ON THEBAULT’S PROBLEM 3887

ZVONKO CERIN

ABSTRACT. The famous Thébault’s configuration of the triangle
ABC depends on a variable point D on its sideline BC' and consists
of eight circles touching the lines AD and BC and its circumcircle.
These circles are best considered in four pairs that are related to the
four circles touching the sidelines BC', C A and AB (the incircle and
the three excircles). We use the analythic geometry to determine
the coordinates of the centers P, Q, S, T, U, V, X and Y of the
eight Thébault’s circles with respect to a parametrization of the
triangle ABC with the inradius r and the cotangents f and g of the
angles % and % The position of the point D is described by the
cotangent of the half of the angle between the lines AD and BC.
The coordinates of many points in this configuration are simple
rational functions in r, f, g and k that makes most computations
simple especially when done by a computer. In this approach,
the proof of the original Thébault’s problem about the incenter I
dividing the segment QP in the ratio k? is straightforward. A large
number of other interesting properties of this gem of the triangle
geometry are explored by analythic methods.

1. INTRODUCTION

In [27], the authors say that the following result is usually called
Thébault’s theorem (see the portion of the Fig. 1 above the line BC).

Teorem 1. Let u(I,r) be the incircle of a triangle AABC' (u is the
name, I is the center and r is the radius), and D any point on the line
BC. Let k1(P,r) and ko(Q,1r2) be two circles touching the lines AD
and BC and the circumcircle o(O, R) of ABC. Then the three centers
P, Q and I are collinear and the following relations hold:

(1) PI:IQ =71

(2) r 417 = (14 77),
where 20 = ZADB and T = tan 6.

The primary goal of this paper is to give correct versions of the
above "theorem". Its formulation is wrong because the requirement
"touching the lines AD and BC and the circumcircle o(O, R)" is not
restrictive enough. This is obvious from the part of the Figure 1 under
the line BC since the centers Y, U and I are not collinear. On the
other hand, the relation (2) does not hold for all positions of the point

D on the line BC.
1



2 ZVONKO CERIN
A

FI1GURE 1. Thébault’s theorem.

The Problem 3887 in the American Mathematical Monthly by Victor
Thébault [25] addresses an unusual result in elementary geometry that
is easier to formulate and prove within the analytic geometry rather
than in the synthetic geometry. The synthetic approach is traditionally
considered as more valuable while the inferior analytic method is always
a kind of brute force with lengthly computations.

We need the following notation to have shorter expressions. Let
d:f—g,Z:f—Fg,g:fg,h:g—l,h:C—Fl,f:t:fj:]f,gi:]{?
+g, ff=f2+1,95=¢>+1, 0. = fk+ 1,0 =gk+1, K=k +1
and L = k* — 1. Let A(a,b) replace (Aa, \b).

Let ABC be a triangle in the plane. Let 8 = ZCBA and v = ZACB.
Let f = cot (%) and g = cot (1) and let u(I, r) be the incircle of the
triangle ABC. We shall use the rectangular coordinate system that has
the point B as the origin and the point C' is on the positive part of the
x-axis while the point A is above it. For a point P, let xp and yp denote
its - and y-coordinate with respect to this system. Then the vertices
A, B and C of the triangle ABC have the coordinates =2 (f~, 2f),
(0, 0) and (7 z, 0), where the positive real numbers r, f and g satisfy
h > 0. The position of a variable point D on the line BC'is determined
by the positive real number k& = cot (g), where 4 is the angle between

the lines AD and BC. Hence, D = D}, = D (%, O).

2. THEBAULT’S THEOREM

We shall first determine the coordinates of the centers of Thébault’s
circles (see Theorem 2). With this important information the proof
of the (complete) Thébault’s theorem (see Theorems 3, 4 and 5 and
the Figure 2) is indeed very simple and straightforward. Of course,
our approach is similar to [3] and [21]. However, our choice of the
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parametrization gives simpler expressions and allows more extensive
study of the Thébault’s configuration.

Teorem 2. The points P, Q, S, T, U, V, X and Y with coordinates
e (1), s (1=%), 2 (1450), —rge (1,252, 5= (2. 50),

rg;{+ (2,94), % (—z fw*) and == (z, fg_) are the centers and r =
lypl, ..., rs = |yy| are the radii of the eight circles k; (i =1,..., 8) that

touch the lines BC' and AD and the circumcircle o(O, R).

Proof. Let P(p, q) be the center of the circle that touches the lines BC
and AD and the circle o. Then

(3) |[PP"| = |q],
and
(4) |POI? = (R + q)?,

where P” is the orthogonal projection of the point P on the line AD.
o o o 2 4rgk fyr ¢o_+hLu

If u=Lp—2kq, v=Lg+2kp, w0=hK? then —I=E2="222 and

2T9Lf+£*_2hk“ are xps and yps. Hence, |PP"| = 7h°_2r£f“°* On

the other hand, R = % and O has the coordinates - (2z, 2% — h?).

It is now easy to see (perhaps with a little help from Maple V) that

the above eight cases of pairs (p, ¢) are all solutions of the equations
(3) and (4). O

While it is easy to find the coordinates of the centers P,..., Y of
the eight Thébault circles and their radii |yp|, ..., |yy|, it is difficult
to describe them precisely by purely geometric means because when
the point D changes position on the line BC' these circles are changing
considerably so that it is hard to tell one from the other. For the
points P, @), S and T this was done in [3, Section 3| by use of oriented
configurations.

For a real number A\ # —1 and different points M and N, the \-point
of the segment M N is a unique point F' on the line M N such that the
ratio of oriented distances |M F'| and |F'N| is equal to A. We can extend
this definition to the case when M = N taking that the A-point is the
point M for every real number A # —1. Recall that the coordinates of
the A-point are (“’/\JZF’\IZEN, ?JM;::\13JN>.

Let ko(1a, 74), ku(Iy, 75) and k.(I., r.) be the excircles of the triangle
ABC. Then I, I,, I, and I. have the coordinates r(f, 1), rg(1, = f),
22 (f, 1) and Z (—1, f). Also, ry, =7fg, 7y = 5= and 1, = %

The part of the following result for the segment QP is the correct
form of Thébault’s theorem while the part for the segment T'S is the
correct form of the Thébault’s external theorem (see |27, Remark 2|).
In [21], Shail calls Theorem 3 the full Thébault theorem.
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\ S
FIGURE 2. Theorems 3 and 4 together.

Teorem 3. The points I, I,, I, and I, are the k*-points of the segments
QP, TS, VU and Y X.

Proof. Since

rg + k’2fL'p o rfi+ k;27“szf

Y
and
yo + Kyp BRI
K = K =T =Y
it follows that I is the k2-point of the segment QP. The other cases
have similar proofs. Il

Corollary 1. The abscises of the centers of Thébault’s circles satisfy:

(5) zo+ Kk xp = Krf, zr + k*zg = Krg,

(6) vy + k2 ry = Knyf, flry + K xx) = —Kr..
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Corollary 2. The ordinates of the centers of Thébault’s circles satisfy:
(7) yo +kyp=Kr,  yr+kys=—Kr,

(8) yv + k2 yy = Kry, yy + kK> yx = Kr,.

Note that only when the point D is on the segment BC' it holds
yp =71, Yo = r2, ys = —r3 and yr = —ry so that from (7) we get (2)
since k = 1. The second relation in (7) gives us the analogous formula
r3 + 1472 = 1,(1 + 72) for the Thébault’s external theorem.

On the other hand, when the point D is on the left from the point
B, the ordinate yp of the center P is negative so that the relation (7)
gives 1 — k*r; = (1 + k*)r. Moreover, when the point D is on the
right from the point C, the ordinate y¢ is negative so that the relation
(7) implies the third part k*r; —ry = (1 + k%)r of the correct version
of the formula (2).

As was already noticed in [23], the eight Thébault’s circles are also
connected with the triangle EBC', where the point E is the second
intersection (besides the point A) of the line AD and the circumcircle
0. Its coordinates are L+ (¥3 — g%, 244 g-). One can easily find

h K2
that its incenter J and the excenters .J,, J. and J, have the coordinates

T}ZL}’;j (’QZ)_H g—)7 % ('QZ)+, g—)7 % (g—a —’17[)4_) and % (_9—7 ’QZ)+) It is
important to note here that as the parameter k£ changes the actual role
of these points changes so that from the excenters they can become
other excenters or the incenter and vice verse.

Teorem 4. The four points J, J,, J. and J. are the k*-points of the
segments YU, QS, TP and VX.

Proof. Since
Ty + Kxy  rze- N rzgke_  rze_ i,

K hk ' hk kK 7
and
yy +kyu _rfe_g | rge_g- _rzp_g-
K K Kk hk YD
it follows that .J is the k%-point of the segment YU. The other cases
have similar proofs. O

The approach in [23| also suggests that the other two triangles ABE
and AC'E and their incenters and the excenters should play a simi-
lar role. We denote those centers by J, J,, Jp, J. and J, Ja, Je, Je-

Their coordinates are 7%= (hk +d,zk —h), === (h — zk,hk + 2),

r}{;{g(hkjuz,zk—h), :LJE (h—zk,hk+ 2), #(Czk‘z—g*k%—fh,
g-(hk = 2)), 3 (Ghk* = f2g k2. fg-(zk + 1), —3 (= }* + f?

gtk —gh, fo(hk —2) and & (Fhk® + g7k + (2,04 (2 k + 1))




6 ZVONKO CERIN

Teorem 5. (i) The points 3, T, Ty and I, are the k*-points of the
segments Y P, TU, V.S and QX.

(ii) The points J, Ja, Je and J. are the k*-points of the segments
QU,YS, TX and VP.

Proof. Since
vy +k*xp  rzo-  re_k  re_(hk+2)

K Kk K hk "
and
yy + K yp _rfe-g- +T90—¢+ _ ro_(zk—h) o
K hK hK hK v
it follows that J is the k?-point of the segment Y P. The other cases
have similar proofs. O

Now we could say that the Theorems 3, 4 and 5 together represent
the complete Thébault theorem.

The rather simple coordinates of the incenters and the excenters of
the triangles ABC, BCE, ABE and ACE allow us to prove easily
the following results that Johnson in [9, p. 193] calls the "Japanese
Theorem" (see also [16]).

Teorem 6. (i) The following quadrangles 13J3, 1,3pJ:3e, 11TadcTe
and 1.3.Jy3. are the rectangles.

(ii) Their areas satisfy: |ITIJ||1.IpJeTe| = [IpTadcTe| | 1Te IpTal-

(ii) Their centers are vertices of a parallelogram with the center at
the circumcenter O of the triangle ABC.
Proof. Since [I3]? = |J3|? = 2L LG ang |13]2 = |J3)2 = el lel)
it follows that IJJJ is a parallelogram. On the other hand, since the
lines IJ and IJ have the equations kx —y=rp_and z+ ky =1 fi,
we conclude that they are perpendicular and IJJJ is a rectangle.

Since the area of a rectangle is the product of the lengths of its
adjacent sides, we see that [[JJJ| = %. Similarly,
2 gt s r2g gt vy lo-|

h? K ’ h? K ’

and |1.3.Jp34| = %. The identity in (ii) is now obvious.
Finally, it is easy to check that the circumcenter O is the midpoint of

the segments Gr373Gr,3,7.3. and Gr,5,7.3.G1.5.5,3. joining the centers

(i. e., the centroids) of these rectangles. O

‘]aij630| = |ijaJ036| =

Note that the inradii j, v and j and the exradii jy, je, Je, tas b, Te,
ja, Je and je of the triangles BCFE, ABE and AC'E are the absolute

: rg-zp-  re_(h=dk) rg_(hkt+d) rfig- Te_ Py
values of the quotients —5—, e e y TR

- _ 1 L K _
ristiz ro_ghktd) rfig(h-dk) rfi(hk+d) rig_(h-dk) rfiy(hk+d)
hK hK ) h K ) h K ) hK ) h K

and
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w*{%dk). Now, at least under the assumption that D is on the segment
BC', we can easily check the following identities:

T"‘j:t_'_ja Ta+,je:tb+jca Tb+jc:ta+jev Tc+jb:te+ja-
The first is the relation (2.2) in [16].

3. SOME CONICS AS LOCI AND ENVELOPES

In order to find the locus of Thébault’s center P, let us eliminate
the parameter k from the equations zp =z and yp = y. We get the
equation y = I(Lh_x) of the parabola p with the circumcenter O as the
focus and the horizontal line € above the line BC' at the distance R (the
circumradius) as the directrix. Repeating this for the centers @, S and
T will always produce the same parabola p. On the other hand, doing
this for the centers U, V', X and Y, will give the equation y = %
of the parabola v also with the circumcenter O as the focus and the

horizontal line £* below the line BC' at the distance R as the directrix.

Corollary 3. The points P, QQ, S and T are on the parabola yv and the
points U, V, X and Y are on the parabola v.

The parabolas p and v intersect only in the points B and C' and they
enclose the region with the area %aR.

When the point D moves on the line BC, the many lines joining
pairs of Thébault’s centers provide families of lines that envelop some
interesting conics of the triangle ABC.

For example, one interpretation of the Theorem 3 is that the lines
PQ, ST, UV and XY envelop the points I, I,, I, and I. (considered
as degenerated ellipses), respectively.

On the other hand, it was noted in |3], the lines PS, QT, UX and
VY envelop the parabola A of focus A and directrix BC' having the
equation y = ic x? — é—; T+ rgf};)z.

The parabolas A\, u and v are closely related in many respects: They
have parallel directrices and axes and the distance between the foci
of A and p and between the foci of A and v is equal to the distance
between their directrices. It is not difficult to see that A and u touch
in the (b“cz#—point T, of the segment AO and that A and v touch in

the (b_cg#—point T, of the segment AO (when b # c).

When b # ¢, the lines PT and QS envelop the same hyperbola n
with the equation ¢(2z — r2)? — (hy — 2r()* = r2d*¢ (|3, Remark 7]).

The lines UY and V' X envelop the same ellipsis y with the equation
h2((2x — r2)? + 2% (hy — 2r()* = r?h22%¢. Tt can be shown that y is
symmetric with respect to the perpendicular bisector of BC', tangent to
v at B and C, tangent to lines T, I, and T, 1. and to the perpendiculars
to BC' through I, and I..
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4. THE LINE AD TANGENT TO THE CIRCUMCIRCLE

We shall see that some positions of the point D on the line BC' are
particularly important. In the following two results we identify what
happens when the line AD is the tangent to the circumcircle o in the
point A. In this exceptional case many points of the configuration
coincide. Of course, this can happen only when the angles B and C
are different.

Let P, ....Y, denote the points in Wthh the Thébault’s circles touch

b (Pay 2h0).), 75 (Q2,2hg-),
(9 (85,90 g ), " (Ty,—2Rf5.), "8 (U, 22.), 2 ’“gm (Va, 22404,
TZf* (Xo,22f1y) and v (Y2,22fg-), Where P, .. Y1 are (h? + d?)k?
—4dk + 4, 4k(k +d) + h® + &2, (h? + d*)k* — 4g(dk g) 4Ck(Ck + d)
+h?+ d?, (h* + 22)k* — 4g(hk — g), 4gk(gk + h) + h? + 22, (R? + 22)k?
+4f(hk + f), 4fk(fk —h) +h%>+ 2% and P,,..., Y; are (h2 +dz)k—
2z, 22k + h* + dz, (h® — dz)k + 22(, 22Ck — h? + dz, ((*+ 2% = 1)k—
2gh, 2ghk + (* 4+ 22 — 1, (2 — 22 — D)k + 2fh, 2fhk — * + 2* + 1.
For eight points Pi,..., Ps, let D(P,..., Ps) be the determinant

Ip, Yp TP, Ypr
Tpy Yrs Tpy Ypy
Tps Yps Tps Yps
Tp, Yp, Tpy Yps

Teorem 7. The following statements are equivalent: (i) P =S, (ii)
V=Y, (ii)P,=A, (iv)S, = A, (v)V, = A, (vi)Y, = A, (vii)] = J.,
(viii) 1, = Jo, (zi) Iy = J, (x) I. = Ja, (x1) T =Ty, (x11) T = o, (wiii)
J=23Je, (riv) Jo=Je, (xv) the lines T3 and 1.J. are perpendicu-
lar, (zvi) D(I,1,, 1y, 1., J, Je, Jy, J.) =0, (2v) Ty € AD, (xvi) J. € AD,
(zvii) the lines Jp3. and AD are perpendicular, (zviii) the lines I.J,
and AD are parallel, (ziz) the lines 1,J. and AD are parallel and (zz)
the angle B is smaller than the angle C and the lines AD and AO are
perpendicular.

Proof. Since |PS|* = ’JK(Z%W, we conclude that P = S if and only
if k= %. However, the parameter k is positive, so that f > ¢ (i. e,
the angle B is smaller than the angle ') and the point D divides the

segment BC in the ratio — 12‘012 (i. e., the point D is the intersection of

the tangent to the circumcircle at the vertex A with the line BC'). This
shows the equivalence of (i) and (xx). For the other parts, it suffices to
note that the only factor that could be zero in the squares of distances
of the points in this part is always the same h — dk. O

The following companion result has similar proof. This time the
common factor is d + hk.
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Teorem 8. The following are equivalent: (i) Q =T, (ii) U = X, (iii)
Qo=A4A, (v) T,=A4A, (v) Uy=A, (vi) X,=A4, (vii) I =J,, (viii)
I,=J., (i) Iy = J,, () I.=J, (x1)J = Ta, (wii) J = T, (viii) J = I,
(ziv) T, =T, (zv) the lines TpJ. and I J. are perpendicular, (zvi)
Je € AD, (zvii) 3. € AD, (zviii) the lines 3.3. and AD are perpen-
dicular, (ziz) the lines IyJ, and AD are parallel, (xz) the lines I,J,
and AD are parallel and (zzi) the angle B is larger than the angle C
and the lines AD and AO are perpendicular.

5. IDENTITIES FOR COORDINATES

Some of the basic algebraic identities among the products of the
ordinates of the centers of Thébault’s circles are given in the next result.

Teorem 9. The following relations hold:

9) Cyryo = ysyr, K Cypyg = —yvyy, Fyvyx = fryvyy,
(10) K Cyvyx = —ysyr,  YpYs = Yuyx,  K'ypys = yvuy,
(11)  yoyr = yvyy, Your = k'yuyx, F2ypyr = =0 yvyx,
(12) G ypyr = — V2 yuyy, ©>Yoys = — fyuyy,

(13) 2yous = —g>yvyx, k'flypyr = —yryy, fyouv = —ysyx,
(14)  fPypyv = —yryx, [yoyu = —ysyy, k'¢*ypyx = —yryv,

15)  gPyouy = —k'wsyu, GPypyy = —yryu, 9*YouUx = —Ysyv-
Proof. Since yp = "2=4+ Yo = rfege e = TS and gy = _rgga};m’

hk? h hk?
it is easy to verify the first relation in (9). All other identities are proved
similarly by direct inspection. U
Since the absolute values of yp,..., yy are the radii ry,..., rg of

Thébault’s circles and the absolute value of the product is the product
of the absolute values of the factors, from the above relations, we have
the following results. The first identity in (17) is from |3, Corollary 5].

Corollary 4. The radii of Thébault’s circles satisfy:

(16) rir3 =Trsry, Tor4 = TeTs, kK'rsrr = 1oy,

(17) 7”1;”2:7”3;”4’ T5§6:T7§8’ T5.§8:7’6;’7’ 7’2.;’3:7”1.;”4’
r Ta Tb Tc J je jb .]c

(18) 7“17“8:7“3;“67 TaTs  ToT7 ToTs  TaT7 r3srg  T1Te

2 2 T L2 20 32 0 32 T a9
T tb ta te ] Jc ]a ]e

For the abscises many relations also hold. The following two are
rather simple.
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Teorem 10. The following relations hold:

(19) TpXsTy Ty = TQ T Ty TX,

(20) ]{34$(,’p$(,’52L’USL’X:$L’QSL’TLL’V:L’y,

Proof. The products on the left and on the right sides of the relation

r’fie-gz
hk

(19) have as the common value the square of . The common

value in the relation (20) is minus the square of ’nzﬂ%. O

We continue with the formulae that involve the radii of the incircle
and the excircles.

Teorem 11. The following relations hold:

(21) B I _ P 9oy YT WV Y Y
Ta Ty Te T Ta Ty Te T
(23) L4 LI _T 0 (gq I VI
Jv Je Je J Jb Je Je J
(25) y_U_|_y_S_|_y_X:y_P7 (26) y_T+y_V+y_Q:y_Y’
Ty T Te T Tq Ty Te T
(ar) 4L gy BB IE_H
Ja )e Je ) Ja Je Je )
(29) yrys 4 Yv Yyu i Yy Ux _ yQyP’
Ta Ty Te T
(30) ?/Q.ys 4 yT.yP i yv.yx _ Yy ?JU’
Jb Je Je J
(31) yr Yu i Yv ys i Yo Yx _ yyyp’
t[l tb te T
(32) yY Ys i yT.yX i yv' Yyp _ yQ.yU.

Ja Je Je )

: ys _ f+9- wu _ p-g-
Proof. Since T AT e T oz Al

d
Ys  Yu L Yx _ oY+ _Yp
Te Ty  Te hk? r

This proves the relation (21). The other identities have similar proofs.
U

It is interesting to note that any of the formulae (29)-(32) remains
true if ordinates are replaced consistently by abscises. For example,
the analogues of the formula (29) with abscises are the following three
relations:

x x x x
(33) TyS+ VyU+ Y Ux _ QyP’

Ta Ty Te T

xXr T T T
(34) yr s+yv U_'_yY X:yQ P’

Ta Ty Te r
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I s Ty Ty Ty Tx ToTp
(35) + + S
Ta Ty Te r

Remark 1. The relations (21)-(28) hold also for the abscises in place
of the ordinates.

Corollary 5. The radii of Thébault’s circles satisfy:

3Ty  T1T2 rste 1778
(36) - = + )
Ta T Ty Te
TeTr  Ts5T8 ToT3  T1T4
(37) 582 1
Je J Jb Je
T4 Ty 1T 3 Tg o Ty
(38) — = + ,
Ta T Ty Te
r3rs 9Ty rqa Ty 1T

Ja ) Je Je
and for the point D in the segment BC),

r+r r3+ T rs — 7T rr—T
(40) 1 2, T34 _ 75 6, 7”78

T Ta Ty Te

)

T — T s — T Ty — T T —7T
(41) 6‘7_‘_5‘8:2.3_‘_1‘4’
Je J Jb Je
ryt+r re—r ro+ 7T r3 4T
(42) 4 5+ 1 8 _ T 7 T3 6’
T, T Te 9
rg+r r9+ 1 e —1T r—=r
(43) 3' 8_'_ 2' 5 _ I 4+ 1 6.

Ja ) e Je
Proof. The identity (36) is a consequence of the relation (29). The
ordinates of the centers of Thébault’s circles are their radii up to a

sign. These signs depend on the position of the point D on the line
BC' and are given in the next table.

Disin | yp |y |Ys |Yr | YU | Yv | Yx | Yy
(o0, B) | - |+ |- |+ |+ ]| +|+]+

(B,C) |+ |+ |- -]-]+]+]|-
(C,4o0) | + | - |+ | - |+ ]| +]|+ ]+

Hence, from (29) we get (36) and from the sum of (21) and (22) we
obtain (40). Of course, there are also the versions of (40) when D is in
(—o0, B) and when it is in (C, +00). O

Let us close this group of identities with the following eight. The
proofs are very similar to the ones above.
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Teorem 12. The following relations hold:

2 2 2 2 4KR
(44) Vs Yo Ox _Up T2
T, T Te r k
2 2 2 2
(45) v W Yy Ve | pepp
Ta Ty Te T
2 2 2 2 4KR
(46) Vs y e Ux Yo, T00
o Je Je ] k
2 2 2
(47) Yo [ Ur Wy W | 2R,
Jb Je Je
2 2 2 2 4KR
(48) Yoo 9 0 _x T2
t, Tt T, T k
2 2 2 2
(49) Yr Wy Yo WY | pegR,
t, Tt t. t
2 2 2 2 4KR
(50) Vs  Ux Y _Yu

Ja e e ] ko

2 2 2 2
(51) yﬁ—y+yi—T+y—V:yTQ+4k2KR.

][l JC e

Remark 2. For the abscises in the identities (44)—(51), the last terms

are 4£<2R and 4K R, respectively.

In the next group of formulae we prove that the products of squares
of the Thébault’s radii divided by fourth powers of the appropriate
inradius or exradius also show considerable regularity.

Teorem 13. The radii of Thébault’s circles satisfy the identities:

2.2 2.2 2.2 2.2 2.9 2.9 2.9 2.9
rry [ TiTg T3ty | TETg Ty | TsTe¢ T3y | T7Tg
74 + r - 74 rd r4 + 74 - r rd
c a b b a c
2,.2 2.2 2,.2 2,.2 2.9 2,9 2.9 2.2
rsTg | Tol's 1Ty | Tgly TsTs | T1Ty  ToT3  Tgly
] ]b ]c ]e ] ]c ]b ]e
2.2 2.2 2.2 2.2 2.9 2.9 2.9 2.9
Ty | ToTy  TyTs | T3Tg TTs | Tals  ToT7  T3Tg
vl * T o vl * S v
e a b a e b
2.2 2.2 2.2 2.2 2.9 2.9 2.9 2.9
TaT5 | T1T% 3Ty | TyTy ToTs | T3Tg 76 , Tal7

IR o dr I T
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Proof. Let f?* = f*+1 and ¢°>" = g* + 1. One can easily check that
both sides in the first relation have the value

2@ V(7 g*t =4 f g +12¢7)
(hk )t

The other identities in this group have analogous proofs. U

In the next result we show that a certain relationship among the
radii of Thébault’s circles can hold only when either the point D or the
triangle ABC' are rather special.

Teorem 14. (i) The radii of the Thébault’s circles satisfy the identity

2,.2 2..2 2,.2 2,.2
Ty | T3y TsTg | TTg
r + 74 - rd r

a b c

if and only if either D = B, D = C or the angle A is right.
(ii) The radii of the Thébault’s circles satisfy the identity

2,2 2,2 2,2 2,2
TsTs | Tgl7 _ Tal3 | T1Ty

J* id gy Je
if and only if the angle A is right.
(111) If the lines AD and AO are not perpendicular (see Theorems 7
and 8), then the radii of the Thébault’s circles satisfy the identity

2.2 2.2 2.2 2.2
g | T3Tg  Tol'z | TyTs
vt + e ¢ td

b e a

if and only if either D = C' or the point D is on the line AO.
Similarly, they satisfy the identity

2.2 2.2 2.2 2.2
ToTs | TyT7  T1Tg | T3Tg
) T = 1 T
) Je Je Ja

if and only if either D = B or the point D is on the line AO.

Proof. (i) This follows immediately from the identity
E ) (i ) 2 et - )
s ri ré ri (hkz)* '

The other cases have similar proofs. 0

Here is an interesting inequality.

Teorem 15. The ordinates of the centers of Thébault’s circles satisfy
the inequality:

(ys +yr)? n (yu + yv)? n (yx + yy)?
Ta Ty Te

(yp +yg)?
T

(52) > 16 R+

The equality holds if and only if the line AD is perpendicular to the
line BC. The same holds also for the abscises in place of the ordinates.
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Proof. Since (ys-:/T)z_|_(yu-7|:l;1/v)2+(yx-7f:cz/Y)2 _(yP-i;yQ)2 _ 4RK2§€IZZL+1) and
the function &k +— % has the minimum 16 for £ = 1, we conclude
that the inequality (52) holds.

It remains to note that the line AD is perpendicular to the line BC'

if and only if & = 1. O

Of course, there are three similar inequalities involving the inradii
and the exradii of the triangles BOE, ABE and AC'E. Also, these
inequalities have the usual interpretations in terms of the radii of the
Thébault’s circles leading to the three versions depending on the posi-
tion of the point D on the line BC.

6. EQUAL RADII 71 AND 79

In this section we shall explore when the pair 1 and r9 of the radii
of the first and the second Thébault’s circles are equal. In fact, the
problem is to describe the positions of the point D on the line BC
when r; = r9 holds. It turns out that the equality happens for three
values of the parameter k. The simpler value corresponds to the case
when 7y = r9 = r (see Theorem 16) and the two more complicated val-
ues to the case r; = ry and either r; # r or 7o # r (see Theorem 17).
In each situation many other geometric consequences hold. Some are
characteristic for the equality of 1 and ry (with 7).

Let ky, = @ be the positive root of the polynomial p;; = L + dk.

Let the perpendicular bisector of the segment BC' intersect the cir-
cumcircle o in the points Z; and Z, such that Z; is above and Z, is
below the line BC. Note that Z; is the midpoint of I/, and the circle
kr,1. goes through B, C and J,. Similarly, Z5 is the midpoint of JJ,
and the circle kj, ;. goes through B, C and I,.

Teorem 16. The following statements are equivalent: (i) the point D
is the orthogonal projection I! of the excenter 1, onto the line BC, (ii)
the parameter k is k., (iit) the lines PQ and BC' are parallel, (iv) the
lines P,Q, and BC' are parallel, (v) the line AD bisects the segment
PQ, (vi) the segments PQ and P"Q" share the midpoints, (vii) the line
joining the incenter I and the midpoint of the segment BC' is parallel to
the line AD, (viii) the line joining the circumcenter O and the midpoint
of either the segment P'Q’" or P"Q" is perpendicular to the line PQ,
(iz) the midpoint of the segment BC' has the same power with respect
to the circles ky and ko, (x) the points P, and Q, are equidistant from
the point Zy and/or Zy and (i) the equalities my = 1 and 1o = r hold.

Proof. Since the point I] has the coordinates (rg,0), we get that |DI]|

is equal chlf;f‘ll‘. Hence, (i) and (ii) are equivalent.
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The lines PQ) and BC' are parallel if and only if the points P and

Kp ..
have equal ordinates. Since yp — yg = kzla, we see that (ii) and (iii)
are equivalent.
2rhK ftgtpy

Similarly, since yp, — Yo, = —p,5, - it follows that (ii) and (iv)

are equivalent.
The midpoint of the segment PQ has the coordinates g7 (L + 2fk,

where p, is defined bellow. It is on the line AD Whose equation

CK Py

Tksa = 0. Hence, (ii) and (v)

hk)

is 2kx + Ly = WT“D* if and only if
are equivalent.

The orthogonal projections P” and Q" of P and @ onto the line
AD have 7= (hk? + 2gk + h, 2, k) and 22 (hk? — 2gk + h, —2g_) as
coordinates. It follows that the m1dpo1nts of the segments P and

Klpy . : :
P’Q" are Tziiéal apart. Therefore, (ii) and (vi) are equivalent.

The line joining the incenter I and the midpoint of the segment BC'
has the equatlon 2z — dy = rz. It will be parallel to the line AD if and

p[’

only if - = 0. This shows the equivalence of (ii) and (vii).

The hne PQ has the equation pyy x + hky = r fi p_. The line join-
ing the circumcenter O and the midpoint of the segment P'Q)’ has the
equation 2(h? — z2*)ky —4hpp y =r(L+2 f k)(h? — 2z*). They will be

. . o TPK ftgtpy e
perpendicular if and only if —757—= = 0. The line joining O and

the midpoint of the segment P”Q” is more complicated but it will be
perpendicular to the line P(Q if and only if the same condition holds.
This shows the equivalence of (ii) and (viii).

The power w(A,, k2) of the midpoint A, of the segment BC' with

respect to the circle ks, is \AQQ\Z 7’2 or M Similarly, w(Ay, k1) is

2(‘3122 2% Their difference is - . Hence, (1X) and (ii) are equivalent.

The differences of squares \QZI| — |PZI\2 and |PZs|? — |QZy|* of

P K (f)?(g")?py,
PR drere) - [t follows that (x)

and (ii) are equivalent.

distances are equal

. . 2 2 rszI/ 9 9 erpI/
Finally, since r{ — r* = —57% and r; — r° = —= and the factors
=(2¢ —1Dk*+dk —1and N = k* + dk — 2¢ + 1 are not both zero

at any real number k, we conclude that (ii) and (xi) are equivalent. [

NitM—d . . :
Let ky = 2+ be the positive roots of the quartic polynomial

ps = L(L + dk) — 2hk?, where M = /@2 + 8h and Ny = d® F dM +4h.

Teorem 17. The following are equivalent: (i) the parameter k is either
ky or k_, (ii) the lines PQ and AD are parallel, (iii) the line P,Q,
bisects the segment P'Q)', (iv) the line PQ bisects the segment P'Q)’,
(v) the segments PQ and P'Q) share the midpoints and (vi) the lines
AD and DI, are perpendicular.
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Proof. Since ppx 4+ hky = rfip_ and 2kx + Ly = WT“D* are the equa-
tions of the lines PQ) and AD, they will be parallel if and only if p, = 0.
This shows that (i) and (ii) are equivalent.

The orthogonal projections P’ and @’ of the centers P and () onto
the line BC' (the z-axis) have the abscises = and r f.. It follows that
the midpoint of the segment P'Q)’ lies on the line P,Q, (i. e., on the
line 2hpp x — [2dL + (2* — h? — 4)k]y = 2rhf ), provided

2

rL
rr, <2k+7“f)—7’f+¢—— ok = 0.

Hence, (i) and (iii) are equivalent.
This same calculation applies also in the proof that (i) and (iv) are
equivalent because the line PQ) has the equation ppx + hky = rfio_.

The midpoints of PQ and P'Q)’ are % apart. We easily conclude
that (i) and (v) are equivalent.

Finally, since hkx — prry = r fLgp_ is the equation of the line DI,,
we get that this line is perpendicular with the line AD if and only if
2hk? —prr L = —p, = 0. Hence, the first and the last statements are
equivalent. O

Note that the condition (ii) in Theorem 17 implies r; = ro. Hence,
the correct version of Theorem 4 in 27| is the following result.

Corollary 6. The following are equivalent: (i) the equality r4 = ro
holds, (ii) the parameter k is either kp., ki or k_, (iii) the points P
and @ are at equal distance from the midpoint of P'Q’ and/or P"Q".

Proof. Since 11 = |yp| and 1 = |yg/, it follows that r = 75 if and only if
r KpI/ P4

Yp — ¥y = —jzi— = 0. Let M’ and M” be the midpoints of P'Q)’ and

7”2 /
P"Q". Then [QM'|? — |PM'[2 = |QM" 2 — |PM"2 = “524™  Hence,
our claim follows from Theorems 16 and 17 because the parameter £ is

a positive real number. O

7. EQUAL RADII 73 AND 14

In the next six theorems we state the companion results with the
previous two theorems for the remaining three pairs (S, 7)), (U, V') and
(X,Y) of related centers of Thébault’s circles. The situation for these
three pairs is a little bit different because the two more complicated
values of the parameter k exist only when the angles B and C' satisfy
certain conditions.

In this section we consider the pair r3 and r4 of the radii of the third
and the fourth Thébault’s circles. We will omit the proofs because
they are very similar to the corresponding proofs of the previous two
theorems.
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/A2 2 _
Let kp = % be the positive root of the quadratic polynomial
pPrr = CL + dk.

Teorem 18. The following statements are equivalent: (i) the point D
is the orthogonal projection I' of the incenter I onto the line BC, (ii)
the parameter k is kp, (iii) the lines ST and BC' are parallel, (iv) the
lines S,T, and BC' are parallel, (v) the line AD bisects the segment
ST, (vi) the segments ST and S"T" share the midpoints, (vii) the line
joining the excenter I, and the midpoint of the segment BC' is parallel
to the line AD and (viii) the equalities r3 =1, and r4 =r, are both
true.

—d ..
Let d®> —8h( > 0. Let my = % be the positive roots of

the quartic polynomial g4 = L((L + dk), where M and Ni are the
expressions /d? — 8h¢ and d? F dM + 4¢2.

Teorem 19. For a triangle ABC whose angles satisfy the inequality
cos(B — C) 4+ 4(cos(B + C) + cos B+ cos C') < =3, the following are
equivalent: (i) the parameter k is either my or m_, (ii) the lines ST
and AD are parallel, (iii) the line S,T, bisects the segment ST, (iv)
the segments ST and ST’ share the midpoints and (v) the lines AD
and DI are perpendicular.

Note that the condition (ii) in Theorem 19 implies r3 = ry. Also,
when both angles B and C' are acute, then the polynomial g, is always
(2CL+dk)? | (8h¢—d?)k?

i T aC
term positive. Indeed, the replacement of f and g in 8h( — d? with
1+ ¢ and 1+ 9 for ¢, 1» > 0 gives a positive polynomial

82 +16 % +16 02 + T2 +26 1) + T1)* + 8 + 8.

positive because it is the sum with the second

8. EQUAL RADII 75 AND g

In this section we consider similarly the pair r5 and rg of the radii of
the fifth and the sixth Thébault’s circles.

Let kp, = 7”h2;r3gz—h be the positive root of the quadratic polynomial
pr = gL+ hk.

Teorem 20. The following statements are equivalent: (i) the point D
is the orthogonal projection 1. of the excenter I. onto the line BC, (ii)
the parameter k is k., (iii) the lines UV and BC' are parallel, (iv) the
lines U,V, and BC' are parallel, (v) the midpoint of the segment UV
is on the perpendicular bisector of the segment BC, (vi) the segments
UV and U"V" share the midpoints, (vii) the line joining the excenter
I, and the midpoint of the segment BC' is parallel to the line AD and
(viii) the equalities 5 = ry, and rg = 1, are both true.



18 ZVONKO CERIN
Let h2 — 8gz > 0. Let ny = % be the positive roots of the
quartic polynomial sy = L(gL + hk + 22) + 2z, where M and N are

Vh? — 8¢z and h? +4¢> £ hM.

Teorem 21. If in a triangle ABC' its angles satisfy the inequality
cos(B — C) 4+ 4(cos(B + C) 4+ cos B — cosC) > 3,

then the following are equivalent: (i) the parameter k is either ny or

n_, (i) the lines UV and AD are parallel, (iii) the line U,V, bisects

the segment U'V"', (iv) the segments UV and U'V' share the midpoints
and (v) the lines AD and DI, are perpendicular.

Note that the condition (ii) in Theorem 20 implies 75 = 7.

9. EQUAL RADII r; AND 7rg

In this section we consider similarly the pair r; and rg of the radii of
the seventh and the last eighth Thébault’s circles.

Let kp; = VA V;;Hfz be the positive root of the quadratic polynomial
P = fL - Bk’
b

Teorem 22. The following statements are equivalent: (i) the point D
is the orthogonal projection I; of the excenter I, onto the line BC, (ii)
the parameter k is kr, (iii) the lines XY and BC' are parallel, (iv) the
lines X,Y, and BC' are parallel, (v) the midpoint of the segment XY
is on the perpendicular bisector of the segment BC', (vi) the segments
XY and X"Y" share the midpoints, (vii) the line joining the excenter
I. and the midpoint of the segment BC' is parallel to the line AD and
(viii) the equalities r7 = r. and rg = r. are both true.

_ h .-
Let h? —8fz > 0. Let pi. = #;EMJF be the positive roots of the

quartic polynomial t, = L(fL — hk + 2z) + 2z, where M and N. are
Vh? —8fzand h? +4f>+ hM.

Teorem 23. If in a triangle ABC' its angles satisfy the inequality
cos(B — C) + 4(cos(B + C) — cos B+ cosC') > 3,

then the following are equivalent: (i) the parameter k is either py or
p—, (ii) the lines XY and AD are parallel, (iii) the line X,Y, bisects
the segment X'Y', (iv) the segments XY and X'Y" share the midpoints
and (v) the lines AD and DI, are perpendicular.

Note that the condition (ii) in the above Theorem 23 implies r7 = rs.

Of course, we can also study the possibilities for equalities of r; and
r; for other choices of 7 and j in the set {1,..., 8}. Let us mention only
that the equalities 7 = r; and ro = rg are impossible and that r3 = rg
if and only if D = C and that r, = rg if and only if D = B.
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10. WHEN THEBAULT’S CIRCLES TOUCH?

The following two theorems explore when will some Thébault’s circles
touch each other. We shall prove only the first theorem and omit the
proof of the second theorem because it is analogous.

Let ko be the positive root (vd2 + h? — d)/h of the polynomial p, =
hL + 2dk. Let ro denote the perpendicular bisector of the side BC' in
the triangle ABC.

Teorem 24. For the circles ky, ko, k3 and k4 the following statements
are equivalent: (i) I € ky, (i) I € ky, (iii) k1 Nky =1, (iv) I, € ks,
(v) I, € ky, (vi) ksNky=1,, (vii) o =Fk*ry, (viii) r4 = k*r3, (iz)
| Jodo| = |Jadel, (z) |Op] = |0, (xi) J € vo, (zii) J, € vo, (ziii) the
lines BC' and JyJ. are parallel, (ziv) the lines PQ and ST are paral-
lel, (zv) the lines PQ and AD are perpendicular, (xvi) the lines ST
and AD are perpendicular, (zvii) the triangles PTD and SQD have
the same area, (zviii) either the point D, the point I or the point I,
has the same power with respect to the circles ky and ko, (ziz) either
the point D, the point I or the point I, has the same power with re-
spect to the circles ks and ky, (zz) the point D is the intersection of
the lines AI and BC, (zxi) D(3,T3¢, 30, v, Ja, ey 35 Je) = 0, (xzii) the
lines 3,34 and 1,J. are perpendicular, (zziii) |P'P"Q'Q"| =0, (zziv)
|S’S"T'"T"| = 0, (zzv) the point D is in the segment BC and the sum
of radit of the incircles and the excircles of the triangles ABC, ABE,
BCE and ACE is the largest possible and (zzvi) the parameter k is
equal k.

Proof. We shall argue that each statement (i)—(xxv) is equivalent to
(xxvi).

Since I € ky is equivalent with |PI| = |yp| and y% — |PI|? =

r2p2

see that (i) is equivalent to (xxvi). Similarly, from |QI]* — yé b2
ST,)> — y% = TS and y2 — |TL)> = “S2 it follows that (ii

: , (iv)
and (v) are equ}ilfzalent with (xxvi). It is obvious now that the same is
true for (iii) and (vi).

The identities k'y3 — yg =~ [}fpz and y2 — klyZ =" rCKpa K2 jmply this
for (vii) and (viii).

Since [J,Jo|? — |Ju o> = ZLL2 and |02 — |02 =
same conclusion holds also for (ix) and (x).

The perpendicular bisector of the segment BC' has the equation
2z = rz. Since 1z — 225, = 2x; — rz = 75, we included (xi) and (xii)
too.

The line J,J. is parallel to the z-axis BC' if and only if the centers
Jy and J. have equal ordinates. Since y;, —y;, = &2, it follows that
(xiii) and (xxvi) are equivalent.

Since (L +dk)x + hky =rfio_ and (CL + dk)x — hky = 19> f1p_
are the equations of the lines PQ and ST, they are parallel provided

r?ftgtps
ShRT the
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(CL+ dk) + (L + dk) = hL + 2dk = p, = 0. In other words, (xiv) and

(xxvi) are equivalent.

Similarly, since 2kx + hky = WT“D* is the equation of the line AD,
it follows that —% = ——4¢ is the condition for the lines PQ and AD
L

to be perpendicular. However, this identity reduces to p; = 0. Hence,
(xv) and (xxvi) are equivalent. The proof for the statement (xvi) is
analogous.

Using the well-known formula

Ta ya 1
o yo 1

for the (oriented) area of any triangle ABC', we get that |PT'D| — |SQD)|

is K¢ Therefore, (xvii) and (xxi) are equivalent. Notice that
|PTA| = |SQA| if and only if |AB| = |AC]|.

Since w(D, k1) —w(D, ky) = ’"2;]:5’2, we conclude that (xviii) and (xxvi)
are equivalent for the point D. Similar arguments holds for the points
I and I, and also for the three parts of the statement (xix).

Observe that the difference of the abscises of the point Dj and the

intersection <rgf:19,0> of the lines Al and BC' is (529)12)14- Hence, (xx)

and (xxvi) are equivalent.

Since D(J,Te, Tay Tpr Jar Jer I Je) = “LLITP2 e infer that (xxi)
is equivalent with (xxvi).

The lines 3,3, and I,J, have the equations h(M xz + Ny) =rgp_ F
and Myx + Noy =79 fy 2(h —dk), where Ng = fgT k> +dzk — g f*,
My=g>fTk>+hzk+ f2gt, M= fPgtk>+dhk—g¢*>ft,N =g f*
K2 — (24 2+ ¢*)k+ fgtand F = [2% + g(h? — 22)|k + h® + h? — 22
These lines are perpendicular if and only if M My + N Ny = 0. Since
M My + N Ny = f* gt ( K py, we conclude that (xxii) and (xxvi) are
equivalent.

Since |P'P"Q'Q"| = —Tzf and |[S'S"T'T"| = %, we see that the
parts (xxiii) and (xxiv) are equivalent with (xxvi).

Finally, when D € BC' then it is possible to get the radii of the
incircles and the excircles of the triangles ABC, ABE, BCE and ACE
and check that their sum is a function of k£ that has the maximal value
precisely when k = kq. Hence, (xxv) and (xxvi) are also equivalent. [

Let ABC be a triangle such that |AB| # |AC|. Then d # 0. Let my
be the positive root (h+ sgn(d)v'd? + h?)/d of the polynomial s, =
dL — 2hk.

Teorem 25. For the circles ks, kg, k7 and kg in a triangle ABC with
|AB| # |ACY, the following statements are equivalent: (i) I, € ks, (ii)
Iy, € kﬁ; (ZZZ) ks N kg = ]b, (’LU) I. e ]{37, (U) I. e ]{38, (ZU) ky N kg = ]c;
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(vii) 6 = k*rs, (viii) rs = k*ry, (iz) the lines UV and Al are par-
allel, (x) the lines XY and Al are parallel, (xi) the lines UV and
XY are parallel, (zii) the lines UV and AD are perpendicular, (xiii)
the lines XY and AD are perpendicular, (zvi) the triangles UY D
and XV D have the same area, (zv) either the point D, the point
I, or the point I. has the same power with respect to the circles ks
and kg, (zvi) either the point D, the point I, or the point I. has
the same power with respect to the circles k; and kg, (zvii) J, € 1o,
(zviii) J. € vo, (ziz) the point D is the intersection of the lines I,1. and
BC, (zz) D(3,3¢, T30, Tb, Jes Jay e J) = 0, (zzi) [U'U"V'V"| =0, (zxii)
| X'X"Y'Y"| =0 and (zziii) the parameter k is my.

The following theorem explains the conditions for other pairs of
Thébault’s circles to touch. We give a table that uses short notation for
some statements about the form of the triangle and about the position
of the point D. The proofs are omitted because they are similar to the
proof of Theorem 24. For example, k; and ks will touch if and only
if |[PS|? = (yp £ys)*>. When we factor the difference of the left and
the right sides of these identities we get the three possibilities from the
table.

Let A,, B, and C, denote the reflections of the vertices A, B and C'
in the sidelines BC, CA and AB. The triangle A,B,C, is called the
three-images triangle.

Let ¢; and ¢3 denote the following polynomials in k:

(d?h? — ACH kY — 2dh(C? + 1)K + M E* 4 4dh¢ k — 4¢2,

(22h? — ACHk* + 2dh(f* + ¢*)K* + N k* + 4dh¢ k — 4¢3,
where M = (*+6(*+4f g (+1and N=f*+¢* +6%+4f g C.
Let o = k*q1 (—1) and ¢4 = k* g3 (—1). Note that ¢; and ¢, have at
most three positive real roots while g3 and g4 have at most one positive
real root.

Let b, b+, b_, B+, B_, C+, C_, DB, Dc, tA, tB, tc, s, c, 41, 42,
g3 and g4 be the following statements "B =C", "B > C", "B < C",
"B >90°", "B <90°", "C>90°", "C<90°", "D=DRB", "D=C",
"the lines AD and AO are perpendicular", "the lines AD and BO
are perpendicular", "the lines AD and C'O are perpendicular", "the
lines AD and CB, are parallel", "the lines AD and BC, are parallel"
and "k is the positive real root of the polynomial ¢;" (for j = 1,2, 3,4).

The pairs (k1, k2), (ks3, k4) and (ks, kg), (k7, ks) have been covered by
Theorems 24 and 25, respectively.

Teorem 26. The Table 1 lists the necessary and sufficient conditions
for pairs among the circles kq,. . ., kg to touch each other. For example,
k1 and ks touch if and only if either D = C or B < C and the lines AD
and AO are perpendicular or the parameter k has additional at most
three different values (the positive real roots of the polynomial qy).



22 ZVONKO CERIN

L R [ ks | ki [ ks [ ke [ ke | ks |
Dq Dg
b Th b | Dy | P | bt | Bore | bt
24 C+TB
¢ lc
k’g DC b—;zA b—:;;A C_TB b+tA b.;,_’l“c
Th D¢ b_ty De
k’g 24 B_’f‘c tc C—i_rB b_tA
DB b+tA DB
k4 b+tA B.,.’I“C tB C_TB
b
Th byt
ks o5 41 Dp
q3 DC’
ko s
Th
ke 25

TABLE 1. Conditions for Thébault’s circles to touch

It would be interesting to get a purely geometric description of the
positions of the point D which correspond to the positive real roots of
the polynomials ¢,. .., q4.

11. THEBAULT’S CENTERS ON LINES

The following theorem explains when the centers of Thébault’s circles
lie on the perpendicular bisector to of the segment BC.

Teorem 27. (i) The center P is on the line w if and only if the angle

C is larger than the angle B, the relation 3b # a + ¢ among the lengths
of sides holds and D 1is the g*b'ba?’z—point of the segment BC'.
(i1) The center Q is on vo if and only if B > C, the relation 3b # a + ¢

holds and D is the £2=3<-point of BC.

(1ii) The center S is on vo if and only if B > C and D is the Z:‘é;gg—
point of BC'.

(iv) The center T is on vo if and only if C > B and D is the Z:‘z;gg—
point of BC'.

v) The center U is on w if and only if D is the =3¢ _point of BC.
atct3b

(vi) The center Y is on vo if and only if D is the ZH’igZ -point of
BC.

(vii) The centers V and X can never be on 1.

Proof. (i) The point P is on the line to if and only if
r?z[dk — 2]

|PB|* — |PC|* = p

=0.
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The unique positive real value of & when this can hold is 2 for f > g.

d
The corresponding p(iint D is the+ﬁ—point of the segment BC),
where a = rz, b:% and ¢ = %.
The other parts have similar proofs. 0
We can make a similar analysis when will the points P,..., Y lie on

the line AO. Let us state only a simpler result for the centers P and Q.
Moreover, we omit the discussion of the values when the denominators
are zero. For example, when B = C, then P is never on the line AO.
Teorem 28. (i) The point P is on the line AO if and only if either
k=1%>0 (see Theorem 7) orkzcz%ﬁ_l > 0.

(ii) The point Q is on the line AO if and only if either k = —=%= > 0

1
(see Theorem 8) or k = I_C;d_dZ > 0. ”
Proof. (i) The line AO has the equation
h[(h?* — d*)x — 2dhy] — rgg~ (f1)* = 0.
Substituting the coordinates of the point P for x and y, we get
rldk — h][(C? + d? — 1)k — 2d]

12 =0.
Hence, the point P is on the line AO if and only if k is either % or
2d
a1
The part (ii) has a similar proof. O

The following analogous result for the line joining the circumcenter
O with the Nagel point 91 is also stated in a similar partial form to
avoid listing many subcases. Note that O =M iff B = C = 30°.

We define up = %, vp = 22_2752_3, us = C(3d—C)7 vg = (}L_S;%,

_ _d _ 29(¢=3) _ _4af _ 2f(¢=3)
Uy = fh—g2g’ v = g Ux = Gh—27 and vx = s
Teorem 29. (i) The point P is on the line ON if and only if either
k=up>0o0rk=vp>0.

(ii) The point Q is on the line ON if and only if either k = —ﬁ >0
ork=—L>0.

vp
Proof. (i) The line O91 has the equation
h[(C=3) —d)|(x +y) =r(fL—29)(h* +d* —2g).
Substituting the coordinates of the point P for x and y, we get
r2[d(¢ — 2)k — ¢+ 3][(¢* — 2% + 3)k + 2d]
4 h? k2
Hence, the point P is on the line O if and only if k£ is either up or

= 0.

vp.
The part (ii) has a similar proof. O

The identical theorems hold for the pairs (S,7"), (U, V) and (X,Y).
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12. CENTRAL POINTS AS THEBAULT’S CENTERS

Since every Thébault’s circle is touching the circumcircle and the
lines BC' and AD, it is now obvious that the circumcenter O is never
the center of any Thébault’s circles. The following result shows that
the Nagel point 91 of the triangle ABC' is also rarely the center of
Thébault’s circles.

Teorem 30. The point N is never equal to any of the points P, Q, U

~

V, X orY. The equality =S holds if and only if f > /2, g= %
and k = f22f2 The equality W =T holds if and only if f < /2, g = %
and k = 5L

2f

Proof. Since the coordinates of 9t are § (fg* — 2g,2), we can easily find

that |PO)? = ’"h%f, where M = (dk — 1) +k*and N = (k¢ — 2k)* + 1
are always positive. Hence, the center P is never the Nagel point. The
arguments for the centers @, U, V, X and Y are similar.

Analogously, [SN|? = ’“Z%i\[, where M = (% + k? is always positive
and N = [d? + (¢ — 2)%]k? — 2dCk + ¢? has the positive leading coeffi-
cient d*+ (¢ —2)? and the discriminant —4¢%(¢ — 2)%. Hence, when

g= f, then |[SN|? = k2+4)[k(f2_2 )=21 \We infer that S will be 9 for

k= f2

posmve
The argument for the center 7' is similar. U

5 and conclude, in addmon that f > /2 because k is always

13. SPECIAL RELATIONS

This section begins with two results that illustrate how some special
relations among radii of Thébault’s circles can hold only when the point
D has some particular position.

Teorem 31. (i) The relation r?(r3 + ri) = r2(ri + r3) holds if and only
if either the lines AD and BC' are perpendicular or the line AD goes
through the incenter I.

(ii) The relation ri(r? +r2) = r2(r2 +r) holds if and only if either
the lines AD and BC' are perpendicular or the line AD goes through
the excenters I, and I..

Proof. We get this from relations r2(r3 4+ r3) — r2(r? +r3) = %

and r2(rg +15) —ri(r2 +15) = % and the fact that for £ =1
the point Dy is the orthogonal projection of the vertex A onto the
sideline BC'. U

Teorem 32. If the product of the tangents of the angles B and C' in

the triangle ABC' is 2, then r®>r3ri +r2r2rs = r2r2rd +r2r2r.
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2r2rs 4 r2r2rd —r2r2r2 — r2r2r2 contains as a factor

Proof. Since r

C2 _ 2 +1= 2(1+COS(B))(1+Cos(iiC;l)()éQ))c;)(ssgf()g)o)SQ(C)—sin(B) sin(C’)), it is clear that
tan(B) tan(C') = 2 implies the above equality. O

In the next result we use again the coordinates of the centers of
Thébault’s circles. For e, f € {z,y}, let E(e, f) denote the identity

ep+es—ey—ex = fo+ fr—fv— fr.

Teorem 33. (i) The identities E(x,y) and E(x,x) are never true.
(i1) The identities E(y,y) and E(y,z) hold if and only if the lines
AD and BC' are perpendicular.

Proof. (i) The difference of the left and the right sides of the identities

E(x,y) and E(x,z) are Tf+g+(k21]3(k2_k+1) and %. Since there

is no positive value k for which these quotients vanish, it follows that
they are never true.

(ii) The difference of the left and the right sides of the identities

E(y,z) and E(y,y) are " g+(k;;)2(k2+k+1) and %. Since 1 is a

unique positive value of k& for which these quotients vanish, it follows
that they hold if and only if the lines AD and BC' are perpendicular.
O

14. LINES CONTAINING MANY INCENTERS AND EXCENTERS

For any point M in the plane, let M’ and M” be the orthogonal
projections of M onto the lines BC and AD.

We prove now that the lines P'P”, Q'Q", S'S", T'T", U'U", V'V",
X'X" and Y'Y" each contains four among incenters and/or excenters
of the triangles ABC, BCE, ABE and ACE. In partial form this was
observed in [23].

Teorem 34. The following table gives the incidence relations of lines
P'P",....,Y'Y" and the points I, 1,,..., J¢, Je.

PP T]J1]3]3
QQ | I Jy|Jc|3
S8 T 1 [T | 3a
N IAPARARE
UU" | L[ J]3.]3
VVT T [ Ja | 3 | 3
X'X"| 1. [ Ja |3 ] 3
YY" .| T3]3

Proof. Since the coordinates of P" and P” are 7 (¢_,0) and 2% (h k*+
29k -+ h,2, k), the line P'P” has the equation kx —y =rp_. It is
now easy to check that the coordinates of the points I, J., J and J.
satisty this equation. The proofs for the other lines are analogous. [J



26 ZVONKO CERIN

From the above table it is possible to identify sixteen pairs of per-
pendicular lines among P'P”,..., Y'Y” that intersect in the sixteen
centers I,..., J.. All other pairs of lines among P'P”,..., Y'Y" are
pairs of parallel lines.

For example, from the first two rows we conclude that the lines P’ P”
and QQ'Q" intersect in I while from the first and the fourth row it follows
that the lines P'P” and T"T" intersect in J.. On the other hand, the
line P'P" is parallel to the lines S’S”, U'U"” and X'X".

15. CIRCLES WITH DIAMETERS ON LINES BC AND AD

Let kynv and sy v denote the circle with the segment MN as a
diameter and its center. In other words, sj;n is the midpoint of the
segment MN.

Teorem 35. (i) The line AD is parallel with the lines spig1, sgr1y,
SU’V’Ib and SX’Y’Ic-

(ZZ) The lines SPIIQ//[, SS//TNIa, SUNV//Ib and SX//y//Ic are pamllel with
the line BC'.

(11i) The intersection of the circles kpig and kpngr is the incenter I
and another point K on the line PQ).

(iv) The circles kg and kgnpn intersect in the point I, and in
another point K, on the line ST.

(v) The intersection of the circles kyny and kynyn is the excenter I,
and another point K, on the line PQ).

(vi) The circles kxiy+ and kxnyr intersect in the point 1. and in
another point K. on the line XY .

The following relation holds:

(54)  |PR[-[SKa|- VI - [Y K| = [QR[ - [TKa| - |UK| - [XKc|.

PRI? SKq|? VK2 YKCQ A2 TKq|? UK|? XK .
i T2| + | T2i + | zbi _'_ i i |QT2| + | 2 i + | 2bi _'_ i | 18

true if and only if ezther D= B D =C or the lines AD and BC’ are
perpendicular.

Proof. (i) The midpoint M of the segment P'Q)’ has the abscissa %
and the ordinate 0. Hence, the line I M is parallel to the line AD as
their equations are 2kx + Ly = r(L + 2fk) and 2kz + Ly = 2rgfip_.
The remaining three claims have similar proofs.

(ii) The midpoint M of the segment P”(Q)" has the abscissa W
and the ordinate r. Hence, the line I M is parallel to the line BC be-
cause the incenter also has the ordinate . The remaining three claims
have similar proofs.

(iii) Since P’, ', P" and Q)" have the coordinates (zp,0), (z¢g,0),
o (WK + 241, 2kip,) and 22 (RK — 29y, —2g_), the second inter-
section of the circles kpig and kprgr (besides the incenter I) is the

point K with the coordinates Tf*% (N, —g_1,), where M and N are
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(L + dk)? + (hk)? and L+ (fg™ —2g)k. Its coordinates satisfy the
equation of the line PQ (see the proof of Theorem 24).

The proofs of (iv), (v) and (vi) are similar.

The easiest way to check the identity (54) is to show that the squares
of its left and right sides are equal.

Finally, the difference of the left and the right hand sides of the last

identity is the quotient 2f+g+ﬁ§,§gf*g*w+. Since the point D is B and

C for k equal % and ¢, we conclude that the last claim is true. O

Of course, the above theorem has three additional versions for the
triangles BCE, ABE and ACE. For example, the lines spry+J, sgv/Jp,
sprprJq and sgrx/J. are parallels of AD while the lines spry»J, sgnynJp,
spupgnJe and sgrxnJe are parallels of BC.

16. THREE (OF TWELVE) ASSOCIATED TRIANGLES

Let 7, A, B and C be the midpoints of the segments spig/ 1, sgir/1,,
syrvily and sxiyI.. Similarly, let I, A, B and C be the midpoints of
the segments SPNQNI, sgnpinly, symynly and sxnynl.. Finally, let I, A,
B and C be the midpoints of the segments ZI, AA, BB and CC.

The few basic relationships among these points are described in the
following result. Let s,, s, and s. denote b+§_“, C+g_b and “+l2’_c.

Teorem 36. (i) The point I is the 3:-point of the segment BB and the
*e-point of the segment CC.

(i) The point I is the *=-point of the segment AA.

(iii) The vertex A is the 2-point of the segment BC.

(iv) The vertex B is the 2*-point of the segment CA.

(v) The vertex C is the 22-point of the segment AB.

(vi) The points I, A, B and C are the 3-points of the segments DI,
Dl,, DI, and DI..

Proof. The points A, B and C have coordinates —72 (fL — 4k, 2fk),

ak
e (L+4fk,2k) and ;7= (fL — 4k, 2fk). Sin_lilarly, the vertices A, B
and C have as coordinates the pairs 7% (fhL +2(h+ ")k, —4fk),
% (AL + 2(h + 2f?)k, 4kz) and 5 (2(fh — 29)k —dfL,4fkz). Also,
the points I and Z have the coordinates 1 (hL + 2(2f¢ — 2)k, 4hk)

and J; (L +4fFk,2k). Since % is equal to g%, it follows that the Z-
point of the segment BB is the point Z. This proves the first claim
in the part (i). All other claims in this theorem have similar routine

verification. O
Teorem 37. The areas of the triangles satisfy the following relations:

|ABC| = |ABC| = L|ILLL|,  |ABC| = 2|L1L|

Proof. Using the formula (53), we find that [ ABC| = |[ABC| = =L g'¢
= YL, I,L.|.
2 |ta c
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On the other hand, since the points A, B and C have the coordi-
nates g (fL+ (f7 +3h)k, =3fk), g (fL+ (4f~ + 3h)k, 3]{2:,22 fimd
o= (CL+ (fh — 42)k, 3fkz), we similarly find that |[ABC| = 2~ _9-¢=,

O

32h2

17. SOME ORTHOLOGIC TRIANGLES

For any real number u # —1, let Q.,, Ty, Vi and Y, denote the u-
points of the segments QP, T'S, VU and Y X. Let U,, X,, S, and P,
denote the u-points of the segments YU, VX, QS and T P. Recall that
the pedal triangle of the point M (with respect to the triangle ABC)
has the orthogonal projections of M onto the lines BC, CA and AB
as vertices. Let W and = denote the pedal triangle of the incenters I
and J with respect to the triangles ABC' and EBC.

Triangles ABC and DEF are orthologic provided the perpendiculars
at the vertices of ABC onto the sides FF, FFD and DE of DEF are
concurrent. The point of concurrence of these perpendiculars is denoted
by oBEE. 1t is well-known that this relation is reflexive and symmetric.
Hence, the perpendiculars from vertices of DEF onto the sides BC,
CA, and AB are concurrent at the point 052%. These points are called
the first and the second orthology centers of the (orthologic) triangles
ABC and DEF. Replacing perpendiculars with parallels we get the
analogous notion of paralogic triangles and centers pYEE and p25G.

The quadruple {A, B, C, D} of points in the plane is orthocentric
provided every point is the orthocenter of the triangle on the remaining
three points.

Let A, =T, V.Y, I'y = XuSu Py, ® = 1,11, and © = J,JJ.. Let us
notice that the orthocentric quadruples {I, I,, I, I.} and {J, J,, Jy, J..}
are associated in the sense that the following holds:

Teorem 38. For every point N in the plane,
INI|> 4+ |NL|> + |[NL|> + |NI|* = |[NJ* + |[NJ,|> + |[NJ,|* + |[N J.|%.
Proof. Let N has the coordinates (p, ¢). Both sides of the above identity

2
have the value 4(p® + ¢*> — rzp) + %}L_Zz)q + (Tf;ﬁ) _ 0

In a similar way one can show that the orthocentric quadruples
{3,734, 3, 3.} and {J, Ja, Je, Je} are also associated to {1, I,, Iy, I.}.

Teorem 39. The triangle A, is orthologic with the triangle ®. The
triangle T'y 1s orthologic with the triangle ©. Their areas satisfy

A, T K?u

@] 0]  k2(u+1)2
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Proof. Recall that the triangles ABC and XY Z are orthologic provided

a4 wx 1 ya yx 1
(55) rzg xy 1|+ |ys yy 1 |=0.
rc vz 1 ye yz 1

We can easily find the coordinates of the vertices of the triangles A,
and ®, substitute them into the the above determinants and make
simplifications to conclude that the condition (55) holds for this pair

of triangles. The same is true also for the pair (I, ©).
r?(K2ftgtzu

Finally, using the formula (53), we get |A,| = APz - oince
|®| = T2<£;29+2, the quotient I|A(;‘\ is m For the pair (I'y, ©) we get
the same value. U

Let k* # 1. Let Q,, T,,, V, and Y, be the (—k?)-points of the segments
QP, TS, VU and YX and let U,, X,, S, and P, be the (—k?)-points
of the segments YU, VX, QS and TP. Let A=T,V,Y,, I' = X,,S,P,.

Teorem 40. The quadruples {Q., Ty, Vy,Y,} and {U,, X,, S,, P,} are
orthocentric and for every point N in the plane the sums

INQuI* + [NT,|* + [NV, " + [NY,|*
and |[NU,|* + INX,|* + |[NS,|? + |NP,|* are equal. The triangles A

and I' have identical nine-point circles and are reversely similar to the
extriangles ® and ©, respectively.

Proof. The points Quv, Ty, V,, and Y, have the pairs ;7 (h(fL — 2k),
hL + 2dk), 22 (h(L +2fk), f(hL + 2dk)), 72 (2(fL— 2k),dL — hk)
and = (—z(L + 2fk), f(2hk — dL)) as the coordinates. The perpen-
dicular through the point 7;, onto the line V, Y, has the equation

T 7 _ rg(hL4+2dk)(f~ L—4fk
(56) (hL + 2dk)x + (dL — 2hk)y = "oEH2L )

and the perpendicular through the point V,, onto the line 7,Y, has the
equation

_ 2rg(fL—2k)frp_
(57) (L +2fk)x + (fL — 2k)y = 2L 20T ee-

These perpendiculars intersect in the point ),. In other words, the
linear system of the equations (56) and (57) has the coordinates of
the point @), as a unique solution. It follows that {Q.,,T,,V,,Y,} is
an orthocentric quadruple. We can similarly show that the quadruple
{Uy, Xy, Sy, P, } is also orthocentric.

Let N = ( q). The both sums have the value 4[(p — a)? + (¢ — b)?|+

3r2 K2 ELJ;Z)Q( )2 , where a = r(sz;hfz(Lhk 2) and b = r[(h—d)? k2 (h+d)? }

Slnce Qv and U, are the orthocenters of the triangles A and F the
easiest way to see that they have the same center of the nine-point
circles is to find their centroids Ga and Gr and verify that the 3-points
of Q,Ga and U,Gr coincide. Their radii are also equal (check that this
3-point is equidistant from the midpoints of 7,,V, and X,S,).
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The triangles A and ® are orthologic by Theorem 39. Hence, in
order to see that they are reversely similar, by [2], it suffices to check
that they are paralogic. Recall that the triangles ABC and XY Z are
paralogic provided

Ta yx 1 rx ya 1
(58) rp Yy 1 + | vy YB 1]=0.
re Yz 1 Tz wo 1

Now we substitute the coordinates of the vertices of the triangles A and
® into the above determinants and make simplifications to conclude
that the condition (58) holds for this pair of triangles. The same is
true also for the pair (I', ©). O

Recall that the Bevan point Xy of the triangle ABC [10] is 017G
(the orthology center of the triangles I, IbI and ABC’) and also the
circumcenter of I,I,1.. Its coordinates are - (2gh P hh)

Corollary 7. The following are distances among the orthology and
paralogy centers of the triangles A, I', &, U, © and =.

AKR
‘OAPA‘ |OF pF| ‘L‘
05 P3| = logpol = 4R, |ogpgl=2r,  |oEpE| =20

More precisely, o5 and pg are the antipodal points on the circle of

radius 2R with the center at the Bevan point of the triangle ABC.
Similarly, oy and pg are the antipodal points on the circle of radius 2R
with the center at the Bevan point of the triangle EBC. Also, 05 and
p4 are the antipodal points on the incircle of ABC and ot and pt are
the antipodal points on the incircle of EBC. The locus of midpoints of
oXp% is a line and the locus of midpoints of o2pf is a hyperbola.

Proof. We prove ounly the claims about of and pg because for other
centers the proofs are similar.

We find that the coordinates of these centers are TR (N, 2p3) and
f+g+K2(N_, 2s2), where N = f3gTK? +2f " F + fG4, F = (gL + 2k)
(29k — L), Gy = (3L +2)(L — 2)¢g* + 16gkL — (K — 4k)(K + 4k) and
G_ = (4k — K)(K + 4k)g*> — 16gkL + (3L + 2)(L — 2). Now it is easy
to check that |o4I| = r and that pg is the (—2)-point of the segment
05 1. Notice that from the ordinates of the points 0§ and pg we see that
the statement 05 € BC could be added in Theorem 24 and p3 € BC
in Theorem 25. O

18. LINES CONNECTING THE TOUCHING POINTS FP,,..., Y,

The points where the eight Thébault’s circles touch the circumcircle
have many properties. Some are revelled in the next result.

Let Mi,..., My, denote the intersections of the lines P,T,, P,V,,
PoQo; SoToa QOUOJ QOSOJ QoSo; QOXOJ POQOJ SoTo; POS/O; PoTo; P0T07
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PV, BYs, SoVs, SoYo, UsY,, QuUs, PY,, UV, P,Qo, QuX, and P,V
with the lines U,Y,, S,Y,, X,Y,, U,V,, 1T,X,, V,X,, U,Y,, T,U,, U,V,,
XOY;; So‘/;); ‘/;Xm QOSOJ QoUo; QoXo; ToUo; ToXo; ‘/oXo; 501/07 ToUm
XY, S,1,, S,V, and T, X,, respectively.

JE

FIGURE 3. The pOiIltS Mlg, Mlg, M5y and Mo .

Teorem 41. The point D lies on the following lines: P,S,, Q,T,, U, X,
and V,Y,. The intersections My,. .., Moy are on the lines I3, ITp, TJ,,
JTb, TaTe, TpTe, Ias- -y Lla,. .., J.Je, respectively. The points My,
My, Mg, My, My, Mg, My and Msyy are on the line perpendicular to
the line DO. The point D is collinear with the points My, Mg, Mg, M,
My, Mi7, Moy and Mss as well as with the points Ms, My, My, M,
Mis, Mg, Mg and May. The point A is on the circles kg, Knimins,
and kypgnns, the point B is on the circles Ky, Knrann, and Knrgas,
the point C is on the circles kg, , kansnng and kg, and the point
E is on the circles knpnr,, kavgrr, and Ky, a,,. Moreover, there are
32 triples of collinear points beginning with { My, My, My} and ending
with { May, Mag, Moo} (one from each of the above three groups of eight
points).

Proof. When h # dk, then the line P,S, has the equation
2h2kx + [(h* + d*)k* — 2dhk + 4Cly = 2rghfio_.

The coordinates of the point D satisfy this equation. We prove similarly
that D also lies on the lines Q,T,, U,X, and V,Y,.
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The intersection M3 has the coordinates 37 (IV, =2 fhs;), where M =
4dCL + hk(d* + h* —4¢) and N = 2dfzL + k[(f~)*g" — 4Cf*]. Tt lies
on the line 11, with the equation hx — dy = rgf™*.

Similarly, the point Mg has the coordinates ;%7 (N, 2fzp), where
M = 4hC L+ dk(d* + h* +4¢) and N = 2fhhL + k[(f~)%g" +4CfF]. Tt
lies on the line I I, with the equation dx + hy = %. The line M3 Mg
is perpendicular to the line DO with the equation

(h2 - d2)79f+90—
Y .
Moreover, the midpoint of Mi3M;g is equidistant from M;3 and A.
The intersections Mys and My, are treated similarly. Of course, they
both lie on the line M;3Mis. ]

k(h? — d*)x — (4CL + 2dhk)y =

19. SOME HOMOLOGIC TRIANGLES

The triangles ABC and XY Z are homologic provided the lines AX,
BY and CZ are concurrent. Their common intersection h5Z is called
the center (of the homology). In terms of the coordinates the condition

for homology is
Tag—Tx Ip — Ty To — Tz
(59) Yx —Ya Yy —Yn Yz — Yo =0.
TAYXx —YATx TpYy —YBly IcYz —Yclz
Let o = S,U,X, and ¢ = T,V,Y,.

Teorem 42. The triangle ® is homologic to the triangles ¢ and . The
homology centers h% and hYy are the antipodal points on the circumcircle

o. The lines hghi and AD are perpendicular if and only if either
1€ AD or I, € AD.

Proof. One can either show directly that the condition (59) holds for
the pairs (@, ) and (®,v) or check that the intersections I,5, N I,U,

and I,T,N IV, have the coordinates % (f~+2fk,2f — fk)

and "C897) (f~k —2f 2fk + f~) and that they lie on the lines I, X,,
and 1.Y,, respectively. The distance \hghi\ is 2R and the midpoint of
the segment h$hy is the circumcenter O.

The lines hghi and AD are perpendicular if and only if ng% =0.
By Theorems 24 and 25, this happens if and only if either I € AD or

I, € AD. U

Let 7 = ABC. Recall that the tangential triangle 7, = A;B;C; has
the intersections of the tangents to the circumcircle o at the vertices of
T as vertices.

Teorem 43. The tangential triangle 7, is homologic to the triangles
and .
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Proof. Let , = A; B;C;. These vertices have the coordinates m (h?
—2%,2hz), o= (ff79~ +2(f* +1)g,2fh2) and 5% (B — 2%, 2hz).
One can now easily check that the condition (59) holds for the pairs
(Ttv @) and (Tt7 TP) O

The above two theorems have more extensive versions that use the
symmetry of the configuration. More precisely, the orthocentric quad-
rangle I1,1,1. is homologic to the quadrangles PySoUy Xy and QoToVo Y.
Similarly, JJ,JiJ. is homologic to the quadrangles Uy Sy Py X and YyQq
ToVo, 33,37 is homologic to the quadrangles PyUySyXo and YT VoQo
and JJ.JeJe is homologic to the quadrangles Uy Sy XoFy and QoYoToVh.
The centers of these homologies are antipodal points on the circum-
circle and are at the distance % and \2/—% from the vertices A, B, E
and C, respectively.

On the other hand, the triangles U,X,P, and V,Y,Q), are homologic
to the tangential triangle of BC'E, the triangles S,U,P, and T,V,(@), are
homologic to the tangential triangle of ABE and the triangles S, X, P,

and T,Y,Q, are homologic to the tangential triangle of ACFE.

20. MORE ON TRIANGLES ABC, ABC AND ABC

In this section we explore additional properties of the triangles ABC,
ABC and ABC that have been introduces in section 15.

Teorem 44. The triangles ABC and ABC are homologic if and only
if either D =1" or D = AI N BC. They are orthologic if and only if
the lines AD and BC' are perpendicular. They can never be paralogic.

Proof. The condition (59) for the triangles ABC and ABC is
3rif gt CPor sz
32 ht k2
Now it suffices to apply Theorems 18 and 25.
Similarly, the conditions (55) and (58) for these triangles are
3r2f+g+§Lz_0 5r2ftgt(z
8h?k o 4 h?
The first holds if and only if £ =1, i. e., if and only if D = A’. The

second does not depend on k and is never true so that the triangles
ABC and ABC are not paralogic. O

Teorem 45. The triangles ABC and ABC are homologic if and only
if D=AINBC.

Proof. The condition (59) for the triangles ABC and ABC is

(2 py 2P
4 h3k
The claim of the theorem now follows from Theorem 24. O

= 0.

=0.

=0.
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Teorem 46. The triangles ABC and ABC are orthologic to ® (the
extriangle I,1y1.) and/or V (the pedal triangle A,B,C, of the incenter
1) if and only if the lines AD and BC' are perpendicular. These pairs
of triangles are never paralogic.

Proof. The conditions (55) and (58) for the pair (ABC, ®) are
SAVIRS TR 3% ftges

4h?k - 2 h?
The first holds if and only if £ = 1, i. e., if and only if the lines AD and
BC are perpendicular. The second does not depend on k and is never

true so that the triangles ABC and ® are not paralogic. The similar
argument holds for the pairs (ABC, V), (ABC, ®) and (ABC, V). O

= 0.

It follows from the part (vi) of Theorem 35 that the points I, A, B
and C are the images of the points I, I,, I, and I. under the homothety
h (D, %) Since [ is the orthocenter of the extriangle I,1,I., we infer
that the quadruple {A,B, C,I} is orthocentric.

The variable triangle ABC has many additional nice properties that
we now describe. They are all the consequence of the fact that it is

homothetic with the extriangle for all positions of the point D.

(1) The triangles ABC and ® are homologic and their homology
center is the point D.

(2) The triangles ABC and ¥ are homologic and their homology

center is the —W—poim of the segment joining the point
D with the central point X5;, the isogonal conjugate of the
Mittenpunkt Xg.

(3) The triangles ABC and ABC are orthologic. Moreover, 042", =
I and o4E¢ is the 3-point of the segment joining the point D
with the Bevan point Xyq.

The triangle ABC is also orthologic with other triangles associated
with the triangle ABC. For example, with the anticomplementary
triangle A,B,C, (on the reflections of the vertices in the midpoints
of opposite sides), the Euler triangle A.B.C. (on the midpoints of the
segments joining the vertices with the orthocenter), the complementary
triangle A,B,C, (on the midpoints of the sides), the extriangle ®, the
cevian triangle A;B;C; of the incenter, the triangle A;B;C; (on the
touching points of the excircles with the sides), the triangle A,,B,,C,,
(on the outer Gergonne points) and the pedal triangle ¥ of the incenter.

Some of the orthology centers for these pairs are interesting central
points of the triangle ABC'. For example, oﬁ?gici = 04%C = X| = I (the
incenter), 0475 o, = 040 g, ¢, = Xs = N (the Nagel point), 0’®% ¢ is
the Spieker point Xjo (the incenter of the complementary triangle),

ABC - - - ABC
OA.B.c. 18 the intersection of the central lines X, Xy and X5 X4, 045 ¢

= X72 and Oé]BC = X65.
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AgByC,
On the other handf,} oy B¢ = oﬁfﬁgac‘l = 0468 = 032" Moreover,
B,C. : .
05 = 0B — o1 99 and 02pc is the 3-point of the segment join-
A;B;C;

ing the point D with the incenter I and ojp~" is the 3-point of the
segment joining the point D with the circumcenter O.

21. PROPERTIES OF QUADRANGLES ¢, @2, g3 AND ¢4

Let us call the quadrangle tame provided it has equal sums of squares
of opposite sides.

We shall now show that ¢, = PQST, go = PVSY, q3 =UV XY and
qs = QUTX are tame quadrangles. There are many more such tame
quadrangles from the Thébault’s centers. Moreover, the quadrangles
P,Q,S,T, and U,V,X,Y, have equal symmetric products of four sides.

Teorem 47. The quadrangles q1, q2, q3 and q4 are tame and
|P Qo| : |S T | ' |U Y| : |VX0| = |P0To| : |QOSO| : |U0V;| : |X0YZ)|'

Proof. The formula |MN|?> = (x5 — xn5)? + (yar — yn)? gives us easily
|ST‘2 2K2C2[C2K++2§L§iz-(d2 +h2—2¢*)k?] ‘PTP r Keof;l:;rk(f@-i-l)’ ‘QS|2
2 2 2
B ;L]‘zlrg(zstk—JrC nd |PQJ* = 2K2[K++2diét(d2+h2_2)k2}. From this one
can derive the algebraic identity |PQ|? + |ST|* = |PT|? + |QS|? which
proves that ¢; is a tame quadrangle. For the other quadrangles ¢o, g3
and ¢4 the proof is similar. For the long identity, we actually prove

that both sides have equal squares. 0

Next, we find a situation when the quadrangles qi, g2, g3 and ¢4 are
cyclic.

Teorem 48. If the line AD and the sideline BC are perpendicular,
then the quadrangles q1, g2, q3 and q4 are cyclic. Their circumcenters
Oy, Ogy, Oy and Oy, are vertices of a square with the side 2v/2 R such
that Og4,0,, s parallel to the sideline BC.

Proof. Let us recall that k£ = 1 if and only if the lines AD and BC are
perpendicular. Hence, the circumcenter of the triangle PQS has the
coordinates ~ (fg~, —h?) and is equidistant from the points P and T
It follows that ¢ is a cyclic quadrangle. Similarly, the circumcenter
of the triangle UV X has the coordinates £ (f¢g~, 2*) and is equidistant
from the points U and Y so that the quadrangle ¢z is also cyclic. In
fact, this argument shows that these quadrangles are non-degenerate
and cyclic if and only if £k =1 (see |3, Remark 6| for PQST). For
the quadrangles ¢; and ¢4 these equivalences do not hold but for £ =1
they are also cyclic. The remaining claims have easy proofs by direct
computation of coordinates and use of the distance formula. O

The centroids Gy,, G4,, G4, and G, of the quadrangles ¢, g2, ¢3 and
qs are vertices of an interesting rectangle whose diagonals are never
shorter than the diameter of the circumcircle of the triangle ABC.
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Teorem 49. The quadrangle Gy, G4,G4,Gy, is a rectangle with sides
GGl = REVE and |Gy,Gy,| = Rg and the diagonals RK\Q@_
Hence, |GGy > 2 R.

Proof. The centroids G,, and G4, have the coordinates

- 4;;2 (hk(hL — 22k), (" L? + (2h* + dhk) L + 2h°)
and
5 (KL + 2hk), (2 4+ g*) L% + (22 — dhk)L + 227) .

The coordinates of G, and G, are similar. It is now routine to check
that Gy, G4, G, Gy, 1s a rectangle and to compute the lengths of its sides
and diagonals and prove the above inequality. U

The following results explores when the diagonals of the quadrangle
GGy, Gy Gy, have their minimal value 2 R.

Teorem 50. The following are equivalent: (i) |Gy, Gyl =2 R, (i) the
line Gy4,Gy, is perpendicular to the line BC, (iii) the line G4, Gy, is
parallel to the line AD and (iv) the line AD is perpendicular to the
line BC.

Proof. The only singular value for the function & +—
This shows that (i) and (iv) are equivalent.

The line Gy, G4, is perpendicular to the line BC' if and only if G,
and Gy, have equal abscises. However, zg, — 2g, = rf Zhg]: L
again k = 1 and we conclude that (ii) and (iv) are equivalent.

Finally, the line G, G, is parallel to the line AD if and only if they
have equal slopes, i. e., if and only if £ = 1. Therefore, (iii) and (iv)
are also equivalent. O

Kz(k:4L+1) is k=1

. Hence,

The following three theorems consider the Newton lines of the quad-
rangles ¢; and ¢3. Recall that the Newton line joins the midpoints of
the diagonals of a quadrangle and its centroid.

Let (T =(?+1.

Teorem 51. The following are equivalent: (i) the Newton lines of the
quadrangles ¢ and qs are parallel, (ii) the point D lies on the line
joining the centroids G,, and Gy, of the quadrangles q1 and q3 and (iii)
the point D is the midpoint of the segment BC'.

Proof. The equations of the Newton lines of PQST and UV XY are
2[CTL + dhk)x — 2h*ky = r[z¢T L + (h* + dhz)k]
and
2h[(f? + ¢*)L — dhk]x — 2hkz*y = rz[h(f* + ¢*)L — (2* + dhh)E].

The condition for these lines to be parallel is 4f+g*h(2¢L + dhk) = 0.
In order to prove the equivalence of (i) and (iii), it remains to notice
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that the distance between the point D and the midpoint of the segment
BC is r|2¢ L+dhk|

Let Kt =k*+ 1. The line G, G,, has the equation
4hk(K*x — kLy) = r[2CL* + (dh + 2hz)kL* + 4hk?z).
When we substitute £ = xp and y = yp = 0 and move the free term

to the left, we get rK2(2¢(L + dhk). This shows that (ii) and (iii) are
equivalent. O

Teorem 52. The Newton lines of the quadrangles q1, q3, ¢z and q4 go
through the points Z5, Z1, Ry and Ry, respectively.

Proof. The coordinates of the point Zy are 7 (2, —h). The equation of
the Newton line of PQST is

2[CTL + dhk]x — 2h%ky = r[z¢t L + (h* + dh2)k].

It is now easy to check that Zs is on it. The other claims in this theorem
have similar proofs. O

Recall that the central point Xg9 is the symmedian point of the
anticomplementary triangle. It is also the isotomic conjugate of the
orthocenter.

Teorem 53. The locus of intersections of Newton lines of the quadran-
gles q1 and qs is the perpendicular to the line AXgy from the intersection
of the line BC' with the perpendicular in the vertex A to the line AO.

Proof. The coordinates of the intersection M of the Newton lines of
the quadrangles ¢; and g3 are (see the proof of Theorem 50)

sractrarn (2902 fro-, (A + (P + 1)(f* + ¢°) L — d(h® — 2°)hk).

By eliminating the variable k from the equations x = xy; and y = yy,
we get the equation dhhx + 2Chy = rg?(fT)? of the locus. Since the
central point Xgg has the coordinates

2

PR (29t + 1) + f(97)% =247 (h7 = 2%)),

it is now easy to check that the locus is the line described in the state-
ment of the theorem. U

Teorem 54. The diagonals of the van Aubel pseudo-squares of the

quadrangles PQST, UV XY, PQUY and ST XV are on angle bisectors
of the line AD and the perpendicular at the point D onto the line BC'.

Proof. The angle bisectors of the line AD and the perpendicular at the
point D onto the line BC' have the equations

(60) (k—1z—(k+1y=(k—1)xp,
and
(61) (k+1Dz+(k—1)y=(k+ 1ap.
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The coordinates of the centers M and N of the negative squares on
the segments QS and T'P are 575 (ua, var) and 555 (un, vy), where
wnt = (k= D)k + gO) + k(k + 1)(C — g), var = (k +1)g_(C — k), uy
=(k—1)(k?9¢ — 1)+ k(k+1)(C+g) and vy = (k + 1), (1 — Ck). It
is now easy to check that these coordinates of both M and N satisfy
the equation (60). The similar argument applies to the centers of the
other negative and positive squares on sides of the quadrangles PQST,

UVXY, PQUY and STXV. O

Many other quadrangles from Thébault’s centers P,..., Y share the
above properties with the quadrangles ¢, ¢, g3 and q4.

22. LINES CONCURRENT IN THE POINTS Ry, Ry, Z; AND Z,

Teorem 55. The lines P,P’', Q,Q’', S,S" and T,T' concur in the point
Zy. The lines UU', V,V', X, X" and Y,Y' concur in the point Z;.

Proof. The line P,P’ has the equation hkz + (2 — dk)y = rhp_. It is
now easy to check that Zs is on the line P,P’. The other claims in this
theorem have similar proofs. O

Let the perpendicular bisector of the segment AD intersect the cir-
cumcircle o in the points R; and Ry such that R, is closer to A than
to B while Ry is closer to B than to A. Hence,

4a Rk

|AR1|? — |BR1|* = |BRy|* — |ARy|* = T

Note that R; is the midpoint of J,J. and Ry is the midpoint of J,7J..

Teorem 56. The lines P,P", S, 5", V,V" and YY" concur in the point
Ry. The lines Q,Q", T,T", U,U" and X, X" concur in the point Rs.
Proof. The coordinates of the point R; are % (hk + z,kz — h).
The line P,P” has the equation

(dk +h — 2)kx + (hk* — dk + 2)y = rp_(kz + h).

It is now easy to check that R; is on the line P,P”. The other claims
in this theorem have similar proofs. U

23. THE POINTS THAT ENVELOP P,Q,, S,1,, U,V, AND X,Y,

In this section we show that the lines P,Q,, S,1,, U,V, and X,Y,
pass through the fixed points of the triangle ABC. The following is
the part (a) of Proposition 9 in |3].

Teorem 57. The central point Xs¢ of the triangle ABC (i. e., the
isogonal conjugate of the Nagel point Xs) lies on the line P,Q),.
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Proof. The coordinates of the point X54 are
r _
Prhira (f7g(h=1)+ f(f* +3),h%).
The line P,(Q), has the equation
2(dk + L)ha + [(h? — 22 + 4)k — 2dL)y = 2hr f,p_.
It is now easy to check that X5 is on the line P,Q),. ]

Of course, there are three related results where the central points
X5 of the triangles BOCE, ABE and ACE appear. Since the point £
varies, these points are not fixed. They lie on the lines U,Y,, P,Y, and
Q,U,, respectively.

Let Ny, Ny and N} be the points on the lines AX55, BX55 and C' X355
with the coordinates ety (631 —2) + f7(2¢ — 1), —2f1?),
nereras (FaT 24397 +2) +2f79,22%) and yibmy (f(97+
2¢) —3fT +2,2f2%). Notice that N*, N} and N are isogonal conju-
gates of the associated Nagel points N,, N, and N, with coordinates
—2 (9" +29,2¢%), 5 (97 +2¢, —2f) and 2 (2¢ — g*, 29¢).

Teorem 58. The lines S, T,, U,V, and X,Y, pass through the points
Ny, Ny and N}, respectively.

Proof. The line S,T, has the equation
2(dk 4 CL)hx + [2dCL — (5¢* — f2 — ¢* + Dkly = 2¢°hr fro_.

It is now easy to check that N is on the line S,7,. This is the part (b) of
Proposition 9 in [3]. The remaining two claims are proved similarly. O

24. PERPENDICULARS PASSING THROUGH THE POINT D

The point D is very important for the Thébault’s configuration. This
is supported by four similar results in this section about D being on
some interesting perpendiculars to sides of the four orthocentric quad-
rangles from the incenters and the excenters.

Teorem 59. If k # ko, then the point D lies on the perpendicular from
the intersection of the lines PQ and ST onto the line I1,. If k # my,
then the point D lies on the perpendicular from the intersection of the
lines UV and XY onto the line I,1.. These perpendiculars are perpen-
dicular.

Proof. Let k # ko. The intersection M of the lines PQ and ST has

the coordinates % (97 hk,dg_1). Hence, the perpendicular from

M onto the line 1, has the equation hk(dx + hy) = rdgfip_. It is
now obvious that this perpendicular goes through the point D.
Let k # mg. The intersection N of the lines UV and XY has the

coordinates —% (97 2k, hg_1) . Hence, the perpendicular from N

onto the line I,I, has the equation hk(hx — dy) = rghf.p_. It is now
clear that this perpendicular goes through the point D. O
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Teorem 60. Let D # B,C. The point D lies on the perpendicular
from the intersection of the lines PT and QS onto the line JyJ.. If,
in addition, |AB| # |AC|, then the point D lies on the perpendicular
from the intersection of the lines UY and VX onto the line JJ,. These
perpendiculars are perpendicular.

Proof. The intersection M of the lines PT and @S has the coordinates
7= (fThk,—fs,). Hence, the perpendicular from M onto the line J,J.
has the equation hk(sex — poy) = rgsafi@_. It is now obvious that this
perpendicular goes through the point D.

Let |AB| # |AC| (i. e., let d # 0). The intersection N of the lines UY
and VX has the coordinates 7% (f* 2k, fps) . Hence, the perpendicular
from N onto the line JJ, has the equation hk(pax + soy) = rgpafie—.

It is now clear that this perpendicular goes through the point D. [J

Teorem 61. Let D # B,C. The point D lies on the perpendicular
from the intersection of the lines PY and QX onto the line 3,3,. The
point D lies on the perpendicular from the intersection of the lines UT
and SV onto the line JJ.. These perpendiculars are perpendicular.

Proof. The intersection M of the lines PY and QX has the coordinates
7z ((gf~—2f)k, f(2g9k — L)) . Hence, the perpendicular from M onto
the line J,J; has the equation

hk[(2gk — L)z + (9L +2k)y] =rg(2gk — L) fro-.

It is now obvious that this perpendicular goes through the point D.

The intersection N of the lines UT and SV has the coordinates
2 ((f7+2Q)k, f(gL +2k)). Hence, the perpendicular from N onto
the line JJ, has the equation

hk[(gL+2k)x — 29k — L)yl =rg(g L +2k) fro-.
It is now clear that the point D lies on this perpendicular. O

Teorem 62. The point D, different from the vertexr C, lies on the
perpendicular from the intersection of the lines SY and QU onto the
line J.Je. The point D lies on the perpendicular from the intersection
of the lines PV and TX onto the line J3J,. These perpendiculars are
perpendicular.

Proof. The intersection M of the lines SY and QU has the coordinates
T,{Z}'}* (g7 k, k* — ¢g%). Hence, the perpendicular from M onto the line
JeJe has the equation hk(gr z +¢_y) = rg f+ p— g+. It is now obvious
that this perpendicular goes through the point D.

The intersection N of the lines PV and T'X has the coordinates
—Z{Z—? (97 k,v_1.). Hence, the perpendicular from N onto the line
JJ. has the equation hk(¢Y_z — gy y) =rgfre_1_. It is now clear

that the point D lies on this perpendicular. O
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25. CERTAIN PAIRS OF PERPENDICULAR LINES

Teorem 63. The lines DI, DI,, DI, and DI, are perpendicular to the
lines ST, PQ, XY and UV, respectively.

Proof. The lines DI and ST have the equations hkx + pry = rgfip_
and ppx — hky = rg®frp_. It follows that they are perpendicular. The
proofs for the remaining three pairs of lines are similar. U

Teorem 64. The lines DJ, DJ,, DJ, and DJ. are perpendicular to
the lines VX, UY, QS and PT, respectively.

Proof. The lines DJ and V X are perpendicular because they have the
equations kzx + (9L — d)y = rgzfro— and (gL — d)x — kzy = —rgzf3.
The proofs for the remaining three pairs of lines are analogous. U

In a similar way it is possible to prove the following:

Teorem 65. (i) The lines DJ, DJ3,, D3, and D3, are perpendicular
to the lines SV, XQ, PY and UT, respectively.

(ii) The lines DJ, DJ,, DJ. and DJ. are perpendicular to the lines
XT, PV, UQ and SY, respectively.

26. SPECIAL RELATIONS FOR PRODUCTS OF SIDES AND DIAGONALS

In this section, we consider some consequences of equalities among
the products of lengths of sides and diagonals of some quadrangles from
the eight centers of Thébault’s circles.

Teorem 66. If neither the angle B nor the angle C is right, then
|PQ||ST| = |UV||XY] holds if and only if the line AD is perpendicular
either to the line AB or to the line AC.

The equality |PS||QT| = |UX||VY| holds if and only if either the
angle A is right or |AB| # |AC| and the line AD is perpendicular to
the line AO.

The equality | PT||QS| = |UY ||V X| holds if and only if either D = B,
D=C, B=90° or C =90°.

The equality |PU||QV| = |SX||TY| holds if and only if either D = B
or the angle B is right.

The equality |PX||QY| = |SU||TV| holds if and only if either D = C
or the angle C' is right.

Proof. The difference |PQ|*|ST|* — [UV[*| XY|? factors as the quotient
(T’K)4<2f+g+(f}:£:g4fk)(gfL+4gk>. When the angle B is not right, then the
factor f~L + 4fk vanishes if and only if the line AD is perpendicular
to the line AB. Similarly, when the angle C' is not right, then the factor
g~ L + 4gk vanishes if and only if the line AD is perpendicular to the
line AC.

The difference |PS[*|QT|? — |[UX]*|[VY|? simplifies to the quotient

T4K2f+g+(E_?Zf)gﬁﬂd)z(hz_zz). The factor h? — 22

vanishes if and only if
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the angle A is right. When |AB| # |AC)|, the factor (h — dk)?(hk + d)?
vanishes if and only if the line AD is perpendicular to the line AO.
The difference |PT[2QS|* — [UY 2|V X |2 is L 070 (frove-vi)”,
Its numerator vanishes only for & = % (when D = B), k=g (when
D=C), f=1 (when B=090°) and g =1 (when C' = 90°).
The last two claims have similar (somewhat simpler) proofs. O

27. DIAGONAL POINTS

The diagonal points in quadrangles are two intersections of pairs of
opposite sidelines and the intersection of diagonals. In this section we
consider these points for some quadrangles from the eight centers of
Thébault’s circles.

The only assumption in the following result is that |AB| # |AC.

Teorem 67. The intersections My and Nq of the lines PT and QS
and of the lines UY and VX lie on the perpendicular to the line AD
in the point A. The point D s on the circle kyyn,. When the lines
AO and BC are not parallel, then its center lies on the line BC' if and
only if the circumcenter O is on the line AD.

Proof. The coordinates of the points My and Ny are ;-2 L (fThk,—fss)
and 2% (fTkz, fps). It is novv easy to check that they satisfy the equa-
tion h(Lx — 2ky) = rg(¢* — f2) of the perpendicular to the line AD
in the point A.

The coordinates of the midpoint M of the segment MyN, are

2dhhk( (f*)2gk, fI(h+ d)k — h+d][(7l—d)]€+7l+d]).

Hence, |M D|? = |M M,|?. This implies that the point D is on the circle
Faions.
Finally, when the lines AO and BC' are not parallel, then the inter-

section N of these lines has the coordinates <Tgf}—;(_f;); , O). It remains

to observe that |[ND| = TQ(hJ“d)khZ;gH(;‘ hthtd] O

In the following result we assume that |[AB| # | AC| and that the line
PQ) is not parallel to the line ST and that the line UV is not parallel to
the line XY. In other words, the point D can not be the intersections
of the line BC with the lines Al and I,I..

Teorem 68. The intersections M and N of the lines PQ and ST and
of the lines UV and XY lie on the perpendicular to the line AD in
the point E. The point D is on the circle kyy. The following are
equivalent: (i) the midpoint of the segment M N lies on the line BC,
(i) the lines M Ny and N My are perpendicular, (iii) the point D is on
the line M Ny, (iv) the point D is on the line NM,, (v) the relation
IMN|? + |MoNo|? = |[MMy|* + | NNo|? holds and (vi) either D = B,
D = C or the circumcenter O is on the line AD.
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Proof. The coordinates of the points M and N are Tf“o (9T hk,dg_,)

and Tﬁ;j (97 2k, hg_1by). It is now easy to check that they satisfy

the equation h(Lx — 2ky) = rfip_g~ of the perpendicular to the line
AD in the point F.
The coordinates of the midpoint m of the segment M N are

e (2f 4o (97)Pho g (R + )k — B+ d[(h = d)k + b+ d]).

Hence, [/mD|?* = |[mM|*. This implies that the point D is on the circle
kmn-

Finally, in order to prove the equivalence of the six statements, it
suffices to notice that each condition described analytically involves as
factors o_, g_, (h+d)k —h+d and (h — d)k + h 4+ d. For example,
the sum |MN|? + | MoNo|* — | M My|* — | N No|? is equal

2r2Cfro_g i [(h+d)k — h+ d)?*[(h — d)k + h + d]?
d}_lh2k52p252 ‘

U

Teorem 69. Let k # g The intersections My and Ny of the lines PY
and SV and of the lines TU and QX lie on the perpendicular to the
line BC in the point C'. The point D s on the circle koyym, -

Proof. The points 9y and Ny have the abscises r z (the same as that
of the point C') and the ordinates % and T’f*;’;k(ﬁ—w.
The ordinate of the midpoint 2 of the segment 9N, is

rfg_w+[(h+z)k+z—h][(h—z)k:+z+h]
2hk(hk+2)(zk —h)

Hence, |MD|? = |9MIN,|2. This implies that the point D is on the circle
Eongm, - U
Teorem 70. Let k # Z. The intersections My and Ny of the lines PV

and SY and of the lines QU and TX lie on the perpendicular to the
line BC in the point B. The point D is on the circle ks, -

Proof. The points Mg and Nj have the abscises 0 (the same as that of
the point B) and the ordinates £ i*kfsz(j;? M and T’g{szﬂhféif; h)
The ordinate of the midpoint M of the segment Mg\ is

rgfrp_[(h+2)k+h—=z][(z—h)k+z+h]
2hk(hk—2)(zk+h) '

Hence, |MD|? = |[MM,|®. This implies that the point D is on the
circle kaons, - U
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28. THE ROLE OF X409 AND Xqg

Two results in this section use the Longchamps point X5y and the
Bevan point X,9. They give some consequences of certain positions of
these central points with respect to the centers of Thébault circles.

Teorem 71. (i) The relation cos A = cos B + cos C for the angles of
the triangle ABC' holds if and only if the reflection of the Bevan point
Xuo tn the line BC lies on the line ST

(ii) The relation cos B + cos C' = 1 holds if and only if the reflection
of the Bevan point X4 in the perpendicular bisector of the segment BC'
lies on the line PQ).

(11i) The Bevan point X4 never lies on the line ST.

Proof. The Bevan point X4 has the coordinates 7= (2hg, 1 + 2* — (?).
Its reflection in the line BC' (the z-axis!!) will be on the line ST with
the equation (L + dk)x — hky = r fyo_g* if and only if

3¢2-2¢—-22—-1=0.

When we substitute f = cot % and g = cot %, this condition is seen
equivalent with the identity cos A = cos B + cosC'. This proves the
part (i). The proof of (ii) is similar. Finally, in order to prove (iii),
when we substitute the coordinates of X4 into the above equation of
the line ST and move all terms to the left side, we obtain —@ =0
that is never true. U

Teorem 72. (i) Let py # 0. The angle A in the triangle ABC' is right
iof and only if the Longchamps point Xog ts on the perpendicular to the
line AD through the intersection M of the lines PQ) and ST.

(ii) Let sy # 0. The angle A in the triangle ABC' is right if and only
if the Longchamps point Xoy is on the perpendicular to the line AD
through the intersection N of the lines UV and XY .

Proof. (ii) When we substitute the coordinates £ (fg~, 2> — ¢* — 1) of
Xy into the equation h(Lz — 2ky) = rfi@_g~ of the perpendicular to
the line AD through the intersection N and move all terms to the left
side, we obtain rk(h? — 2%) = 0 that is equivalent with the condition
that the angle A is right. U
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