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Abstract. Let A, B, and C be vertexes of a scalene triangle in the plane.

Answering a recent problem by Jordan Tabov, we show that the locus of all

points P with the property that the Euler lines of the triangles BCP , CAP ,

and ABP are concurrent is a subset of the union of the circumcircle and the

Neuberg cubic of the triangle ABC. Some new properties of this remarkable

cubic have also been discovered.

1. Introduction

The origin of this paper is questions on geometry of triangles stated in Jordan
Tabov’s article ”An extraordinary locus” in Mathematics and Informatics Quarterly
(Vol. 4, No. 2, page 70). We shall present three different proofs of results that
answer Tabov’s problems. Our method is to use analytic geometry which is a usual
approach in the identification of complicated curves.
Let us first recall basic definitions. Let ABC denote the triangle in the plane

with vertexes A, B, C, angles A, B, C, and sides a = |BC|, b = |CA|, c = |AB|.
When ABC is not an equilateral triangle, then the centroid G of ABC (intersection
of medians) and the orthocenter H of ABC (intersection of altitudes) determine a
unique line called the Euler line of ABC.
This line has many interesting properties and has been the source of many beau-

tiful results and problems. One of them is Tabov’s:
Superior Locus Problem: Find the locus of points P in the plane with the

property that the Euler lines of the triangles BCP , CAP , and ABP are concurrent
(see Figure 1).
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Figure 1: Euler lines of triangles BCP , CAP , and ABP are concurrent.
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As we shall see below, this locus in general is quite complicated. The locus is
remarkable due to the fact that it includes some of the most interesting points
related to the triangle ABC but as a curve of order five it is not tractable by
elementary methods. It is essentially the union of the circumcircle and the Neuberg
cubic that has been in the focus of recent renewal of interest into triangle geometry
(see Figure 2 and [3], [4], [5], [19], [20], [23]).

A

C

Neuberg cubic

B

circumcircle

Figure 2: Union of the circumcircle and the Neuberg cubic minus
the union of sidelines and the vertexes of equilateral triangles on
sides answer Tabov’s problem.

Following this introduction, in a preparatory section, we shall describe various
kinds of coordinate systems that are usually used for exploration of properties of
triangles and curves.
Our original solution of Tabov’s problems was done on a computer entirely in

Cartesian coordinates. While this approach requires only elementary knowledge of
analytic geometry and could be easily followed by most readers, it is difficult for
print and it does not fit well in the overall drive for simplicity of expressions in
mathematics.
An outline of key steps for this direct method is followed by a detailed proof in

areal coordinates. Several interesting side results related to Euler lines of the four
triangles ABC, BCP , CAP , and ABP are also presented. Then we give the third
complete proof using distance coordinates. This proof is entirely elementary and a
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bit longer since it involves the consideration of several cases that can arise. Those
cases are interesting on their own and they give further insight into the problems.
In the rest of the paper we shall give some known and some new information

about the Neuberg cubic and it’s properties. The style of our presentation here will
be different because we shall omit proofs in order to make this a modest size paper.
There are at least two other reasons for this. First, we want to encourage readers
to try their own proofs perhaps using previous sections for suggestions. Second, we
want to keep tradition of most papers from the golden era of triangle geometry that
elegantly avoid too much details.
We hope that this is a contribution to optimistic tones in recent excellent articles

[6], [8], and [11] on computer induced resurrection of interest into triangle geometry.

2. PRELIMINARIES

2.1. Coordinate systems. The position of a point P in the plane of the given
reference triangle ABC can be described with several kinds of coordinates. In this
paper we shall be working with Cartesian, areal, and distance coordinates while
the normal coordinates will be used only occasionally. Each of these coordinates
have their advantages and disadvantages. For example, in Cartesian coordinates
the location of points is straightforward and the analytic geometry is well-known.
However, for every selection of coordinate axes, most expressions become compli-
cated and they do not reflect homogeneity and symmetry of triangles. In areal (or
barycentric) and normal (or trilinear) coordinates the expressions can be signifi-
cantly simpler since they are defined evenly with respect to the reference triangle.
However, these coordinates are not so familiar, the expressions can become cum-
bersome especially for objects that are not centred, and the analytic geometry is
tricky. Finally, distance coordinates are hidden in the literature and are useful only
in some areas of triangle geometry.
It is fair to say that each coordinate system is best suited for certain purposes so

that normally we must combine them. This has been common occurrence in recent
papers. Some authors use in addition complex numbers which play no role in this
article.
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(a) Cartesian coordinate system.
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(b) Placement of the triangle ABC.

Figure 3:

2.2. Cartesian coordinates. Let E and F be points on perpendicular lines x and
y in the plane different from their intersection O. A point P in the plane is described
by signed distances p and q of the origin O to the projections Px and Py of P into
lines x and y. The number p is positive when points E and Px are on the same
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side of the line y. Similarly, the number q is positive when points F and Py are
on the same side of the line x. We call p and q the (Cartesian) coordinates of P
(with respect to the rectangular coordinate system (x, E, y, F )) and write P (p, q)
or (p, q) to indicate coordinates of the point P (see Figure 3 (a)).
The above definition has nothing to do with the triangle ABC so to make it

useful for our purposes we shall assume that the origin is at A and that x is the
line AB. In other words, we select the Cartesian coordinate system in the plane so
that the coordinates of the vertexes A, B, and C are (0, 0), (c, 0), and (u, v), where
c and v are positive real numbers and u is a real number (see Figure 3 (b)).
Let X(f, g), Y (h, k), and Z(m, n) be points in the plane. Recall that the dis-

tance |XY | and the signed area |XY Z| are given by
|XY | =

√

f2 − 2 fh+ h2 + g2 − 2 gk + k2,

|XY Z| = 1
2
(fk − fn+ nh− gh+ gm−mk) =

1

2

∣
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∣
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Here we regard |XY Z| positive provided going from X to Y and then to Z is done
counterclockwise.
For sides a and b we get

a =
√

c2 − 2 cu+ u2 + v2, b =
√

u2 + v2.

We can express u and v in terms of side lengths a, b, and c.

u =
b2 + c2 − a2

2 c
, v =

√
2 b2c2 + 2 c2a2 + 2 b2a2 − a4 − b4 − c4

2 c
.

2.3. Areal coordinates. Let P (p, q) be a point whose position we wish to define
with respect to the triangle ABC. The ratios of the signed areas

x =
|BCP |
|ABC| , y =

|CAP |
|ABC| , z =

|ABP |
|ABC| ,

are called the actual areal coordinates of the point P .
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Figure 4: Actual areal coordinates are ratios of areas.

In finding the position of a point it is not necessary to know x, y, z but only
their ratios. Indeed, since

x

y
=

c v − p v + q u− c q

p v − q u
,

y

z
=

p v − q u

c q
,

we can solve for p and q to get

p =
y c+ z u

x+ y + z
, q =

z v

x+ y + z
.

It is obvious that the above expressions for p and q remain unchanged when we
replace x, y, and z with λx, λy, and λz, where λ is any real number different from
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zero. This is the reason why such triples (λx, λy, λz) are called areal coordinates
or barycentric coordinates or just areals of the point P .
We shall write Q[[f, g, h]] and Q[x, y, z] to indicate that f , g, and h are actual

areal coordinates of a point Q and that x, y, and z are areal coordinates of a point
Q (i. e., numbers proportional to actual areal coordinates of Q). Recall [12, p.5]
that

f + g + h = 1, f =
x

x+ y + z
, g =

y

x+ y + z
, h =

z

x+ y + z
.

Sometimes it is necessary to use more precise notation Q[x, y, z; ABC] in order to
specify the reference triangle.

2.4. Normal coordinates. The actual normal coordinates or actual trilinear co-
ordinates of a point P with respect to the triangle ABC are signed distances f , g,
and h of P from the lines BC, CA, and AB (see Figure 5(a)). We shall regard P
as lying on the positive side of BC if P lies on the same side of BC as A. Similarly,
we shall regard P as lying on the positive side of CA if it lies on the same side of
CA as B, and similarly with regard to the side AB.
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(a) Actual normal coordinates are

signed distances to sides.
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(b) Distance coordinates are distances

to vertexes.

Figure 5:

Ordered triples (x, y, z) of real numbers proportional to (f, g, h) (that is such
that x = µf , y = µg, and z = µh, for some real number µ different from zero) are
called normal coordinates or trilinear coordinates of P .
We shall write Q〈〈f, g, h〉〉 and Q〈x, y, z〉 to indicate that f , g, and h are actual

normal coordinates of a point Q and that x, y, and z are normal coordinates of a
point Q, and Q〈x, y, z; ABC〉 when we want to specify the reference triangle.
Both areal and normal coordinates are equally suitable for triangle geometry and

it is only a matter of personal preference which one to choose.
If f , g, h are the actual normal coordinates of a point and x, y, z are the actual

areal coordinates of the same point with respect to the same reference triangle with
the area ∆, then we can transform from one system to the other by means of the
formulas

x =
a f

2∆
, y =

b g

2∆
, z =

c h

2∆
.

2.5. Distance coordinates. The tripolar or distance coordinates of a point P with
respect to the triangle ABC are distances from P to the vertexes A, B, and C (see
Figure 5(b)).
We shall write Q(x, y, z) to indicate that x, y, and z are distance coordinates of

a point Q, and Q(x, y, z; ABC) when we want to specify the reference triangle.
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2.6. Notation. The most interesting properties and expressions related to triangles
are miraculously simple provided we adopt proper notation and agreements that
govern its use. Here we shall propose one such attempt at simplification in triangle
geometry.
The expressions in terms of sides a, b, and c can be shortened using the following

notation.

da = b− c, db = c− a, dc = a− b, za = b+ c, zb = c+ a, zc = a+ b,

t = a+ b+ c, ta = b+ c− a, tb = c+ a− b, tc = a+ b− c,

m = abc, ma = bc, mb = ca, mc = ab,

k = a2 + b2 + c2, ka = b2 + c2 − a2, kb = c2 + a2 − b2, kc = a2 + b2 − c2.

We shall use α, β, and γ for cotangents cotA, cotB, and cotC of angles A, B, and
C. The sum cotA+ cotB + cotC is shortened to ω. The cosine, sine, and tangent
of angles A, B, and C are denoted ακ, βκ, γκ, ασ, βσ, γσ, ατ , βτ , and γτ .
The basic relationship connecting these values is

βγ + γα+ αβ = 1.

Moreover, from sine and cosine rules and the fact that the circumradius R is equal
to m

δ
, we get α = ka/δ, β = kb/δ, and γ = kc/δ, where δ =

√
t ta tb tc is four times

the area ∆ of the triangle ABC. Hence, we can express a2, b2, and c2 as δ(β+γ)
2 ,

δ(γ+α)
2 , and δ(α+β)

2 , respectively.
Other frequently used relations are a = 2Rασ, b = 2Rβσ, c = 2Rγσ,

2ma ακ = ka, 2mb βκ = kb, 2mc γκ = kc, α ατ = β βτ = γ γτ = 1,

ακ + βκ γκ = βσ γσ, βκ + γκ ακ = γσ ασ, γκ + ακ βκ = ασ βσ.

Since we shall deal mostly with permutations of finite sets on letters, we shall use
short notation, for example |x, z, y|, for a permutation which takes x to itself, y to
z, and z to y. This means that we consider sets of letters ordered by lexicographic
order and it is always the first member in this order that is permuted. Therefore,
it suffices to indicate only ordered set of images.
The expressions which appear in triangle geometry usually depend on sets that

are of the form {a, b, c, . . . , x, y, z} (that is, union of triples of letters). Let σ and
τ stand for permutations | b, c, a, . . . , y, z, x | and | c, a, b, . . . , z, x, y |.
Let f = f(x, y, . . . ) be an expression that depends on a set S = {x, y, . . . } of

variables and let % : S → S be a permutation of S. Then f % is a short notation
for f(%(x), %(y), . . . ). For permutations %, . . . , ξ of S we shall use S%,..., ξ f and
P%, ..., ξ f to shorten f + f% + · · ·+ f ξ and ff% . . . f ξ. Finally, Sf and Pf replace
Sσ, τ f and Pσ, τ f .
Let P be a point in the plane of the triangle ABC. Let xP and yP be the

Cartesian x-coordinate and y-coordinate of P and let x[P ], y[P ], and z[P ] be the
first, the second, and the third areal coordinate of P . We shall use similar notation
x〈P 〉, y〈P 〉, z〈P 〉 for normal and x(P ), y(P ), z(P ) for distance coordinates.
When x[P ] = f , y[P ] = fσ, and z[P ] = f τ , we shall write P [f ] and talk of f as

an areal coordinate of P . Similar rules hold for normal and distance coordinates.
For example, if O is the circumcenter of ABC, then O〈ακ, βκ, γκ, 〉, or, equiv-

alently, O〈a ka, b kb, c kc〉. But, we shall write O〈ακ〉 or O〈a ka〉 because the other
two coordinates are built from the first using permutations σ and τ .
This rule will be further extended so that for example we shall usually define only

an expression namea with the understanding that nameb and namec are derived
from namea with permutations σ and τ .
On the other hand, since points, lines, conics, ... associated to a triangle often

appear in triples in which two members are built from a third not only by appro-
priate permutation but also with a shift of position, we shall give only one of them
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while the other two (relatives) are obtained from it by a procedure illustrated in the
example below.
For example, Ae[−a, b, c], Be[a, −b, c], and Ce[a, b, −c] are excenters. We can

get areals of Be and Ce from those of Ae as follows:

x[Be] = z[Ae]
σ, y[Be] = x[Ae]

σ, z[Be] = y[Ae]
σ,

x[Ce] = y[Ae]
τ , y[Ce] = z[Ae]

τ , z[Ce] = x[Ae]
τ .

Here, Be and Ce are relatives of Ae.

3. LOCUS RECOGNITION IN CARTESIAN COORDINATES

In this section we shall give an outline of the solution to Tabov’s problem using
Cartesian coordinates. All steps in this approach can be easily checked either by
hand or by computer. However, most formulas that appear are complicated for print
so that we left them out. The reason why this method is not entirely discarded lies
in the fact that the author does not know how to draw curves in areal and normal
coordinates. Hence, we shall use Cartesian coordinates for the dirty behind the
scene work.
Let us select the Cartesian coordinate system in the plane so that the coordi-

nates of points A, B, C, and P are (0, 0), (c, 0), (u, v), and (p, q), where c and v are
positive real numbers and u, p, and q are real numbers. In order to find out the equa-
tions of the Euler lines eu, eua, eub, and euc of the triangles t = ABC, ta = BCP ,
tb = ACP , and tc = ABP we need to know how to draw a line through two points,
determine the midpoint of a segment, and draw the perpendicular to a given line
which passes through a given point. Once we do this, we find out that four Euler
lines are represented by linear equations ai1 x+ ai2 y + ai3 = 0 ( i = 1, 2, 3, 4 ).
Here we have made implicitly the assumption that the points A, B, C, and P

are in general position (that is, that P does not lie on lines BC, CA, and AB). It
is obvious that the required locus consists only of points P with this property.
Our first task now is to find out when the Euler lines eu, eua, eub, and euc are

undetermined (that is, when both the x-coefficient and the y-coefficient of their
equations are zero). We have already observed that this will happen when triangles
t, ta, tb, and tc are equilateral. Hence, the solutions for the last three triangles will
give us six points which are vertexes of equilateral triangles constructed on the sides
of ABC. This can be done either towards outside (when we get points Av, Bv, and
Cv) or towards inside (when we get points Au, Bu, and Cu). Those six points are
definitely outside of the locus that we are looking for.
Once we have six important points that are not in the locus, we can immediately

find the condition that coordinates of P must satisfy for Euler lines eua, eub, and
euc to meet at a point. It is well known that the determinant

DET 234 = a21a32a43 − a21a33a42 − a31a22a43 + a31a23a42 + a41a22a33 − a41a23a32

of the matrix formed by the coefficients of their equations must be zero. By sub-
stituting the above values for the coefficients, we discover that DET 234 can be
represented as the product cQR, where Q = v (p2 + q2)− c v p+ (c u− b2) q, and

R = ( p2 + q2 ) ( e p+ f q ) + g p2 + h p q + k p+mq2 + n q,

with

e = b2 + 2u2 − 3 c u, f = v (2u− c), g = 3u (c2 − b2), h = 2 v (c2 − b2),

k = c (3u b2 − c b2 − 2 c u2), m = u (c2 − b2), and n = c v (b2 − 2 c u).
We conclude that the required locus Z has the form (K

⋃

N) \ V , where V is
the union of the lines BC, CA, and AB and the points Au, Av, Bu, Bv, Cu, and
Cv, the set K is the set of all points P whose coordinates (p, q) satisfy the relation
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Q = 0, while the set N consists of all points P whose coordinates are solutions of
the equation R = 0.
The first equation Q = 0 obviously represents a circle and since coordinates of the

points A, B, and C are among its solutions, we conclude that K is the circumcircle
of ABC.
This was noticed in [21] and is an immediate consequence of the elementary geo-

metry of a triangle. Indeed, for all points P on the circumcircle different from the
vertexes A, B, C the four triangles ABC, BCP , CAP , and ABP have the same
circumcircle and consequently, the four Euler lines intersect in the circumcentre.
This is true when ABC does not have angles of either π/3 or 2π/3 radians because
then none of the four triangles is equilateral. In this exceptional cases, by consider-
ing the centre of an equilateral triangle as the degenerate Euler line, the statement
of concurrence of the Euler lines (for points P on the circumcircle) remains true.

Figure 6: cot(A2 ) = −3. Figure 7: cot(A2 ) = −
√
3.

Figure 8: cot(A2 ) = −1. Figure 9: cot(A2 ) =
1
2 .

The second equation R = 0 will in general represent a curve N of order three in
the plane (in the sense that every line either lies in N or intersects N in at most
three points). As we shall see below, this curve is already extensively investigated
and is known as the Neuberg cubic of the triangle ABC. However, as far as we
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know, nobody has observed the remarkable property of this cubic suggested by
Tabov’s problem that we verify in this paper.
The author is grateful to professor Vladimir Volenec who provided extensive

help in references and suggested during our lecture in the Geometry Seminar of the
University of Zagreb that the curve that answers J. Tabov’s problem is in fact the
Neuberg cubic. He also discovered that Tabov’s Superior Locus Problem is given
in [15] on page 200 as Exercise 20 in the section on the Neuberg cubic.
Our Figures 6 – 13 show the Neuberg cubic of a triangle ABC with cot(B2 ) = 5

and with stated values of cot(A2 ).

Figure 10: cot(A2 ) =
√
3. Figure 11: cot(A2 ) = 2.

Figure 12: cot(A2 ) = 5. Figure 13: cot(A2 ) = 10.

It is interesting to observe that the analogous determinants DET 123, DET 124,
and DET 134 for other triplets among the Euler lines eu, eua, eub, and euc have up
to a product with a constant the same form. This observation gives the proof of
the Appendix to the Superior Locus Problem in [21] which asks to prove if
any three among the lines eu, eua, eub, and euc are concurrent, then all four are
concurrent. Of course, for this to be true the triangle ABC can not be equilateral.
Hence, if ABC is not equilateral, and P is from the locus Z, then the Euler lines
eua, eub, and euc intersect at the point on eu.
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The Neuberg cubic has several equivalent geometric descriptions. He himself has
discovered in [17] that it is a part (in addition to the circumcircle) of the locus of
all points P with the property that the lines AOa, BOb, and COc are concurrent,
where Oa, Ob, and Oc denote circumcenters of the triangles BCP , CAP , and ABP ,
respectively (see Figure 14).

2
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E 2

D

3

&

%$

Figure 14: Lines AOa, BOb, and COc are concurrent, where Oa, Ob, and Oc are
circumcenters of triangles BCP , CAP , and ABP .

Another description also due to Neuberg is based on the notion of the power of
a point with respect to a circle that we recall now (see Figure 15).

U

N
3

'

6

Figure 15: Power of a point with respect to a circle.

Suppose that P is a point and k is a circle in the plane and that S is the centre
of this circle and r is it’s radius. Then the power of the point P with respect to
the circle k is the number wk(P ) = |PS|2 − r2, that is, the difference of squares of
distance from P to S and the radius r of k.
For points P and Q, let kPQ denote the circle with centre P and radius |PQ|.
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Neuberg has proved in [17] that his cubic is the locus cuN of all points P such
that M(P ) = 0, where

M(P ) = wkAB(P )wkBC(P )wkCA(P )− wkAC(P )wkBA(P )wkCB(P ).

N
%& N

%$

N
&%

N
&$

N
$%

N
$&

&

%$

Figure 16: Six circles from Neuberg’s characterization.

We shall prove that N and cuN are the same curve by showing that they have
identical equations in the chosen coordinate system. The equation for N is R = 0.
Let us determine the equation for cuN by computing the powers of the point P with
respect to the six circles above and substituting them into the expression M(P ).
Let w = p2 + q2. One can easily find that

wkAB(P ) = w − b2, wkBC(P ) = w − 2 cp, wkCA(P ) = w − 2up− 2 vq − c2 + 2 cu,

wkAC(P ) = w − c2, wkBA(P ) = w − 2 cp− b2 + 2 cu, wkCB(P ) = w − 2up− 2 vq,
and that M(P ) is in fact the product −2 cR. Since c is a constant, we conclude
that curves N and cuN have identical equations and our claim is proved.

4. LOCUS RECOGNITION IN AREAL COORDINATES

In this section we shall give a solution for the Superior Locus Problem using
analytic geometry in areal coordinates. The advantage of this approach is that all
expressions are symmetric. However, it is more likely that the reader is unfamiliar
with basics of analytic geometry in areal coordinates that we use in arguments
below.
We shall identify a point and a line with the row matrix formed by its areal

coordinates and its coefficients. For points or lines P , Q, and R, let P ·Q be the
scalar product of P and Q, let [P, Q, R] be the 3× 3-matrix with rows P , Q, and
R and let d[P, Q, R] be it’s determinant.
Recall [12, p.6] that M [f + r, g + s, h+ t] is the midpoint of points P [[f, g, h]]

and Q[[r, s, t]], that [12, p.8] a point X[x, y, z] lies on the line PQ if and only if
d[P, Q, X] = 0, that [23] the lines p[f, g, h] and q[r, s, t] are perpendicular if and
only if

α (g − h) (s− t) + β (f − h) (r − t) + γ (f − g) (r − s) = 0,
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and parallel if and only if f (s− t) + g (t− r) + h (r − s) = 0, and that [12, p.10]
the lines p, q, and r are concurrent if and only if d[p, q, r] = 0.
Now we a ready to begin our proof. First observe that A[1, 0, 0], B[0, 1, 0], and

C[0, 0, 1]. Let P [x, y, z]. In order to find areal coordinates of the centroid Ga of
the triangle BCP , we determine the midpoint Am[0, 1, 1] of BC and the midpoint
Q[x, x+ 2y + z, z] of BP . Then Ga[x, x+ 2y + z, x+ y + 2z] is the intersection
of lines AmP and CQ. The centroids Gb and Gc of the triangles CAP and ABP
are relatives of Ga and the centroid of ABC is G[1, 1, 1].
The equation of an altitude of a triangle can be derived using the facts that it

is perpendicular to a side line and that it passes through a vertex. In this way
we discover that H[β γ] is the orthocenter of ABC, that areal coordinates of the
orthocenter Ha of the triangle BCP are

x[Ha] = (γx+ βy + γy)(βx+ βz + γz), y[Ha] = (αx− γz)(γx+ βy + γy),

z[Ha] = (αx− βy)(βx+ βz + γz),

and that orthocenters Hb and Hc of triangles CAP and ABP are relatives of Ha.
Joining these centroids and orthocenters give us the Euler line eu[α (β − γ)] of

ABC and the Euler line eua[f, g, h] of BCP , where

f = α (β − γ)x3 −
(

β2 − αβ + 2αγ
)

x2y +
(

γ2 − αγ + 2αβ
)

x2z−
(

2β2 − β γ + 1
)

xy2 + 2 (γ − β) (γ + β)xyz +
(

2γ2 − β γ + 1
)

xz2−
(γ + β) (2β − γ) y2z − (γ + β) (β − 2 γ) yz2,

g = β (γ − α)x3 + 2β (β + γ)x2y +
(

γ2 + 4β γ − 1
)

x2z + β (γ + β)xy2+

2 (γ + β) (2β + γ)xyz + 2 (γ + β) γ xz2 + (γ + β)
2
y2z + 2 (γ + β)

2
yz2,

h = γ (α− β)x3 −
(

β2 + 4β γ − 1
)

x2y − 2 (γ + β) γ x2z − 2β (γ + β)xy2−
2 (β + 2 γ) (γ + β)xyz − (γ + β) γ xz2 − 2 (γ + β)

2
y2z − (γ + β)

2
yz2,

while Euler lines eub and euc of triangles CAP and ABP are relatives of eua.
Then d[eua, eub, euc] is the product K L4 M , where K = S (β + γ) y z, L = Sx,

and

M = S (1− 3β γ)x [(α+ β) y2 − (α+ γ) z2].

Here K = 0 is the equation of the circumcircle of ABC, L = 0 is the equation of the
line at infinity, andM = 0 is the equation of the Neuberg cubic in areal coordinates
[17]. This concludes our proof. In order to get the proof of the Appendix to the
Superior Locus Problem it suffices to observe that up to a sign d[eu, eua, eub],
d[eu, eua, euc], and d[eu, eub, euc] are equal to the product K LM .

5. PARALLELS AT VERTEXES TO EULER LINES

As an easy consequence of our knowledge of equations of Euler lines eua, eub,
and euc is the following result which provides a new characterization of the Neuberg
cubic.

Theorem 5.1. A point P is either on the Neuberg cubic or on the circumcircle of
the triangle ABC if and only if parallels at vertexes of ABC to the Euler lines of
triangles BCP , CAP , and ABP are concurrent.

Let paa, pab, and pac be parallels at A, B, and C to eua, eub, and euc. Then
paa[0, f, g], where

f = (1− 3αβ)x2 + (1 + 3β2)x y + (3β γ − 1)x z + 3β (β + γ) y z,

g = (1− 3αγ)x2 + (3β γ − 1)x y + (3 γ2 + 1)x z + 3 γ (β + γ) y z,
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and pab and pac are relatives of paa. Since the determinant d[paa, pab, pac] is the
product 3K L4 M our theorem is proved.

Remark 5.1. Instead of parallels at the vertexes of ABC we can get the same
conclusion for parallels at vertexes of some triangles related to ABC. For example,
we can take the complementary triangle AmBmCm whose vertexes are midpoints of
sides or the anticomplementary triangle AaBaCa whose vertexes are intersections
of parallels through vertexes to sides. But, for the orthic triangle AoBoCo whose
vertexes are feet of altitudes the theorem is not true.

6. PARALLEL EULER LINES

In this section we shall consider the related locus problem which asks to find all
points P in the plane such that Euler lines eua, eub, and euc of the triangles BCP ,
CAP , and ABP are parallel. Since parallel lines are concurrent and for points P
on the circumcirle the above Euler lines intersect at the circumcenter, it is clear
that the required locus is a subset of the Neuberg cubic of ABC.
The Appendix to the Superior Locus Problem implies that eua, eub, and euc are

parallel if and only if they are all parallel to the Euler line eu of ABC. Hence, the
required locus is the intersection La ∩ Lb ∩ Lc, where Li for i = a, b, c denotes a
locus of all points P such that eu and eui are parallel. Of course, we must consider
only scalene triangles here.
In order to determine Li, observe that eu and eui are parallel if and only if they

are concurrent with the line `∞ = [1, 1, 1] at infinity, that is, if and only if the
determinant d[eu, eui, `∞] vanishes (i = a, b, c). It follows that

La = 3 (β
2 − γ2) y z + (1− 3 γ2) z x+ (3β2 − 1)x y,

Lb = Lσ
a , and Lc = Lτ

a. These are conics circumscribed to the triangle ABC (see
[12, p.38]) which intersect at vertexes and the point

Ze

[

1

1− 6α2 + 9α2β2 + 9α2γ2 − 9β2γ2

]

.

Our locus consists only of the point Ze. This central point of the triangle ABC is
not on Kimberling’s list [11].
Applying the procedure described in [12, p.43], we can easily find that the center

of the conic La is the midpoint Am of the side BC.
Let us now use the method of [12, p.49] to decide on the shape of the conic La.

It is well known that a conic will be either an ellipse, a hyperbola, or a parabola
provided it has two imaginary, two real, or just one real intersection with the line
at infinity.
A point P [x, y, z] will be at the required intersection if the expression H(x, y)

obtained by a substitution of z = −x− y into the equation of La vanishes.
When β = γ, then

H(x, y) = (3β2 − 1)x (x+ 2 y),
so that La is a hyperbola (because the angle B can not be π

3 since ABC is scalene

nor can it be 2π
3 since sum of angles must be π).

When β and γ are different, then H(x, y)/(3 γ2 − 3β2) has the form
(

y +
x
(

3 γ2 − 1
)

3 γ2 − 3β2

)2

− x2
(

3β2 − 1
) (

3 γ2 − 1
)

9 (γ − β)
2
(γ + β)

2 .

From this expression we can immediately conclude that La is a parabola when either
B or C is either π

3 or
2π
3 , a hyperbola when either B or C is greater than π

3 and

smaller than 2π
3 , and in all other cases it is an ellipse.
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7. LOCUS RECOGNITION IN DISTANCE COORDINATES

For the points P and Q, let PQ denote the distance from P to Q and let PQ

denote the square of PQ. For a scalene triangle ABC in the plane, let EABC denote
the function which associates to the point P the determinant of the matrix







1 AP BC

1 BP CA

1 CP AB






.

Lemma 7.1. The point P lies on the Euler line of the scalene triangle ABC if and
only if EABC(P ) = 0.

Necessity. Consider the scalene triangle ABC in the Cartesian coordinate system
and assume that A(0, 0), B(c, 0), and C(u, v). The Euler line GO is the line

connecting the centroid G( c+u
3 , v3 ) and the circumcenter O(

c
2 ,

b2−c u
2 v ) It follows that

GO has the equation eGO = 0, where

eGO =
(

3u2 − 3 cu+ v2
)

x+ v (2u− c) y + u
(

c2 − b2
)

.

If 2u 6= c, then we can solve eGO = 0 for y which leads to the conclusion that a
point P on GO has coordinates x0 and y0, where x0 is any real number and

y0 =
x0 (3 c u− 3u2 − v2) + u (b2 − c2)

v (2u− c)
.

If 2u = c, then a point P on GO has coordinates c
2 and y0, where y0 is any real

number. In both cases it is easy to check that EABC(P ) = 0. ¤

Sufficiency. Conversely, if P (x, y) is any point in the plane, an easy computation
shows that EABC(P ) = 2 c eGO. It follows that P is onGO when EABC(P ) = 0. ¤

We let EABC(Q) = 0, EBCP (Q) = 0, ECAP (Q) = 0, and EABP (Q) = 0 be shortly
denoted by e1, e2, e3, and e4, where ABC is any scalene triangle (if e1 is mentioned),
P is any point in the plane outside the set V , and Q is any point in the plane. No-
tice that the sum of any three of these equations gives the fourth which provides
an alternative proof of the Appendix to the Superior Locus Problem.

Theorem 7.1. Let ABC be an equilateral triangle and let We denote the union of

the lines BC, CA, and AB and the three vertexes Av, Bv, and Cv of equilateral

triangles constructed externally on the sides of ABC. Then for every point P in the
plane outside the set We, the Euler lines of the triangles BCP , CAP , and ABP
are concurrent.

Proof. Let P be a point outside of the set We. It follows from the above lemma
that the Euler lines of the triangles BCP , CAP , and ABP are concurrent if and
only if either they are parallel or there is a point Q such that equations e2, e3, and
e4 hold.
If the point P is neither on kBC (the circle with the center at B and with

the radius BC) nor on kAC, then we can solve e3 for x and e2 for y. Since the
substitution of these values into e4 gives identity, we conclude that for every such
point P the point Q exists.
If P is on kBC \ {A, C, Av, Cv}, then PA 6= CA and PC 6= BC , so that after

substituting BP = BC into equations e2, e3, and e4, we get AQ = PQ from the
second and CQ = PQ from the first, while the third holds.
If P is on kAC \ {B, C, Bv, Cv}, then BP 6= AB and CP 6= AC , so that after

substituting AP = BA into equations e2, e3, and e4, we get BQ = PQ from the
third and CQ = PQ from the second, while the first holds.
Hence, in both cases the point Q exists and all points of the plane not in We are

in the locus. ¤
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Theorem 7.2. Let ABC be a scalene triangle and let Ws denote the union of

the lines BC, CA, and AB and the vertexes Av, Bv, Cv, Au, Bu, and Cu of

the equilateral triangles constructed externally and internally on the sides of ABC.
Then for a point P in the plane outside the set Ws, the Euler lines of the triangles

BCP , CAP , and ABP are concurrent if and only if P lies on the circumcircle or
on the Neuberg cubic of the triangle ABC.

Proof. We have seen in the section 6 that Euler lines of triangles BCP , CAP , and
ABP are parallel to the Euler line of ABC if and only if P is the point Ze on the
Neuberg cubic of ABC. Hence, it remains to consider the case when at least one
among lines eua, eub, and euc intersects the line eu. Without loss of generality, we
can assume that eua intersect eu at a point Q.
If b 6= c and BP 6= CP , then we can solve e1 for AQ and e2 for PQ. By substi-

tuting these values into e3 and e4 up to a sign in both cases we get

J (BQ − CQ)

(AB −AC)(BP − CP )
,

where J is the determinant of the matrix






1 AP +BC APBC

1 BP + CA BPCA

1 CP +AB CPAB






.

We conclude that the point Q will also lie on the lines eub and euc if and only
if either J = 0 which is Neuberg’s condition for a point to be on his cubic [17] or
that BQ = CQ. Then from e1 and e2 we get A

Q = CQ and PQ = CQ so that Q is
equally distant from A, B, C, and P . Hence, P is on the circumcircle and Q is the
circumcenter.
Suppose now that b = c. The equation e1 is now (B

C −BA)(BQ − CQ) = 0.
Since the triangle ABC is scalene, we must have a 6= c, so that BQ = CQ (that
is, Q lies on the perpendicular bisector of BC). Observe that for b = c, the de-
terminant J which is the equation of the Neuberg cubic in distance coordinates
has the form Jbc = (B

C −BA)(AP −AB)(CP −BP ), Also, the equation e2 has the
form (CQ − PQ)(CP −BP ) = 0. This holds when either CQ = PQ or CP = BP .
In the second case Jbc = 0 and P lies on the Neuberg cubic of ABC. In the first
case (when CQ = PQ), both equations e3 and e4 are equivalent to the equation
(AP −AB)(AQ − CQ) = 0. This equation holds if and only if AP = AB (that is, P
is on the Neuberg cubic of ABC because Jbc again vanishes) or A

Q = CQ (that is,
Q is the circumcenter and P is on the circumcircle).
Finally, suppose that b 6= c and BP = CP . The equation e2 has now the form

(CQ −BQ)(CP − CB) = 0 and the determinant J becomes

Jqr = (A
B −AC)(CP − CB)(CP −AP ).

When CP = CB , then Jqr = 0 so that P is on the Neuberg cubic of ABC. On
the other hand, when CQ = BQ, then from e1 it follows that AQ = CQ and the
equations e3 and e4 are both equivalent to the equation (C

Q − PQ)(CP −AP ) = 0.
In the same way as above we conclude that P is either on the circumcircle or on
the Neuberg cubic of ABC. ¤

8. BASIC PROPERTIES OF THE CURVE N

The most fascinating property of the curve N is that isogonal conjugate F of a
point P from N \ V also belongs to N \ V .
Recall that the point F is the intersection of lines AD and BE, where D and

E are reflections of P with respect to bisectors of angles at A and B, respectively.
Hence, the normal coordinates of P and F are reciprocal, that is, if P 〈x〉 then F 〈 1

x
〉.
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In other words, the equation of the Neuberg cubic in normal coordinates remains
invariant under the replacement of variables with their reciprocal values.
This is true because in normal coordinates the equation of N is M ? = 0, where

M? = S (ακ − 2βκ γκ)x (y
2 − z2).

Indeed, if P 〈x〉, then P [a x] so that we get M ? from M by replacing x, y, and z
with a x, b y, and c z and applying the formulas from section 2.
An easy task is to determine points of intersection of the curve N with lines BC,

CA, and AB. Since these lines are BC[1, 0, 0], CA[0, 1, 0], and AB[0, 0, 1] we can
easily find these intersections. We discover that N intersects BC at vertexes B
and C, and the point Ea[0, f, g], the line CA at vertexes C and A and the point
Eb, and the line AB at vertexes A and B and the point Ec, where f = 1− 3 γ α,
g = 1− 3αβ, and Eb and Ec are relatives of Ea.
The line AEa[0, 3αβ − 1, 1− 3 γ α] and its relatives BEa and CEc are parallel

to the Euler line eu of the triangle ABC. Moreover, the area of the triangle EaEbEc

is twice the area of the triangle ABC.
It is obvious that the Euler line of the triangle ABC plays an important role in

the properties of the curve N . This is also evident from the following observations.
Let f = a2 ka − kb kc, g = fσ, and h = f τ . One can easily show that the Neuberg

cubic in areals has an equivalent representation in the form M? = 0, where

M? = f x (c2y2 − b2z2) + g y (a2z2 − c2x2) + h z (b2x2 − a2y2).

Let P [x, y, z] be any point in the plane. Since the Euler line eu of the re-
ference triangle ABC is [h− g, f − h, g − f ], the parallel pa to eu through P is
[h y − g z, f z − hx, g x− f y]. The line pa intersects the curve M? in three points
P∞[f, g, h] and Pi[fy − gx+ (hx− fz) ki, (hy − gz) ki, hy − gz] (i = 1, 2), and ki
are roots of the quadratic polynomial Q = pZ2 + q Z + r with coefficients

p = c2 (fz − hx) (fy − gx) , r = b2 (fz − hx) (fy − gx) ,

q = a2 (hy − gz)2 − b2 (fz − hx)2 − c2 (gx− fy)2.

The discriminant q2 − 4 p r of Q is the product of equations of lines

`[cg − bh, ah− cf, bf − ag], `a[bh− cg, ah+ cf, −bf − ag],

`b = `σa , and `c = `τa. These are parallels to the Euler line through the incenter
I[a, b, c] and the excenters Ae, Be, and Ce. We conclude that lines `, `a, `b, and `c
are the only parallels to the Euler line which touch the Neuberg cubic and that they
decompose the plane into regions R0 and R2 such that each parallel to the Euler
line has no real intersections with N if and only if it lies in R0 and it has two real
intersections with N if and only if it lies in R2. Moreover, the two intersections for
parallels in the region R2 are isogonal conjugates.
The last observation can make one believe that N \ {I, Ae, Be, Ce} is the locus

of all points P such that the line joining P with its isogonal conjugate F is parallel
with the Euler line of ABC. This is indeed true. The proof is a simple exercise in
showing that the equation M = 0 is equivalent to the condition that the Euler line
[α (β − γ)] is parallel to the line PF [x (c2y2 − b2z2)] joining a point P [x] with its
isogonal conjugate F [a2/x]. The points I, Ae, Be, and Ce are the only fixed points
of the isogonal conjugation and therefore must be excluded because for these points
F = P and the line PF is undetermined.
The Euler line of the triangle ABC itself intersects the curve N only at the

orthocenter H and the circumcenter O[1− βγ].
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9. THIRTYFIVE POINTS OF THE CURVE N

Our goal now is to prove that some important points associated to the triangle
ABC belong to the curve N . The method of proof is to identify coordinates of
these points with respect to the chosen coordinate system and to check that they
are roots of the polynomial which represents N . Without the use of some computer
program (for example Derive, Maple, or Mathematica) some of these are rather
difficult exercises in simplification of algebraic expressions. On the other hand,
these programs can verify our claims in seconds and we challenge the reader to
work them out.
The following 35 points associated with the triangle ABC lie on the curve N ,

(that is, their coordinates satisfy one of the equations R = 0, J = 0, M ? = 0, or
M? = 0):
(a) The vertexes A[1, 0, 0], B[0, 1, 0], and C[0, 0, 1].
(b) The orthocenter H[βγ].
(c) The circumcenter O[1− βγ].
Recall that O and H are isogonal conjugates of each other.
(d) The six vertexes Au, Bu, Cu, Av, Bv and Cv of equilateral triangles con-

structed on the sides of the triangle ABC both inside and outside. Perhaps the
simplest proof for Av is to observe that it has two equal distance coordinates so
that J has two identical rows and is therefore zero. The other approach is to show
that Av[−2

√
3 a2,

√
3 kc + δ,

√
3 kb + δ] and that these areals of Av satisfy M? = 0.

(e) The two isogonic centers Iv[1/(
√
3 ka + δ)] and Iu[1/(

√
3 ka − δ)] which are by

definition intersections of concurrent lines AAv, BBv, CCv and AAu, BBu, CCu,
respectively. If all angles of the triangle ABC are less than 120o, then the point
Iv is also known as Fermat point or Toricelli point of ABC, so that this improves
Tabov’s statement (from Sharygin’s book) that the Toricelli point lies in the locus
Z. These points are listed as points X13 and X14 in [11] with normal coordinates
Iv〈csc(A+ π/3)〉 and Iu〈csc(A− π/3)〉.
(f) The six isogonal conjugates Aj , Bj , Cj , Ai, Bi, and Ci of the points Av, Bv,

Cv, Au, Bu, and Cu, respectively. They have interesting distance coordinates that
we describe now. Let

q =

√

k +
√
3 δ, w =

√

k −
√
3 δ, qa = 3 ka +

√
3 δ, wa = | 3 ka −

√
3 δ |.

Then we can easily compute the following Aj(3
√
3ma q/qa, c qc/qa, b qb/qa) and

Ai(3
√
3ma w/wa, c wc/wa, b wb/wa), while Bj and Cj are relatives of Aj and also

Bi and Ci are relatives of Ai.
(g) The two isodynamic centers Dv[a

2 (
√
3 ka + δ)] and Du[a

2 (
√
3 ka − δ)] which

are the intersections of concurrent lines AAj , BBj , CCj and AAi, BBi, CCi, res-
pectively. The points Dv and Du are two points of the intersection of the three
circles of Apollonious. Observe that Dv and Du are isogonal conjugates of Iv and
Iu. Isodynamic points are listed as points X15 and X16 in [11] with normal coordi-
nates Dv〈sin(A+ π/3)〉 and Du〈sin(A− π/3)〉.
(h) The incenter (the center of the circle inscribed into ABC) I and the three

excenters (centers of three circles that touch the sides of ABC from outside) Ae,
Be, and Ce. Their normal coordinates are I〈1〉, Ae〈−1, 1, 1〉, Be〈1, −1, 1〉, and
Ce〈1, 1, −1〉 while distance coordinates for I and Ae are given by I(

√

ma ta/t) and

Ae(
√

ma t/ta,
√

mb tc/ta,
√

mc tb/ta), and Be and Ce are relatives of Ae.
(i) The reflections of vertexes A, B, and C with respect to sides BC, CA, and AB

(the vertexes of the ”three images” triangle) Ar[2 δ
2 a2, ta gc, ta gb] and its relatives

Br and Cr, where ga = δ2 − (ka + 2ma)
2. These points have very simple distance

coordinates. For example, Ar(δ/a, c, b). That the point Ar belongs to the locus Z
could be seen as follows. The line BC is a common Euler line for triangles CAAr
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and ABAr, while Euler lines of triangles ABC and BCAr are images of each other
under the reflection at this line so that the four Euler lines intersect on it.
(j) The isogonal conjugates Aq, Bq, and Cq of the points Ar, Br, and Cr. These

points can be also described as follows. Let the perpendicular bisector of the side
BC intersect the sides CA and AB at the points Zab and Zac, respectively. We
similarly define points Zba, Zbc, Zca and Zcb. Then the points Aq, Bq, and Cq are
the reflections of the points A, B, and C with respect to the lines ZbcZcb, ZcaZac,
and ZabZba, respectively. The areals of Aq are Aq[ta gc gb, 2 b

2 δ2gb, 2 c
2 δ2gc] and

distance coordinates Aq(ma δ/(a ka), c
2kc/(a ka), b

2kb/(a ka)).
(k) The points Ea, Eb, and Ec in which the parallels through the vertexes A, B,

and C to the Euler line of ABC intersect the sides BC, CA, and AB, respectively.
We have determined areals of those points earlier. Distance coordinates of Ea

are Ea(δ e/f, a h/f, a g/f), where e = 3m2 − Sa4 ka, f = a2 ka − kb kc, g = fσ, and
h = fτ .
(l) The pointW [a2 g h, b2 h f, c2 f g] of intersection different from A, B, and C of

the curve N with the circumcircle of the triangle ABC. It can be easily checked that
the Wallace-Simson line of the point W is perpendicular to the Euler line of ABC.
Hence, we can get the point W with the following simple procedure. Let V denote
the intersection other than the vertex A of the circumcircle with the perpendicular
from A to the Euler line eu. Then the point W is the intersection other than V of
the circumcircle with the perpendicular to the side BC through the point V (see
[10]).
In many respects the point W is among the most important points of the curve

N . It can also be described as the isogonal conjugate of the point in which the
Euler line meets the line at infinity. The curve N has as it’s real asymptote the line
through the point W parallel to the Euler line of ABC. Tripolar coordinates of the
point W are W (f ma/(δ e)).

10. TANGENTS AND NORMALS OF THE CURVE N

In this section we shall describe some properties of tangents and normals to the
curve N at the 35 points discussed in the previous section.
Let K be a curve in the plane. The points P , Q, and R are called K-tangent

provided they belong to K and there is a point X on K such that the tangents at
P , Q, and R on the curve K are concurrent at X. The point X is called K-pole of
(P,Q,R).
(a) The following eight triples of points are N -tangent: (A, B, C), (Ea, Eb, Ec),

(Ai, Bi, Ci), (Aj , Bj , Cj), (Aq, Bq, Cq), (Ar, Br, Cr), (Au, Bu, Cu), (Av, Bv, Cv).
The N -pole of (A, B, C) is the point W . The N -poles of other triples from this
list are all different points of the curve N some with very complicated coordinates.
Many more examples of N -tangent triples can be found among intersections of lines
determined by certain pairs of points among the 35 points from the previous section.
For example, let X, Y , and Z denote third intersections of lines ArO, BrO, and
CrO with the curve N . Then the points X, Y , and Z are N -tangent. Similarly, the
third intersections of lines AqH, BqH, and CqH with the curve N are N -tangent.
(b) The normals to the curve N at the vertexes A, B, and C are concurrent at the

point F [a2/(da za)] on the circumcircle which is diametrically opposite to the point
W . The point F belongs to the curve N if and only if the triangle ABC is isosceles.
It is a singular focus of the cubic N . Distance coordinates of F are F (ma |da| za/e).
It follows that for each triangle ABC without equal sides, the segments AF , BF ,
and CF are sides of a triangle.
(c) The normals to the curve N at the points Ea, Eb, and Ec are rarely concur-

rent. But, the intersections of these normals determine the triangle which is similar
with the triangle ABC.
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(d) The tangents to the curve N at the circumcenter O and the orthocenter
H intersect at the isogonal conjugate of the center O9 of the nine-points circle or
Feuerbach circle of the triangle ABC (the central point X54〈sec(B − C)〉 in [11]).
(e) The tangents to the curve N at the incenter I and the excenters Ae, Be, and

Ce are parallel to the Euler line of ABC. These are the only points of the cubic N
with this property.

11. FACTORIZATION OF THE NEUBERG CUBIC

In this section we shall consider cases when due to special properties of the
triangle ABC its Neuberg cubic degenerates into curves with simpler description
(circles and lines).
(a) If the base triangle ABC is equilateral, then all coefficients of the equation

for the curve N vanish. This implies that the locus Z is the set difference R2 \ V
(the entire plane except the points that are always excluded).
Other interesting cases occur when we look for the possibility of representing the

equation R of the curve N as the product of a quadratic and a linear expressions.
The following two factorizations are the only two possibilities.
(b) If the base triangle ABC is scalene and isosceles, then the curve N is the

union of the Euler line and the circle through the vertexes opposite equal sides with
the center at the vertex of their intersection.
(c) If the base triangle ABC is scalene and has at some vertex an angle of

either π/3 or 2π/3 radians, then the curve N is the union of the bisector of the
exterior angle of this vertex and the circle through the other two vertexes and the
circumcenter and the orthocenter.
For the last case, observe that two vertexes of a triangle are concyclic with the

orthocenter and the circumcenter if and only if the angle at the remaining vertex is
either π/3 or 2π/3 radians.

12. INTERSECTIONS OF EULER LINES

We know that for every point P in the locus Z the Euler lines of triangles BCP ,
CAP , and ABP are concurrent at the point Q of the Euler line of the triangle
ABC. We shall say that the point Q is E-related to the point P . In this final
section we shall present some results that give information on E-related points of
various points of Z.
(a) The circumcenter O of the triangle ABC is E-related to itself and to all points

from K \ V (that is, to all points on the circumcircle different from the vertexes A,
B, and C). Indeed, Euler lines of triangles BCO, CAO, and ABO are side bisectors
and these intersect at O. On the other hand, we have already observed that for P
from K \ V triangles BCP , CAP , and ABP share circumcenter with ABC.
(b) The center O9 of the nine-point circle of the triangle ABC is E-related

to the orthocenter H of ABC. Indeed, since A is the orthocenter of the tri-
angle BCH and [β γ, 1 + γ α, 1 + αβ] is its centroid, the Euler line of BCH is
[0, −(1 + αβ), 1 + αγ]. The Euler lines of CAH and ABH are its relatives. Those
Euler lines are concurrent at the nine-point center O9[1 + β γ] (the central point X5

in [11]).
(c) The Schiffler central point X21 in [11] by definition is E-related to the incenter

I.
(d) The centroid G is E-related to both isogonal points Iu and Iv.
(e) If X and Y denote points on the Euler line of ABC which are E-related

to isodynamic points Dv and Du, respectively, then (X,Y,G,O) is a harmonic
quadruple of points.
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(f) The intersections of the Euler line of the triangle ABC with the sides BC,
CA, and AB are E-related to the points Ar, Br, and Cr, respectively (see (i) in
section 9).
These observations lead to the question if every point on the Euler line of ABC

is E-related to a point from N . The following example shows that this question has
negative answer.
Let us use Cartesian coordinates and a triangle ABC, where A(0, 0), B(3, 0),

and C(−1, 1). The circumcenter S of the tangential triangle of ABC (the central
point X26 in [11]) lies on the Euler line of ABC and has coordinates S( 7

16 , − 21
80 ).

Let P (p, q) be a point such that the Euler lines euc and eub of triangles ABP and
CAP intersect at the point S. In other words, substitution of coordinates of S into
equations of euc and eub gives zero. Hence, p1 = 0 and p2 = 0, where

p1 = 5 p (16 p+ 27) (p− 3) + (42 p− 63) q + (80 p− 35) q2,

p2 = 2 p (40 p+ 57) (p− 3) +
(

314 + 112 p− 80 p2
)

q + (80 p− 98) q2 − 80 q3.
Since p1 is a quadratic trinomial in q, we can solve for q and substitute these values
into p2 to discover that the only real values for p are −1, 0, 7

16 , 3. However, none
of these lead to solutions other than vertexes.
Points X and Y from the locus Z are called F -related provided the same point

is E-related to both X and Y . For example, by (d), the isogonal points Iu and Iv
are F -related.
(g) The following are pairs of F -related points: (Ai, Aj), (Bi, Bj), (Ci, Cj).
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