CHAPTER 23
Local Methods or p-Adic Applications

1. One of the most important applications of p-adic numbers to Diophantine
equations deals with the

Problem

Let wy, wa, ..., w, be a basis of the integers in an algebraic mumber field
K = Q). Denote by N(w) the norm of w in the field. Then it is required 1o
discuss the solution in rational integers = of the equation

Nxjop + xpup + 0 4+ yo) = g, {H
where the o satisfy the 1 — m1 cguation
@) =0, {{=12,..,0—m (2}
Jor given m < n, and the gl are polynomials in x with rational coefficients.
The simplest problem is when x4, = Xgag =+ e xy = 0,

From algebraic number theory, it is known that the general solution of
equation (1) is given by

x!wil) o _‘»2w{2ﬂ R xnw?} - C{”E{’), (S - E, 2, s ?’.'), {3)

where o' denotes the conjugates of w, the ¢ belong to a finite set of numbers
in Kand ¢ is 2 unit in K. We recall that every unit » can be written in the form

¢ = {nimis. gl *

where { is a root of unity in K, the 5 are a set of fundamental units, and the u
are arbitrary rational integers. Also r =y 4 ry — | where 7y, r, denote
respectively the number of real fields and pairs of complex fields among the
conjugates of X On substituting for the « from equations (3) and (4) in (2),
we have n — m equations in the r unknowns u which occur as exponents in
the powers of the units 4. I 7 € # ~ m, we should expect there to be only a
finite number of solutions if the equations resulting from {2) are independent.
As these equations are best dealt with by p-adic methods, we give a brief
résumé of p-adic number theory where p is a rational prime. For simplicity
we define the p-adic numbers over the rational field 0. Let ¥ be any number
in Q. We define a valuation x|, as follows, If x = 0, [x], = 0. f x £ 0, x
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can be written in the form x = p®x /x,, where Xy, ¥p are prime to p. Then
Ix| = 1/p®. The valuation has the properties

Lo, 2 0,and ix|, = 0ifand only if v = 0,
2 [xixal, = xfpival,

3. E.Yl = .\'2|p £ ;'\.lgﬁ e 1.\:259.

This is the triangular inequality and may be sharpened to
vy & x|, € max (s, [Xalp)

The p-adic field @, is defined as a field which contains the field @ and is
such that if Y& @, then

I. There is a valuation | X[, on Q, which satisfies 1, 2 and 3 and coincides

with x|, when X = x iy an element of £.

i, Limits are defined as for complex number theory, except that an absolute
value Lx| there is replaced by x|, and corresponding results exist for the
p-adic field, Thus Cauchy's convergence principle holds, {.e. a sequence
X X ..o, tends to o Bimig if und ondy i JX, — X1, < e for m, n >
N{z), This limit will be {n @, and 50 the field @, is complete,

115, Every clement of @, is u limit of a sequence of numbers of £,

The discussion of convergence is now very simple since a series 2 g, con-
verges if and only if {a,!, — 0, and so there {s no need for the concept of
absohiie convergence. The usual resuits on functions of a complex variable
carry over to p-adic variables, There is, however, greater simplicity since if
[2.]» > 0, the series

Jio = 2 a,x"

converges for Ix[, < 1.

We can define series which have the characteristic properties of the ex-
ponential and logarithmic functions,
Thus we have

x* X" 7 1
i’**"f'l“x%"z"’!'"é"“'*f*;ﬁ*i*'“ I%X|,<};—:T X
# -y iyt o
tog (1 ~+«.\'}=.\'-:}2-~+ +—(---~};1--~- g lfg.\'1,< i. o«

Similar results hold when v is 4 number in an algebraic number field X,
If 4 is & unit in X, there exists 2 rational integer a such that if p iz an odd
prime, then 5* = | (mod p), butif p = 2,%° = | (mod 4), Then 5o = v o8
can be expanded as a power series in ¢ with coefficients in X which converges
for all p-adic integers v. Since w = av + b, 0 £ & < a4, we have g expansions



203 PHOPHANTINE EQUATIONS

for #". It follows at once that the product i, .. can be expressed as a
finite number of power secries in py, 1y,.. . with coefficients in K which
converge lor all p-adic integers &y, 1, .. ..

2. We now show by a method due to Skelem how p-adic theory can be applied
to the equations arising from (2). 1t is obvious that equations will huve only 8
finite number of rutional solutions # they have only a finite number of p-adic
solutions, The equations (2) can be replaced by a finite number of equations

gl g ooy = Q0 s B2000 00— ), {5}

wiere the gle) are power series converging for all p-adic integers 1. The
cocfficients may be taken as rational numbers whose denominators are prime
to p since we are considering a set of conjugatc equations.

The finiteness of the number of p-adic solutions can be proved from the
following theorems.,

Theorem 1

Let flx} = 3§ a,x® where o, 0 5o that the serivs converges when
|¥ja € L. Then the equation f{x) = 0 has anly a finite wmunber of solutions for
lx|, € 1, e for p-adic integers x,

More generally we have a result given by Strassmann?

Theorem 2
Let fofx) £i{x), . .. be palynomials whose coefficients are p-adic integers, and
suppose that fo(x} has at least one coefficient #0 (mod p). Then the equation

> P =0 ©

has only a finite monber of sofutions in p-adic integers.
There are extensions to several variables,

‘Fheorem 3

Lot [l 31 A0 9 Bolsy 1 gl o
officients are p-adic infegers and suppose that

O 8 Mo fee

be polynomials whose co-

Bx 2y Ay By # 0 {mod p}.
Then the simultancous egquations
Z Pf(x, ¥} = 0 z gy} = 0 )
g i

have anfe @ finite manher of p-adic solutions,
This also holds if f5, g, are relatively prime mod g
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Skolem has proved many results by his methods. When the question is only
to prove the existence of a finite number of integer solutions, the work may
not be too complicated as can be scen from his2? proof of

Theorem 4

Letay, gy @n, by, by, . ., by be numibers in an algebraic number field K.
Then the equation

kel

2 aby w G (63
jm]
has only a finite manber of rational integer solutions for x, if none of the
quorients b,{b; is a root of unity,

When the numerical values of the fundamental units of the relevant
algebraie number ficld play no part in an investigation, and only an cstimate
for the number of solutions is required, the details may not be troublesome
as in Skelem's proof of Theorem 5

‘Fheorem 5

If d is an integer > 1, there is at most one rational integer solution af x* +
dr® == 1 other than x = |, 3 = 0,

Let us suppose there are two sohutions (v, 3,) and (x,, .}, Write § = ¥4,
Then 5, = x; + 348, my = N, + 3.8 arc positive units with norm 1 in the
field Q(6). Since therc are no roots of unity in the feld and there is only one
fundamental unit, we have

with rational integers. #,, #,. We may suppose that u, u, are not both
=0 (mod 3), for if so, we would have 7§2® = 732% Hence we may suppose
that u; # 0 {mod 3). Then w,/u, is a 3-adic integer and so we have, say, the
J-adic cquation

7% = 3.

_ Supposéﬁrst that 3 = 0 {mod 3) and so x, # 0 {mod 3
Then #f is defined in the 3-adic field over Q(8) and so

wly o9\
L ('E +-x1 8) = M.

and the left-hand side can be expanded as a binomial serics. Eguating the
cocfficient of 62 to zero, we have

B+ (@ e (e o
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We show that the only solutions of this equation are u = 0, }. For on
dividing out by
NYSAL
2 (2) (-"z) !
we have‘_

i -2 d yi)"‘ (z: -~ 2% d* [y\®
z"*’( 3 )4.5(::1 t16 )?“S(}Z) +
This gives an impossible congruence mod 3, since 4, 5,7, 8,... are 3.adie

units.
Suppose next that y; # 0 (mod 3). Since

o} = &} + 3xipif + 3010 + A0
w14+ 3xdy 8 4 3, pi0% = ] 4 38,

0.

It

say, 7f is defined for w = G (med 3). Write u = 3o 4 1, 11y = 0, 1, 2.
7, {mod 3)

Comparing coefficients of 87, we see that wy = 0, 1,
Take firs{ #y == 0. Then

Then i ¥ wm g, {mod 3), e

#

(4 38 = vy + 300
Denote by b, the coefficient of £2 in &, Then

5, m() o

I=

or Byl & iyl (;) Ao o=
Divide out by 3x, ¥}, and we have, say,
B . v
u+332(2) +3233(3) s om0,

where the B are polynominls in x,, y, with integer coeflicients. This is im-
possible, for if 3 is the highest power of 3 dividing v, all the other terms are
divisible by 3**%, For the general term is

ferpg VY -1 BB [y~ 1
3 B'(:)“3 r(rwi)

and 3*%¢ is & 3-adic integer. This is obvicus on putting £ = £,3* where 3 is
the highest power of 3 dividing +

Suppose next 4y = 1. Then

(s + yif?}(i KLY (*’)) = %y + yob.

boa !
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Denote by ¢, the coefficient of ¢ in & Then

X3 z 3, (?) + z ey (;) = 0
i={

i=4

Dividing out by 31332, we have, say,

Zu+3c1(§)+32c’3(g) A vvoas ()

and this is impossible as before.

3. When it is required to find ail the integer solutions of an equation, the
process may not be very complicated i fundamental units are not involved as
in the following theorem. This deals with 2 conjecture enunciated by Rama-
nujan and first proved by Nagell. Many other proofs have been given and
these have been analysed and discussed by Hasse. He has given a simpler
version of Nagell's* proof as well as a generalization. We give Hasse’s® proof
of

Thearem 6
The eguation x* 4 7 = 2* has only the positive integer solutions given by
x = 1, 3,5 11, 181 corresponding ton = 3,4, 5,7, 15
When » is even, # = 4 is the only solution since
{202 — % = T, 2%+ v o= 7, 25% 0 x e
We may now suppose that # is odd, and we write the eguation as

x* 7
=

2, (19)

where yisoddand y 2 3

We factorize the equation in the field Q(V'Z7), in which the integers have
the form {m + nV =72 where m = n(mod 2), and in which unique
factorization holds. Since

5 _ (z + ;/—?) (1 - zx/ﬁ?)
we have . Xt ;/Tﬁ e i(»l";t ;/m_?)”,
and so (1 * ;/IT?)” - (i - ;/“:ﬁ)v = V=T, an

We show that the positive sign is impossible in equation (1),
Write this as
Q¥ W om g — b

Then a* = (1 — 5?2 = | {mod #,



