On a variation of a congruence of Subbarao

Andrej Dujella
Department of Mathematics
University of Zagreb
Bijenička cesta 30
10000 Zagreb, Croatia
duje@math.hr
Florian Luca
Instituto de Matemáticas
Universidad Nacional Autonoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx

December 17, 2010

To the memory of Alf van der Poorten

Abstract

Here, we study positive integers n such that $n \phi(n) \equiv 2(\bmod \sigma(n))$, where $\phi(n)$ and $\sigma(n)$ are the Euler function and the sum of divisors function of the positive integer n, respectively. We give a general ineffective result showing that there are only finitely many such n whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes 2 and 3 we use continued fractions to find all such positive integers n.

1 Introduction

We write $\phi(n)$ and $\sigma(n)$ for the Euler function and the sum of divisors function of the positive integer n, respectively. There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences involving $\phi(n)$ and $\sigma(n)$. For example, a known open problem due to Lehmer asks if there are any composite integers n such that $n \equiv 1$ $(\bmod \phi(n))($ see $[7])$. A different problem due to Subbarao concerns finding composite integers n such that $n \sigma(n) \equiv 2(\bmod \phi(n))($ see $[9])$. See also section B37 in [4] for other problems and results of a similar kind.

In this paper, we study a congruence similar to Subbarao's congruence, namely

$$
\begin{equation*}
n \phi(n) \equiv 2 \quad(\bmod \sigma(n)) . \tag{1}
\end{equation*}
$$

Congruence (1) was recently proposed and investigated by Díaz in [3]. It is easy to see that prime numbers n satisfy (1). In [3], it was shown that the only positive integers n which are prime powers of exponent $a \geq 1$ satisfying (1) are $n=8,9$. It was also shown that if n is a composite integer satisfying (1) and if we put

$$
k:=\frac{n \phi(n)-2}{\sigma(n)},
$$

then n can be bounded in terms of k. This follows from the minimal order $\phi(n) \gg n / \log \log n$ of the Euler function, as well as the maximal order $\sigma(n) \ll n \log \log n$ of the sum of divisors function, which together imply that

$$
k=\frac{n \phi(n)-2}{\sigma(n)} \gg \frac{n \phi(n)}{\sigma(n)} \gg \frac{n}{(\log \log n)^{2}},
$$

yielding that $n \ll k(\log \log k)^{2}$.
Here, we prove two results about congruence (1). First, we let $\mathcal{P}=$ $\left\{p_{1}, \ldots, p_{k}\right\}$ be a finite set of primes and let $\mathcal{S}_{\mathcal{P}}=\left\{p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}: a_{i} \geq 0\right\}$ be the set of all positive integers whose prime factors belong to \mathcal{P}. Our first result is the following:

Theorem 1 For any finite set of primes \mathcal{P} there are only finitely many positive integers $n \in \mathcal{S}_{\mathcal{P}}$ satisfying congruence (1).

For a positive integer n let $P(n)$ be the largest prime factor of n. Theorem 1 has the following immediate corollary.

Corollary 1 We have $P(n) \rightarrow \infty$ as n goes to infinity through solutions of congruence (1).

The proof of Theorem 1 uses a result of Hernández and Luca [6] whose proof uses Schmidt's Subspace Theorem and finiteness results about the number of non-degenerate solutions to \mathcal{S}-unit equations. As such, it is ineffective. That is, given \mathcal{P}, we do not know how to write down a specific upper bound depending on \mathcal{P} on the largest solution $n \in \mathcal{S}_{\mathcal{P}}$ of congruence (1). Our next result is an effective version of Theorem 1 when $\mathcal{P}=\{2,3\}$. Quite likely, our method of proof extends to all sets \mathcal{P} consisting of only two primes but we have not worked out the details of such an extension.

Theorem 2 If $\mathcal{P}=\{2,3\}$, then the only $n \in \mathcal{S}_{\mathcal{P}}$ satisfying congruence (1) are $n=1,2,3,8,9$.

2 The proof of Theorem 1

Let us comment on the situation when $n=p^{a}$ for some $a \geq 2$. Put $D:=$ $\sigma\left(p^{a}\right)=\left(p^{a+1}-1\right) /(p-1)$. Then $p^{a+1} \equiv 1(\bmod D)$. But also $n \phi(n) \equiv$ $2(\bmod D)$, or $p^{2 a-1}(p-1) \equiv 2(\bmod D)$. Hence, $p^{2(a+1)}(p-1) \equiv 2 p^{3}$ $(\bmod D)$. Using also $p^{a+1} \equiv 1(\bmod D)$, we get that $2 p^{3} \equiv p-1(\bmod D)$. Thus, $D \mid 2 p^{3}-p+1$. The expression $2 p^{3}-p+1$ is never 0 when p is a prime, so $D \leq 2 p^{3}-p+1$. Thus,

$$
p^{a+1}-1 \leq(p-1)\left(2 p^{3}-p+1\right)
$$

If $a \geq 4$, we then get that $p^{5}-1 \leq p^{a+1}-1 \leq(p-1)\left(2 p^{3}-p+1\right)$, which is impossible for $p \geq 2$. Thus, $a \in\{2,3\}$. If $a=2$, we then get $p^{2}+p+1 \mid 2 p^{3}-p+1$, which leads to $p^{2}+p+1 \mid p-3$. This is possible only when $p=3$, which gives the solution $n=9$. If $a=3$, we then get $p^{3}+p^{2}+p+1 \mid 2 p^{3}-p+1$, which leads to $p^{3}+p^{2}+p+1 \mid 2 p^{2}+3 p+1$. Thus, $p^{3} \leq p^{2}+2 p$, so $p \leq 2$. This leads to the solution $n=8$ to congruence (1).

Now let $\mathcal{P}=\left\{p_{1}, \ldots, p_{k}\right\}$. We assume that $p_{1}<p_{2}<\cdots<p_{k}$. There is no loss of generality in assuming that \mathcal{P} consists of all primes $p \leq p_{k}$. Hence, p_{j} is just the j th prime number. Now say $n=p_{i_{1}}^{a_{1}} \cdots p_{i_{s}}^{a_{s}} \in \mathcal{S}_{\mathcal{P}}$ satisfies congruence (1), where $1 \leq i_{1}<\cdots<i_{s} \leq k$ and a_{j} are positive for $j=1, \ldots, s$. There is no loss of generality in assuming that $s \geq 2$. Put $u_{j}:=p_{i_{j}}^{a_{j}+1}$ for $j=1, \ldots, s$ and put $v:=n \phi(n) / 2=p_{i_{1}}^{2 a_{1}-1} \cdots p_{s}^{2 a_{s}-1}\left(p_{i_{1}}-\right.$ 1) $\cdots\left(p_{i_{s}}-1\right) / 2$. Observe that u_{j} and v are all members of $\mathcal{S}_{\mathcal{P}}$ for $j=$ $1, \ldots, s$. Moreover, u_{j} and v are multiplicatively independent because u_{j} is a prime power and v has at least two distinct prime factors, namely $p_{i_{1}}$ and $p_{i_{2}}$. Let j be such that $u_{j}=\max \left\{u_{t}: 1 \leq t \leq s\right\}$. We may assume that
$a_{j} \geq 3$, otherwise $u_{t} \leq p_{k}^{3}$, for all $i=1, \ldots, s$, so we have only finitely many possibilities for n. Then

$$
v<p_{i_{1}}^{2 a_{1}} \cdots p_{i_{s}}^{2 a_{s}}<u_{1}^{2} \cdots u_{s}^{2}<u_{j}^{2 k}
$$

giving that $u_{j}>v^{1 / 2 k}$. Since $\left(u_{j}-1\right) /\left(p_{i_{j}}-1\right)$ divides $2(v-1)$, it follows that

$$
\operatorname{gcd}\left(u_{j}-1, v-1\right) \geq \frac{u_{j}-1}{2\left(p_{i_{j}}-1\right)}>u_{j}^{1 / 2}>v^{1 / 4 k}
$$

where we used the fact that $a_{j} \geq 3$. However, a result of Hernández and Luca from [6] asserts that if $\varepsilon>0$ is fixed, then there are only finitely many pairs of elements (u, v) in $\mathcal{S}_{\mathcal{P}}$ such that

$$
\operatorname{gcd}(u-1, v-1)<\max \{u, v\}^{\varepsilon}
$$

and such that u and v are multiplicatively independent. Note that $u_{j}<v$ for $a_{j} \geq 3$. Since we have already established that u_{j} and v are multiplicatively independent, the above result applied with $\varepsilon:=1 / 4 k$ gives us only finitely many possibilities for v. Hence, only finitely many possibilities for $n \phi(n)$, and in particular for n, which is what we wanted to prove. The theorem is therefore proved.

3 Proof of Theorem 2

We assume that $n=2^{a} 3^{b}$, where a and b are positive integers. Let $M:=$ $2^{a+1}-1, N:=\left(3^{b+1}-1\right) / 2$. Then $2^{a+1} \equiv 1(\bmod M)$ and $3^{b+1} \equiv 1$ $(\bmod N)$. But we also have $n \phi(n) \equiv 2(\bmod M N)$, which gives $2^{2 a} 3^{2 b-1} \equiv 2$ $(\bmod M N)$. Thus, $2^{2(a+1)} 3^{2(b+1)} \equiv 216(\bmod M N)$. Since $2^{a+1} \equiv 1$ $(\bmod M)$, we get that $3^{2(b+1)} \equiv 216(\bmod M)$. Also, since $3^{b+1} \equiv 1$ $(\bmod N)$, we get that $2^{2(a+1)} \equiv 216(\bmod N)$. Since M divides $2^{2(a+1)}-1$ and N divides $3^{2(b+1)}-1$, we get that both M and N divide

$$
2^{2(a+1)}+3^{2(b+1)}-217 .
$$

Let us now show that a and b are both even and that M and N are coprime. Let $D:=\operatorname{gcd}(M, N)$. Then $2^{a+1} \equiv 3^{b+1} \equiv 1(\bmod D)$, so D divides $1+1-$ $217=-215=-5 \times 43$. But if 5 divides M, then $4 \mid a+1$, so, in particular, $2 \mid a+1$, which implies that $3 \mid M$. This leads to $3 \mid n \phi(n)-2=2^{2 a} 3^{2 b-1}-1$, which is false. Hence, D cannot be a multiple of 5 and $a+1$ is odd, therefore a is even. If 43 divides M, then $2^{a+1} \equiv 1(\bmod 43)$, which implies again that $a+1$ is even, which is a contradiction. Hence, M and N are coprime
and a is even. Let us show that b is also even. If not, then $b+1$ is even, so $3^{b+1}-1$ is a multiple of 8 . Thus, $4|N| 2^{2 a} 3^{2 b-1}-2$, which is impossible. Hence, $b+1$ is odd and therefore both M and N are odd. Since $M N$ divides $2^{2(a+1)}+3^{2(b+1)}-217$ and this last number is even, we get that this last number is a multiple of $2 M N=\left(2^{a+1}-1\right)\left(3^{b+1}-1\right)$. Let $x:=2^{a+1}$ and $y:=3^{b+1}$. We get the equation

$$
\begin{equation*}
x^{2}+y^{2}-217=c(x-1)(y-1) \tag{2}
\end{equation*}
$$

with some positive integer c. Since a and b are even, we have the following congruences: $x \equiv 0(\bmod 8), y \equiv 3(\bmod 8), y^{2} \equiv 9(\bmod 16)$, $x \equiv 2(\bmod 3), x^{2} \equiv 1(\bmod 3), y \equiv 0(\bmod 3)$. Using these congruences, from (2), we conclude that $c \equiv 0(\bmod 8)$ and $c \equiv 0(\bmod 3)$; i.e., $c \equiv 0$ $(\bmod 24)$.

We shall next "diagonalize" the equation (2). Namely, let

$$
\begin{align*}
X & :=c y-c-2 x, \tag{3}\\
Y & :=c y-c-2 y . \tag{4}
\end{align*}
$$

Then

$$
(c+2) Y^{2}-(c-2) X^{2}-(-860 c+1736)=-4(c-2)\left(x^{2}+y^{2}-217-c(x-1)(y-1)\right)=0 .
$$

Hence, we get the Pellian equation

$$
\begin{equation*}
(c+2) Y^{2}-(c-2) X^{2}=-860 c+1736 . \tag{5}
\end{equation*}
$$

From (5), we see that X / Y is good rational approximation of the irrational number $\sqrt{\frac{c+2}{c-2}}$. More precisely, we have

$$
\left|\frac{X}{Y}-\sqrt{\frac{c+2}{c-2}}\right|=\frac{860 c-1736}{(\sqrt{c+2} Y+\sqrt{c-2} X) \sqrt{c-2} Y} \leq \frac{860(c-2)}{\sqrt{c^{2}-4} Y^{2}}<\frac{860}{Y^{2}}
$$

The rational approximation of the form

$$
\begin{equation*}
\left|\frac{X}{Y}-\sqrt{\frac{c+2}{c-2}}\right|<\frac{860}{Y^{2}} \tag{6}
\end{equation*}
$$

is not good enough to conclude that $\frac{X}{Y}$ is a convergent of continued fraction expansion of $\sqrt{\frac{c+2}{c-2}}$, but by Worley's theorem [10, Theorem 1] (see also [1, Theorem 1]), we know that

$$
\frac{X}{Y}=\frac{r p_{k+1} \pm u p_{k}}{r q_{k+1} \pm u q_{k}}
$$

for some $k \geq-1$ and nonnegative integers r and u such that $r u<2 \times 860=$ 1720. Since c is even, we have the following continued fraction expansion

$$
\sqrt{\frac{c+2}{c-2}}=[1, \overline{(c-2) / 2,2}]
$$

(see e.g. [5]). Let $X=d\left(r p_{k+1} \pm u p_{k}\right), Y=d\left(r q_{k+1} \pm u q_{k}\right)$, where $d^{2} r u<$ 1720. Then, by [2, Lemma], we have

$$
\begin{equation*}
(c+2) Y^{2}-(c-2) X^{2}=d^{2}(-1)^{k}\left(u^{2} t_{k+1}+2 r u s_{k+1}-r^{2} t_{k+2}\right), \tag{7}
\end{equation*}
$$

where $\left\{s_{k}\right\}_{k \geq-1}$ and $\left\{t_{k}\right\}_{k \geq-1}$ are sequences of integers appearing in the continued fraction algorithm for quadratic irrational $\sqrt{\frac{c+2}{c-2}}$. From [5], we learn that $s_{k}=c-2, t_{2 k}=c-2, t_{2 k+1}=4$. Let us check whether it is possible that the expression on the right hand side of (7) is identically equal to the right hand side of (5); i.e., to $-860 c+1736$. For k even, we get $d^{2}\left(\left(4 u^{2}-2 r u+2 r^{2}\right)+c\left(2 r u c-r^{2}\right)\right)$, while for k odd, we get $-d^{2}\left(c\left(u^{2}+2 r u\right)-\right.$ $\left.\left(4 r^{2}+4 r u+2 u^{2}\right)\right)$. Comparing these two expression with $-860 c+1736$, we first see that $d=1$ or $d=2$, and then that in both cases the resulting system of two equations has no integers solutions.

It remains to consider all possible triples of integers d, r, u satisfying $d^{2} r u<1720$, and check whether the corresponding right-hand sides of (7) have nonempty integer intersection with $-860 c+1736$, and lastly compute the corresponding positive integer c. There are many such c 's (the largest is 739586), but only three of them satisfy the condition $c \equiv 0(\bmod 24)$. These c 's are 48, 288 and 23328.

Let us solve the corresponding three Pellian equations. The equations are:

$$
\begin{align*}
25 Y^{2}-23 X^{2} & =-19772, \tag{8}\\
145 Y^{2}-143 X^{2} & =-122972, \tag{9}\\
11665 Y^{2}-11663 X^{2} & =-10030172 \tag{10}
\end{align*}
$$

Using bounds for the fundamental solutions of Pellian equations (see e.g. [8]), we find that all solutions of equation (8) are given by (X_{0}, X_{1}) = $(58,192)$ or $(192,58), X_{k}=48 X_{k-1}-X_{k-2}$ for all $k \geq 2$ and $\left(Y_{0}, Y_{1}\right)=$ $(48,182)$ or $(182,48), Y_{k}=48 Y_{k-1}-Y_{k-2}$ for all $k \geq 2$. Assume now that for X, Y defined by (3) and (4) there exists an index k such that $X=X_{k}$ and $Y=Y_{k}$. Then $(X, Y) \equiv(10,0),(0,38),(0,10)$ or $(38,0)(\bmod 48)$. But on the other hand, $X \equiv 0(\bmod 16), Y \equiv 0(\bmod 6)$, and none of these four pairs satisfies this condition.

Completely analogous arguments apply to other two equations, since both other c 's are also divisible by 24 . The fundamental solutions of (9) are $\left(X_{0}, X_{1}\right)=(38,1992),\left(Y_{0}, Y_{1}\right)=(24,1978)$, and we get $(X, Y) \equiv(14,0)$, $(0,10),(0,14)$ or $(10,0)(\bmod 24)$, while the fundamental solutions of (10) are $\left(X_{0}, X_{1}\right)=(218,23112),\left(Y_{0}, Y_{1}\right)=(216,23110)$, and we get $(X, Y) \equiv$ $(2,0),(0,22),(0,2)$ or $(22,0)(\bmod 24)$. In both cases, none of the pairs modulo 24 satisfies the conditions $X \equiv 0(\bmod 16), Y \equiv 0(\bmod 6)$. This completes the proof of Theorem 2.

References

[1] A. Dujella, Continued fractions and RSA with small secret exponents, Tatra Mt. Math. Publ. 29 (2004), 101-112.
[2] A. Dujella and B. Jadrijević, A family of quartic Thue inequalities, Acta Arith. 111 (2004), 61-76.
[3] M. Díaz, Two variations of Subbarao's problem, Preprint, 2010.
[4] R. Guy, Unsolved problems in Number Theory, Springer-Verlag New York, Second Edition, 1994.
[5] B. He, B. Jadrijevic and A. Togbé, Solutions of a class of quartic Thue inequalities, Glas. Mat. Ser. III 44 (2009), 309-321.
[6] S. H. Hernández and F. Luca, On the largest prime factor of ($a b+$ 1) $(a c+1)(b c+1)$, Bol. Soc. Math. Mexicana 9 (2003), 235-244.
[7] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.
[8] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
[9] M. V. Subbarao, On two congruences for primality, Pacific J. Math. 52 (1974), 261-268.
[10] R. T. Worley, Estimating $|\alpha-p / q|$, J. Austral. Math. Soc. Ser. A 31 (1981), 202-206.

