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Abstract. We construct a family of Diophantine triples {c1(t), c2(t), c3(t)}
such that the elliptic curve over Q(t) induced by this triple, i.e.:

y2 = (c1(t) x + 1)(c2(t) x + 1)(c3(t) x + 1)

has torsion group isomorphic to Z/2Z× Z/2Z and rank 5. This represents an
improvement of the result of A. Dujella, who showed a family of this kind with
rank 4. By specialization we obtain two examples of elliptic curves over Q with
torsion group Z/2Z×Z/2Z and rank equal to 11. This is also an improvement
over the known results relating this kind of curves.

1. Diophantine triples and elliptic curves

Definition. A set {c1, c2, . . . , cm} of non-zero integers (rationals) is called a (ra-
tional) D(n)-m-tuple if ci · cj + n is a perfect square for all 1 ≤ i < j ≤ m. A
D(1)-m-tuple is also called a Diophantine m-tuple.

The first rational Diophantine quadruple, the set {1/16, 33/16, 17/4, 105/16},
was found by Diophantus of Alexandria (for the history of the problem see e.g. [Di]).
It is well-known that there exist infinitely many rational Diophantine quadruples
and quintuples (see e.g. [D2]) and several examples of rational Diophantine sextu-
ples were found recently by Gibbs [G1] and Dujella [D7]. Euler proved that there
exist infinitely many integer Diophantine quadruples (the first such set {1, 3, 8, 120}
was found by Fermat). A famous conjecture is that there does not exist an integer
Diophantine quintuple (see e.g. [Gu]). Baker and Davenport [BD] proved that
Fermat’s quadruple cannot be extended to a Diophantine quintuple. It is known
that there does not exist a Diophantine sextuple and there are only finitely many
(at most 10276) Diophantine quintuples [D5, F].

Let {c1, c2, c3, c4} be a rational Diophantine quadruple. Consider a subtriple
{c1, c2, c3} and define the elliptic curve by the equation

(E) y2 = (c1 x + 1)(c2 x + 1)(c3 x + 1).

We say that E is the elliptic curve induced by the Diophantine triple {c1, c2, c3}.
Let

cicj + 1 = t2i,j , 1 ≤ i < j ≤ 4.

Then the curve E has three rational points of order 2:

T1 = [−1/c1, 0 ], T2 = [−1/c2, 0 ], T3 = [−1/c3, 0 ],
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and at least three other rational points:

(1)





P1 = [ 0, 1 ],

P2 = [ c4, t1,4 t2,4 t3,4 ],

P3 =
[ t1,2 t1,3 + t1,2 t2,3 + t1,3 t2,3 + 1

c1c2c3
,

(t1,2 + t1,3)(t1,2 + t2,3)(t1,3 + t2,3)
c1c2c3

]
.

We will first prove that there exists a bi-parametric set of diophantine quadruples
such that these three points are of infinite order and independent, so the elliptic
curve induced by these triples has generic rank greater or equal to 3.

In section 3 we show that adequate choices of the parameters induce subfamilies
of curves with rank 4 and rank 5.

In the last section we show particular examples of curves having rank 10 and 11.
We present also the results of computation on a large set of curves.

Both the families of rank 5 over Q(t) and the particular examples of curves with
rank 11 represent improvements over the known results of curves induced by Dio-
phantine triples. Namely, in [D3] a family of rank 4 over Q(t) was constructed
using the formulas for the extension of a rational Diophantine quadruple to a quin-
tuple in [D2], while in [D6] an example with rank 9 was obtained in the family of
curves induced by Diophantine triples of the form {t−1, t+1, 16 t3−4 t} (of generic
rank 2).

2. Construction of a curve of rank 3 over Q(t)

In [D1] several families of D(n)-quadruples are described. We will use for our
construction the one given by

{a, a(k + 1)2 − 2 k, a(2 k + 1)2 − 8 k − 4, a k2 − 2 k − 2}.
For each a and k this quadruple is a D(2 a(2 k+1)+1)-quadruple. Now we specialize
to the following value of k:

k =
−1− 2 a + n2

4 a
.

The resulting quadruple is a D(n2)-quadruple and once divided by n we get the
following rational D(1)-quadruple:

(2)





c1(a, n) =
a

n
,

c2(a, n) =
((n− 3)(n− 1) + 2 a)((n + 1)(n + 3) + 2 a)

16 an
,

c3(a, n) =
(n− 3)(n− 1)(n + 1)(n + 3)

4 an
,

c4(a, n) =
((n− 3)(n− 1)− 2 a)((n + 1)(n + 3)− 2 a)

16 an
.

In the terminology of [G2], (2) is an irregular and twice semi-regular Diophantine
quadruple. A Diophantine triple {a1, a2, a3} is regular if (a3−a2−a1)2 = 4(a1a2 +
1), while a Diophantine quadruple {a1, a2, a3, a4} is regular if (a4 +a3−a1−a2)2 =
4(a1a2 + 1)(a3a4 + 1). It can be checked that (2) is irregular, but it contains two
regular triples: {c1, c2, c4} and {c2, c3, c4}.

Now we define the elliptic curve associated to the triple {c1, c2, c3} as explained
above, i.e.:

y2 = (c1(a, n)x + 1)(c2(a, n)x + 1)(c3(a, n)x + 1).
Note that we choose an irregular triple which is a subtriple of an irregular quadruple.
Otherwise, by [D4], the points P1, P2, P3 would not be independent.
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Besides the 2-torsion points, this curve has the points with x-coordinate given
by

0, c4(a, n) and
t1,2 t1,3 + t1,2 t2,3 + t1,3 t2,3 + 1

c1(a, n)c2(a, n)c3(a, n)
,

where as before ti,j = ti,j(a, n) =
√

ci(a, n)cj(a, n) + 1, 1 ≤ i < j ≤ 3. In terms of
a and n, the three rational points (1) are:

P1 = [ 0, 1 ],

P2 =
[ (n2 + 4 n− 2 a + 3)(n2 − 4 n− 2 a + 3)

16 an
,

− (n2 − 2 a + 3)(n4 − 10 n2 − 4 a2 + 9)(n4 − 2 an2 − 10 n2 − 6 a + 9)
512 a2 n3

]
,

P3 =
[ 6 n

(n− 3)(n + 3)
,
(n2 + 6 a− 9)(3 n2 + 2 a− 3)

4 a(n− 3)(n + 3)

]
.

Theorem 1. The curve y2 = (c1(a, n)x+1)(c2(a, n)x+1)(c3(a, n)x+1) has torsion
group Z/2Z×Z/2Z and rank 3 over Q(n, a). The points P1, P2 and P3 are of infinite
order and independent.

Proof. Since the specialization map is always a homomorphism, see [Si], it is enough
to prove that there exist values of a and n such that the specialized three points
are Q-independent. Consider for example a = 2 and n = 5. Then the specialized
points are

Q1 = [0, 1], Q2 = [11/10,−1173/125], Q3 = [15/8, 133/8].

A calculation using J. Cremona’s program mwrank [C] shows that the elliptic curve
induced by the triple having these parameters has rank 3, and from obtained gen-
erators it is easy to check that the three points Q1, Q2 and Q3 are independent.
Thus, by the specialization theorem of Silverman, the proof is finished. ¤

The symbolic calculations in this and the next sections were carried out with
Mathematicar[M].

3. Search for higher rank

3.1. Change of variables. Now we look for conditions on a and n such that there
are new rational points on the curve. This task is made simpler by means of a
change of variable. The coordinate transformation

x 7→ c1(a, n)c2(a, n)c3(a, n)x, y 7→ c1(a, n)c2(a, n)c3(a, n) y

applied to the curve leads to

y2 = (x + c1(a, n)c2(a, n))(x + c1(a, n)c3(a, n))(x + c2(a, n)c3(a, n)).

Next, the change x 7→ x− c1(a, n)c2(a, n) transforms it into

y2 = x(x + c1(a, n)c3(a, n)− c1(a, n)c2(a, n))

× (x + c2(a, n)c3(a, n)− c1(a, n)c2(a, n)).

From this point on, in order to avoid denominators, we will make, when necessary,
the appropriate change of variables to write the curve as

(3) y2 = x3 + Ax2 + B x
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where A and B are integers. This leads to the following values of the coefficients
A and B:

A = 81 + 108 a + 108 a2 − 96 a3 − 32 a4 − 180 n2 − 84 a n2 − 120 a2 n2

− 32 a3 n2 + 118 n4 − 28 an4 + 12 a2 n4 − 20 n6 + 4 an6 + n8,

B = 4 a2(9 + 2 a− n2)(3 + 2 a− 4 n + n2)(3 + 2 a + 4 n + n2)

× (−3 + 2 a + 3 n2)(−9 + 4 a2 + 10 n2 − n4),

and the corresponding value of the discriminant is

∆ = 16(A2 − 4 B)B2 = 256(n− 1)2(n + 3)2(n− 3)2(n + 1)2a4(6a− 9 + n2)2

× (−2a− 1 + n2)2(−9− 2a + n2)2(3 + 2a− 4n + n2)2

× (3 + 2a + 4n + n2)2(−3 + 2a + 3n2)2(9− 4a2 − 10n2 + n4)2.

Finally, the x-coordinates of the three infinite order points are

x1 = 4 a2(3 + 2 a− 4 n + n2)(3 + 2 a + 4 n + n2),

x2 =
(3 + 2 a− 4 n + n2)(3 + 2 a + 4 n + n2)(9− 6 a− 10 n2 − 2 an2 + n4)2

16 n2
,

x3 = 2 a(3 + 2 a− 4 n + n2)(3 + 2 a + 4 n + n2)(−3 + 2 a + 3 n2).

Remark. Considering a as a variable, for fixed n, formula (3) defines a K3 surface E .
Hence its Picard number satisfies rank NS(E ,C) ≤ 20. We can estimate rankC(a)E
using Shioda’s formula [Sh, Corollary 5.3]:

rankC(a)E = rank NS(E ,C)− 2−
∑

s

(ms − 1).

Here the sum ranges over all singular fibres, with ms the number of irreducible
components of the fibre. The numbers ms can be easily determined from Kodaira
types of singular fibres (see [Mi, Section 4]). In our case, we have eight fibres of
type I2 and two fibres of type I4 (we can read this from the factorization of the
discriminant ∆), which gives rankC(a)E ≤ 4. It can be shown that for n = −7/3,
rankC(a)E ≤ 4 (since the point with x-coordinate x4 = 4

9x3 is also rational and
independent of the three others) and hence rank NS(E ,C) = 20.

3.2. Construction of a curve of rank 4 over Q(t). Now we look for those
polynomial factors of B that can be conditioned in a simple way to yield a new
point in the curve. We find that the factor

B1 = (3 + 2 a− 4 n + n2)(−3 + 2 a + 3 n2)(−9 + 4 a2 + 10 n2 − n4)

satisfies the equation of the curve (i.e. B1 + A + B/B1 is a perfect square) if

2(9 + 6 a + 8 a2 − 18 n− 4 an + 8 n2 − 2 an2 + 2 n3 − n4)

is a square. A solution in terms of a is given by

(4) a =
18−m2 − 36n + 16n2 + 4n3 − 2n4

4(−3 + 2m + 2n + n2)
.

It will be shown later that this value of a followed either by the substitution m =
18− n− n2 or by n = −7/3 leads in both cases to families of curves of rank 5.

For a given by (4), the values of A and B in (3) are polynomials in m and n
of degree 16 and 29 respectively, whose explicit expressions are too long to include



ELLIPTIC CURVES FROM DIOPHANTINE TRIPLES 5

here. The x-coordinates of the preceding points jointly with the new one became

X1 = m(−12 + m + 16 n− 4 n2)(−18 + m2 + 36 n− 16 n2 − 4 n3 + 2 n4)2

× (−12 m + m2 + 48 n− 16 mn− 32 n2 − 4 mn2 − 16 n3),

X2 =
1

16 n2
m(12−m− 16 n + 4 n2)

× (12m−m2 − 48 n + 16 mn + 32 n2 + 4 m n2 + 16 n3)

× (−108 + 36 m + 3 m2 + 144 n + 12 n2 − 40 mn2 + m2n2

− 16 n3 − 36 n4 + 4 mn4 + 4 n6)2,

X3 = m(−12 + m + 16 n− 4 n2)(−18 + m2 + 36 n− 16 n2 − 4 n3 + 2 n4)

× (−36 + 12 m + m2 + 48 n + 8 n2 − 12 mn2 − 16 n3 − 4 n4)

× (−12 m + m2 + 48 n− 16 mn− 32 n2 − 4 mn2 − 16 n3),

X4 = −m(12−m− 16 n + 4 n2)

× (36− 12 m−m2 − 48 n− 8 n2 + 12 mn2 + 16 n3 + 4 n4)

× (−432 m + 180 m2 −m4 + 864 n + 288 mn− 72 m2n− 2304 n2

+ 624 mn2 − 128 m2n2 + 1632 n3 − 320 m n3 + 8 m2n3 + 256 n4

− 208 mn4 + 12 m2n4 − 480n5 + 32 m n5 + 16 mn6 + 32 n7).

It can be proved, by specialization that this is a family of rank ≥ 4 over Q(m, n).

3.3. Construction of curves of rank 5 over Q(t). As was mentioned before,
the substitution m = 18 − n − 2 n2 gives an additional point on the cubic and a
subfamily of rank 5. We also have observed experimentally that in the subfamily
obtained by letting n = −7/3 there were many curves of high rank. In fact this
choice for n gives a new point on the cubic and a family of rank 5 with smaller
coefficients. We provide here a unified derivation of these two rank 5 families.

We impose on m and n the condition that

(−12 m + m2 + 48 n− 16 mn− 32 n2 − 4 mn2 − 16 n3)

× (−36 + 12 m + m2 + 48 n + 8 n2 − 12 mn2 − 16 n3 − 4 n4)

× (432 m− 180 m2 + m4 − 864 n− 288 mn + 72 m2n + 2304 n2

− 624 mn2 + 128 m2n2 − 1632 n3 + 320 mn3 − 8 m2n3 − 256 n4

+ 208 mn4 − 12 m2n4 + 480 n5 − 32 mn5 − 16 mn6 − 32 n7)

becomes the x-coordinate of a new point in the cubic. This is equivalent to forcing

H = 324− 108m + 45m2 − 6m3 + m4 − 864n− 432mn + 216m2n− 4m3n

+ 1584n2 + 84mn2 + 22m2n2 + 2m3n2 − 1632n3 + 480mn3 − 24m2n3

+ 216n4 + 28mn4 − 3m2n4 + 480n5 − 48mn5 − 80n6 − 4mn6 − 32n7 + 4n8

to be a perfect square. Now from the identity

(5) H − (m2 + (−3− 2 n + n2)m + (−2(−9− 51 n− 6n2 + 5 n3 + n4)))2

= −12n(n− 3)(1 + n)2(7 + 3n)(−18 + m + n + 2 n2),

we see that in order for H to be a perfect square, it is enough that the right hand
side of (5) vanishes. For n = 3, n = 0 and n = −1 we get singular curves, but the
other two solutions, n = −7/3 and m = 18− n− 2n2 give families of rank 5.
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If we take n = −7/3, then A and B are

A = −2(167772160000000 + 1323093196800000m− 32195543040000 m2

− 14929920000000 m3 − 1863701913600m4 + 285400350720 m5

+ 5952139200 m6 − 2908045152m7 + 43046721 m8),

B = 81 m(−640 + 9 m)(−160 + 9 m)(−80 + 9 m)2(32 + 9m)

× (80 + 9 m)2(−2240 + 96 m + 27 m2)(3200 + 240 m + 27 m2)

× (−1600− 4320 m + 81 m2)(4480− 720 m + 81 m2).

Note that for n = −7/3 the coefficient B has 10 irreducible factors, compared with
7 factors for general n and m.

The quadruple is now

(6)





q1 =
(−80 + 9 m)(80 + 9 m)

168(−10 + 9 m)
,

q2 =
9 m(−640 + 9 m)(−2240 + 96 m + 27 m2)
224(−80 + 9 m)(−10 + 9 m)(80 + 9 m)

,

q3 = − 2560(−10 + 9 m)
21(−80 + 9 m)(80 + 9 m)

,

q4 =
(−6080− 288 m + 81 m2)(−12800 + 5760 m + 81 m2)

(672(−80 + 9 m)(−10 + 9 m)(80 + 9 m)
.

The four old points of infinite order and the new fifth independent point, have the
following x-coordinate:

(7)





X1 = 27m(−640 + 9 m)(−80 + 9 m)2(80 + 9 m)2(−2240 + 96m + 27 m2),

X2 =
3
49

m(−640 + 9 m)(−2240 + 96 m + 27 m2)

× (−108800− 11520 m + 1539 m2)2,

X3 = 27 m(−640 + 9 m)(−80 + 9 m)(80 + 9 m)(−2240 + 96 m + 27 m2)

× (−1600− 4320 m + 81 m2),

X4 = 27 m(−640 + 9 m)(3200 + 240 m + 27 m2)(−1600− 4320 m + 81 m2)

× (4480− 720 m + 81 m2),

X5 = 9(−2240 + 96 m + 27 m2)(3200 + 240 m + 27 m2)

× (4480− 720m + 81m2)(−1600− 4320 m + 81 m2).

Theorem 2. The elliptic curve induced by the first three components of the Dio-
phantine quadruple (6) has torsion Z/2Z×Z/2Z and rank 5 over Q(m). The points
with x-coordinate given in (7) are of infinite order and independent.

Proof. As before, we use that the specialization map is a homomorphism, so that
it is enough to prove that there exist a rational value such that the specialized five
points are Q-independent. For m = 16 we get the curve given by

y2 = x3 + 733622402025521152 x2 − 22059123095111248243290996656308224 x
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whose rank calculated with mwrank is exactly 5. So it is enough to show that the
corresponding points are Q-independent. The points are:

Q1 = [−273384014239236096,−201067862412481467997224960 ],

Q2 = [−1503650823215775744/49,−12550524037091300844314296320/343 ],

Q3 = [ 953182656789479424, 1229443967479836961249689600 ],

Q4 = [ 2046570199951343616, 3405811357277517803755143168 ],

Q5 = [−533648681170108416,−262145992018866595147284480 ].

These five points are of infinite order and independent over Q, since the determinant
of their height matrix is ≈ 4075.770347 6= 0 (calculated in PARI/GP [P]), so the curve
has rank at least 5 over Q(m). ¤
Remark. A similar argument yields other pairs of substitutions, like n = 9/7, m =
(15− 16 n + 3 n2)/2 and n = −9/7, m = (15− 2 n + 3 n2)/2, that produce families
of rank ≥ 5.

3.4. Families of rank 6. The condition for the divisor of B given by:

27(80+ 9m)(−80+ 9m)2(−160 + 9m)(−2240+ 96m + 27m2)(3200 + 240m + 27m2)

to be the x-coordinate of a new point on the curve gives the quartic equation

y2 = (81m2 + 1728m + 11840)(27m2 − 480m + 5120)

which is birationally equivalent to an elliptic curve of rank 3. So the points on this
elliptic curve give a parametrization for an infinite family of curves with rank 6.

There are other divisors of B with the similar property. For example, the five
divisors:

9m(−640 + 9m)(−160 + 9m)(−80 + 9m)(−1600− 4320m + 81m2)

× (4480− 720m + 81m2),

3(−80 + 9m)2(80 + 9m)2(3200 + 240m + 27m2)(4480− 720m + 81m2),

3(−160 + 9m)(−80 + 9m)2(80 + 9m)(−2240 + 96m + 27m2)

× (4480− 720m + 81m2),

3(−640 + 9m)(−80 + 9m)2(32 + 9m)(80 + 9m)2(−2240 + 96m + 27m2),

3(−640 + 9m)(−160 + 9m)(32 + 9m)(80 + 9m)(−2240 + 96m + 27m2)

× (−1600− 4320m + 81m2)

are the x-coordinate of a new point on the cubic provided that the corresponding
values of m satisfy a quartic equation equivalent in all five cases to an elliptic curve
of rank 2.
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4. The case n = −7/3

4.1. Search results. We have run a search for elliptic curves of high rank corre-
sponding to n = −7/3. We write m = r/s. Hence, we are considering the family of
elliptic curves (3) where the coefficients A and B are integers verifying:

(1) A > 0;
(2) If d ∈ Z is such that d2 | A and d4 | B, then d = ±1.

They depend on two parameters r, s ∈ Z and are computed by the following algo-
rithm:

(1) Compute

a1 = −2(43046721 r8 − 2908045152 r7s + 5952139200 r6s2 + 285400350720 r5s3

− 1863701913600 r4s4 − 14929920000000 r3s5 − 32195543040000 r2s6

+ 1323093196800000 r s7 + 167772160000000 s8),

b1 = 81 r(9 r − 640 s)(9 r − 160 s)(9 r − 80 s)2(9 r + 32 s)(9 r + 80 s)2

× (27 r2 + 96 r s− 2240 s2)(81 r2 − 4320 r s− 1600 s2)

× (27 r2 + 240 r s + 3200 s2)(81 r2 − 720 r s + 4480 s2).

(2) If a1 < 0, let a2 = −2 a1 and b2 = a2
1− 4 b1; otherwise a2 = a1 and b2 = b1.

(3) Compute D = max{ d ∈ Z : d2 | a2, d4 | b2 }.
(4) Let A = a2/D, B = b2/D.

The unrestricted family. We have computed all such curves for−1 000 ≤ r ≤ −1
and 1 ≤ s ≤ 1 000, obtaining a total of 608 381 different curves. We have found
that:

• 93.60% of the values of A are square-free;
• 10.97% of the values of B are perfect squares (they correspond to the case

a1 < 0, since a2
1 − 4b1 is always a perfect square);

• the possible values of gcd(A,B) are { 1, 5, 7, 25, 35, 175 }.
We were running mwrank (with the default options, except the precision) on the

23 154 curves among them with 1015 ≤ A < 1022. We have refined the obtained
results by using mwrank with increased height bound for quartic point search. Also,
we have used the data which conditionally give information of the rank (like root-
number which conjecturally determines the parity of the rank, and Mestre’s formu-
las [M2] which give upper bounds for the rank assuming the Birch and Swinnerton-
Dyer conjecture and GRH). The refined results on rank distribution are given in
Table 1. The results in the first column are unconditional, while the results in the
last three columns are conditional and depend on the above mentioned conjectures.

Table 1. Number of curves with rank R.

R = 5 4877 R = 5∗ 15 R = 5 or 7 2404 R = 5 or 7 or 9 27
R = 6 6153 R = 6∗ 3758 R = 6 or 8 967
R = 7 3342 R = 7∗ 616 R = 7 or 9 131
R = 8 762 R = 8∗ 16 R = 8 or 10 1
R = 9 76
R = 10 9
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A restricted family. A detailed analysis of the results suggests that curves of
high rank can be found for pairs (r, s) satisfying some divisibility properties, in
particular, the most of high rank curves satisfy 9 | s.

Here we report results on the search on pairs (r, s) such that r s < 0, 10 | r, 9 | s
and gcd(r, s) = 1. We have computed all such pairs with −20 000 ≤ r ≤ −10 and
9 ≤ s ≤ 18 000, for a total of 1 013 908 different curves. Running mwrank on the
58 260 curves in this restricted family with 1010 < A ≤ 1021, after above mentioned
refinements, gives the results which are presented in Table 2.

Table 2. Number of curves with rank R in the restricted family.

R = 5 12733 R = 5∗ 94 R = 5 or 7 5975 R = 5 or 7 or 9 20
R = 6 15889 R = 6∗ 9052 R = 6 or 8 2310
R = 7 8544 R = 7∗ 1392 R = 7 or 9 212
R = 8 1794 R = 8∗ 37
R = 9 202
R = 10 6

Results. Apart from the two described systematic searches, we performed several
similar searches for r and s satisfying some congruence properties and sieving for
curves with large Selmer rank. All searches combined produced

• over 450 curves of rank 9;
• 49 curves of rank 10, given in table 3;
• 2 curves of rank 11 (see Subsection 4.2).

Among the curves of rank at least 9 we find that:
• 92.1% of the values of A are square-free;
• The values of A have few divisors; 89.1% of them have less than 32 divisors;

in particular, (r, s) = (−97, 5), (−406, 9), (−3530, 9), and (−7088, 6057)
yield curves with rank 10 and prime A;

• 26.7% of the values of B are perfect squares.
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Table 3. Curves with rank 10.

A B r s

747855613433348693 37971496662597382325245674854656 -11860 477
2748683743713727033 912317634326203873339784207988335616 -48 25
3351364638294432929 -8790232486857655134490909037324384000 -560 2547
4552418484376711606 2855015032276620553646153783733528409 -412 261
5631826628732300518 4046067214731363356410390215076327081 -152 243
7164838580600101729 18012992210099780625832439971840000 -406 9
9698787151884024353 93218017572430494149711412330496 -3530 9

28429980819035946214 8354606335610095567648865047883891625 -120 319
48386624390778183446 340722320204726405618912807689617461625 -1880 2331
63788123186512356001 11053177808588079790897996852248576000000 -11 135
158812592576004664822 -44603493302827981235081787433061762927079 -6740 639
491529834940711863545 -7676647487828248273287320373006800460800 -25840 2691
778121977076533994270 83655062993263641543386221902648520158625 -3560 5031
1056137838517295947582 34512967148351962338870714425590255551681 -70 177
1091379930771597822721 -99230443006894220402738531558010722304000 38960 3393
1202915055786699743638 535384460107862619444176358949623452025 7840 2511
2345704511683192121806 -9021007624126018079268837610331566365759375 -14860 2421
3096864334610439252022 -858506739076820940781279898390463769667879 -5 26
3680846006105025380243 3823549253805545206347080657925803772900 10328 2907
4885687808873671787369 3118755512745506309643405416789786786304000 -8720 13509
5023109290447026238846 1723070287154900074835283434344651911846529 -655 243
7047313964717027055110 6084830913523359929845160579967868674940425 -2780 4653
15589866837195270063049 -14808693577819579795869536699563843431366656 -19120 2727
22139410900834785059195 67333232930079070871634265475186452636354200 -12160 7659
23181931498764073443710 -12967800283686080932588185743965480741998975 -15830 2007
23257211533069660662025 -27132066881171717478483233427423298974489600 -6736 927
40885960071623533402094 -220893566183419511743172152334517081828022191 9598 171
80771928519688044328345 77324613543240798903960113376871736934400 -4010 339
96614818471635996006845 169674207344719455092048156293205053190400 1528 1899
162148129016051669054785 -700643054670341159978745564045962362178355200 -18800 2403
251653795575144603139313 9500504302425532445298117719109224213222670336 -7088 6057
303232848545484408282614 -5137680136645293513114838905990362310215334375 10060 2313
792730824646378117452517 107891184684808592438523258292998789909817600 2372 1089
845779368201476985117505 13952080245255725782550668020845259700382736400 -3400 299
988206562952637534705025 40364086610566126633826529224573064425216409600 -10640 3501
1204984595901565426253893 420361950788928178283791597629917345020422400 4780 1887
1254563782532106917825761 326334421011475076633583096252694675456000000 -97 5
2030352548876158303263854 527855941658733788306437169014252525293116542929 -181 288
2808247758775739846532046 -1945389600097873918362570245190829347577215375 -590 67

16730231396187018599477614 27509641048934349748161545663922629551913847804625 -4495 1971
92396300635364317824884062 517416068178189153899285426436670772369894021025 8656 4779
241356562285348827406451894 239196310124712567231437666988573024891642683265625 -44512 3285
475668889686708922071772558 237299543025483671693929700036501768931787510065841 -6480 379
1065106187134410385004630206 165031175519231666816637006489377599410518421854950209 6379 153
1295550337351599466735479278 -1191028993105954789455460301623377887327310454446389679 -5251 504
15261589260842425625239688446 30762348642821753093008971647383863114675558937411267329 -5690 3339
74973225218344110887745123037 102057068281404548823715018616769051480908329932871936 9380 5949
145180882575715752344574776750 72045133957864532082055079217635254812796237330979963025 -8503 2421
644532051041139515872833852058 1274887683275001565151201365742517281374998797744323464841 10880 30411

4.2. Examples of curves of rank 11. Here we give some details on two curves
with rank equal to 11. It can be mentioned that at present there are only few curves
known with torsion group Z/2Z × Z/2Z and rank ≥ 11 (due to Elkies, Eroshkin,
Dujella and Kulesz; the record is a curve with rank 15 found by Elkies in 2009; see
[D8] for details).

The first example with rank equal to 11 is found in the above described restricted
family satisfying 10 | r, 9 | s. We have considered 27599 curves with 1021 < A <
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1022 in this family and searched for those with Selmer rank 11. We have found
two such curves, and found by mwrank that one of them has rank equal to 11. The
details are given in the next theorem.

Theorem 3. The curve

y2 = x3 + 1787870057062165563398 x2

− 301069261225971027223871802145102310673399x,

corresponding to the values of the parameters r = −15580 and s = 2853, has rank
11. The curve is induced by the rational Diophantine triple

{ 333661
832125

, −1395935438579
1110590638500

, −12680000
7006881

}
.

Proof. The minimal Weierstrass equation for this curve is

y2 + xy = x3 + x2 − 85410148429528838113064973147497868527637 x

+ 9417959408910091992056619228397233938042315542716439821913629

Torsion points are O and:

[ 187730162413280809858,−93865081206640404929 ],
[ 595956685687388521131

4
,−595956685687388521131

8

]
,

[−336719333835127940142, 168359666917563970071 ].

Independent points of infinite order are:

Q1 = [−88291577656194741642,−4033694058765621728866261579929],

Q2 = [132528792265728660983, 652974346675488175822158820071],

Q3 = [189017660415735476733, 164604668668583485247330704446],

Q4 = [231479176857636247358, 1431973063223311302410325407571],

Q5 = [−180297353866722177267,−4353875583289214026458585211554],

Q6 = [909604797725054454039, 26159474457841141855998719225058],

Q7 =
[756047350491789564987

4
,
1313753394405646302437152995393

8

]
,

Q8 = [55630593261979172358, 2199705816140670969296027170071],

Q9 =
[
−1273208682650879588693

4
,−16694920515417325034029558911307

8

]
,

Q10 = [1080524808274356861913, 34331901735067855866097775725846],

Q11 =
[204885642862796148902747

2209
,
157250952026186871978974423595399558

103823

]
,

so that its rank is at least 11. mwrank (which uses 2-descent, via 2-isogeny if possible,
to unconditionally determine the rank) establishes that in fact it is exactly 11. ¤

The second example with rank 11 is found in the family satisfying similar con-
gruence conditions: 16 | r, 9 | s and gcd(2 r, 3 s) = 1. Within this family, we have
searched for curves with

(1) relatively large Mestre-Nagao sums S(N,E) =
∑N

p=2

−ap + 2
p + 1− ap

log p, where

ap = ap(E) = p + 1 − #E(Fp), since it is experimentally known [M1, N]
that we may expect that high rank curves have large S(N, E) (we take e.g.
S(523, E) > 23 and S(1979, E) > 38);

(2) root-number of E equal to −1 (conjecturally this implies that rank is odd);
(3) Selmer rank ≥ 11 (as implemented in mwrank with option -s).
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We perform the search in various ranges of parameters r and s. Only few curves
pass all the tests, and for them we try to compute the exact value of the rank using
mwrank. In that way, we find the curve

y2 = x3 + 1882427411594061629729591113 x2

+ 3985360872467971058284926976004481058021394284609536 x,

which has rank 11. It corresponds to the values of the parameters r = −10768 and
s = 29205, and is induced by the rational Diophantine triple

{ 795025
3128544

, −22247424
7791245

,
24807390285149
97501011189120

}
.

Finally, let us mention that we also found two curves for which mwrank gives 9 ≤
rank ≤ 11 (corresponding to the parameters (r, s) = (14920, 128853), (−25936, 14319)).

Acknowledgement: The authors would like to thank the referee for useful
comments on the first version of the manuscript.
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