proof of Theorem 2

We assume that n = 2a3b, where a and b are positive integers. Let M :=
2a+1 − 1, N := (3b+1 − 1)/2. Then 2a+1 ≡ 1 (mod M) and 3b+1 ≡ 1
(mod N). But we also have nφ(n) ≡ 2 (mod MN), which gives 22a32b−1 ≡ 2
(mod MN). Thus, 22(a+1)32(b+1) ≡ 216 (mod MN). Since 2a+1 ≡ 1
(mod M), we get that 32(b+1) ≡ 216 (mod M). Also, since 3b+1 ≡ 1
(mod N), we get that 22(a+1) ≡ 216 (mod N). Since M divides 22(a+1) − 1
and N divides 32(b+1) − 1, we get that both M and N divide

22(a+1) + 32(b+1) − 217.

Let us now show that a and b are both even and that M and N are coprime.
Let D := gcd(M,N). Then 2a+1 ≡ 3b+1 ≡ 1 (mod D), so D divides 1 + 1−
217 = −215 = −5× 43. But if 5 divides M , then 4 | a+ 1, so, in particular,
2 | a+1, which implies that 3 |M . This leads to 3 | nφ(n)−2 = 22a32b−1−1,
which is false. Hence, D cannot be a multiple of 5 and a+1 is odd, therefore
a is even. If 43 divides M , then 2a+1 ≡ 1 (mod 43), which implies again
that a + 1 is even, which is a contradiction. Hence, M and N are coprime
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and a is even. Let us show that b is also even. If not, then b+ 1 is even, so
3b+1 − 1 is a multiple of 8. Thus, 4 | N | 22a32b−1 − 2, which is impossible.
Hence, b+1 is odd and therefore both M and N are odd. Since MN divides
22(a+1) + 32(b+1) − 217 and this last number is even, we get that this last
number is a multiple of 2MN = (2a+1 − 1)(3b+1 − 1). Let x := 2a+1 and
y := 3b+1. We get the equation

x2 + y2 − 217 = c(x− 1)(y − 1) (2)

with some positive integer c. Since a and b are even, we have the fol-
lowing congruences: x ≡ 0 (mod 8), y ≡ 3 (mod 8), y2 ≡ 9 (mod 16),
x ≡ 2 (mod 3), x2 ≡ 1 (mod 3), y ≡ 0 (mod 3). Using these congruences,
from (2), we conclude that c ≡ 0 (mod 8) and c ≡ 0 (mod 3); i.e., c ≡ 0
(mod 24).

We shall next ”diagonalize” the equation (2). Namely, let

X := cy − c− 2x, (3)
Y := cy − c− 2y. (4)

Then

(c+2)Y 2−(c−2)X2−(−860c+1736) = −4(c−2)(x2+y2−217−c(x−1)(y−1)) = 0.

Hence, we get the Pellian equation

(c+ 2)Y 2 − (c− 2)X2 = −860c+ 1736. (5)

From (5), we see that X/Y is good rational approximation of the irrational

number
√

c+2
c−2 . More precisely, we have∣∣∣∣∣XY −

√
c+ 2
c− 2

∣∣∣∣∣ =
860c− 1736

(
√
c+ 2Y +

√
c− 2X)

√
c− 2Y

≤ 860(c− 2)√
c2 − 4Y 2

<
860
Y 2

.

The rational approximation of the form∣∣∣∣∣XY −
√
c+ 2
c− 2

∣∣∣∣∣ < 860
Y 2

(6)

is not good enough to conclude that X
Y is a convergent of continued fraction

expansion of
√

c+2
c−2 , but by Worley’s theorem [10, Theorem 1] (see also [1,

Theorem 1]), we know that

X

Y
=
rpk+1 ± upk

rqk+1 ± uqk
,
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for some k ≥ −1 and nonnegative integers r and u such that ru < 2×860 =
1720. Since c is even, we have the following continued fraction expansion√

c+ 2
c− 2

= [1, (c− 2)/2, 2]

(see e.g. [5]). Let X = d(rpk+1 ± upk), Y = d(rqk+1 ± uqk), where d2ru <
1720. Then, by [2, Lemma], we have

(c+ 2)Y 2 − (c− 2)X2 = d2(−1)k(u2tk+1 + 2rusk+1 − r2tk+2), (7)

where {sk}k≥−1 and {tk}k≥−1 are sequences of integers appearing in the

continued fraction algorithm for quadratic irrational
√

c+2
c−2 . From [5], we

learn that sk = c − 2, t2k = c − 2, t2k+1 = 4. Let us check whether it
is possible that the expression on the right hand side of (7) is identically
equal to the right hand side of (5); i.e., to −860c+ 1736. For k even, we get
d2((4u2−2ru+2r2)+c(2ruc−r2)), while for k odd, we get −d2(c(u2+2ru)−
(4r2 + 4ru+ 2u2)). Comparing these two expression with −860c+ 1736, we
first see that d = 1 or d = 2, and then that in both cases the resulting
system of two equations has no integers solutions.

It remains to consider all possible triples of integers d, r, u satisfying
d2ru < 1720, and check whether the corresponding right–hand sides of (7)
have nonempty integer intersection with −860c+ 1736, and lastly compute
the corresponding positive integer c. There are many such c’s (the largest
is 739586), but only three of them satisfy the condition c ≡ 0 (mod 24).
These c’s are 48, 288 and 23328.

Let us solve the corresponding three Pellian equations. The equations
are:

25Y 2 − 23X2 = −19772, (8)
145Y 2 − 143X2 = −122972, (9)

11665Y 2 − 11663X2 = −10030172. (10)

Using bounds for the fundamental solutions of Pellian equations (see e.g.
[8]), we find that all solutions of equation (8) are given by (X0, X1) =
(58, 192) or (192, 58), Xk = 48Xk−1 − Xk−2 for all k ≥ 2 and (Y0, Y1) =
(48, 182) or (182, 48), Yk = 48Yk−1 − Yk−2 for all k ≥ 2. Assume now that
for X, Y defined by (3) and (4) there exists an index k such that X = Xk

and Y = Yk. Then (X,Y ) ≡ (10, 0), (0, 38), (0, 10) or (38, 0) (mod 48). But
on the other hand, X ≡ 0 (mod 16), Y ≡ 0 (mod 6), and none of these four
pairs satisfies this condition.
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Completely analogous arguments apply to other two equations, since
both other c’s are also divisible by 24. The fundamental solutions of (9) are
(X0, X1) = (38, 1992), (Y0, Y1) = (24, 1978), and we get (X,Y ) ≡ (14, 0),
(0, 10), (0, 14) or (10, 0) (mod 24), while the fundamental solutions of (10)
are (X0, X1) = (218, 23112), (Y0, Y1) = (216, 23110), and we get (X,Y ) ≡
(2, 0), (0, 22), (0, 2) or (22, 0) (mod 24). In both cases, none of the pairs
modulo 24 satisfies the conditions X ≡ 0 (mod 16), Y ≡ 0 (mod 6). This
completes the proof of Theorem 2.
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