
ON THÉBAULT'S PROBLEM 3887ZVONKO �ERINAbstrat. The famous Thébault's on�guration of the triangle
ABC depends on a variable point D on its sideline BC and onsistsof eight irles touhing the lines AD and BC and its irumirle.These irles are best onsidered in four pairs that are related to thefour irles touhing the sidelinesBC, CA and AB (the inirle andthe three exirles). We use the analythi geometry to determinethe oordinates of the enters P , Q, S, T , U , V , X and Y of theeight Thébault's irles with respet to a parametrization of thetriangle ABC with the inradius r and the otangents f and g of theangles B

2
and C

2
. The position of the point D is desribed by theotangent of the half of the angle between the lines AD and BC.The oordinates of many points in this on�guration are simplerational funtions in r, f , g and k that makes most omputationssimple espeially when done by a omputer. In this approah,the proof of the original Thébault's problem about the inenter Idividing the segment QP in the ratio k2 is straightforward. A largenumber of other interesting properties of this gem of the trianglegeometry are explored by analythi methods.1. IntrodutionIn [27℄, the authors say that the following result is usually alledThébault's theorem (see the portion of the Fig. 1 above the line BC).Teorem 1. Let u(I, r) be the inirle of a triangle △ABC (u is thename, I is the enter and r is the radius), and D any point on the line

BC. Let k1(P, r1) and k2(Q, r2) be two irles touhing the lines ADand BC and the irumirle o(O,R) of ABC. Then the three enters
P , Q and I are ollinear and the following relations hold:(1) PI : IQ = τ 2,(2) r1 + r2 τ

2 = r(1 + τ 2),where 2 θ = ∠ADB and τ = tan θ.The primary goal of this paper is to give orret versions of theabove "theorem". Its formulation is wrong beause the requirement"touhing the lines AD and BC and the irumirle o(O,R)" is notrestritive enough. This is obvious from the part of the Figure 1 underthe line BC sine the enters Y , U and I are not ollinear. On theother hand, the relation (2) does not hold for all positions of the point
D on the line BC. 1
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oFigure 1. Thébault's theorem.The Problem 3887 in the Amerian Mathematial Monthly by VitorThébault [25℄ addresses an unusual result in elementary geometry thatis easier to formulate and prove within the analyti geometry ratherthan in the syntheti geometry. The syntheti approah is traditionallyonsidered as more valuable while the inferior analyti method is alwaysa kind of brute fore with lengthly omputations.We need the following notation to have shorter expressions. Let
d = f − g, z = f + g, ζ = fg, h = ζ − 1, h̄ = ζ + 1, f± = f ± k, g± = k
±g, f± = f 2 ± 1, g± = g2 ± 1, ϕ± = f k ± 1, ψ± = g k ± 1, K = k2 + 1and L = k2 − 1. Let λ(a, b) replae (λ a, λ b).Let ABC be a triangle in the plane. Let β = ∠CBA and γ = ∠ACB.Let f = cot

(

β

2

) and g = cot
(

γ

2

) and let u(I, r) be the inirle of thetriangle ABC. We shall use the retangular oordinate system that hasthe point B as the origin and the point C is on the positive part of the
x-axis while the point A is above it. For a point P , let xP and yP denoteits x- and y-oordinate with respet to this system. Then the verties
A, B and C of the triangle ABC have the oordinates rg

h
(f−, 2f),

(0, 0) and (r z, 0), where the positive real numbers r, f and g satisfy
h > 0. The position of a variable point D on the line BC is determinedby the positive real number k = cot

(

δ
2

), where δ is the angle betweenthe lines AD and BC. Hene, D = Dk = D
(

r g f+ ϕ−

hk
, 0

).2. Thébault's theoremWe shall �rst determine the oordinates of the enters of Thébault'sirles (see Theorem 2). With this important information the proofof the (omplete) Thébault's theorem (see Theorems 3, 4 and 5 andthe Figure 2) is indeed very simple and straightforward. Of ourse,our approah is similar to [3℄ and [21℄. However, our hoie of the



ON THÉBAULT'S PROBLEM 3887 3parametrization gives simpler expressions and allows more extensivestudy of the Thébault's on�guration.Teorem 2. The points P , Q, S, T , U , V , X and Y with oordinates
rϕ−

k

(

1, ψ+

hk

), rf+

(

1,−g−
h

), rgf+
k

(

1, fg−
hk

), −rgϕ−
(

1, fψ+

h

), rgϕ−

hk

(

z, g−
k

),
rgf+
h

(z, ψ+), rf+
hk

(

−z, fψ+

k

) and rϕ−

h
(z, fg−) are the enters and r1 =

|yP |, . . . , r8 = |yY | are the radii of the eight irles ki (i = 1, . . . , 8) thattouh the lines BC and AD and the irumirle o(O, R).Proof. Let P (p, q) be the enter of the irle that touhes the lines BCand AD and the irle o. Then(3) |PP ′′| = |q|,and(4) |PO|2 = (R± q)2,where P ′′ is the orthogonal projetion of the point P on the line AD.If u = Lp− 2 k q, v = Lq + 2 k p, w = hK2, then 4 r g k f+ ϕ−+hLu

w
and

2 r g Lf+ ϕ−−2hku
w

are xP ′′ and yP ′′. Hene, |PP ′′| =
∣

∣

∣

hv−2 r g f+ ϕ−

w

∣

∣

∣
. Onthe other hand, R = rf+g+

4h
and O has the oordinates r

4h
(2z, z2 − h2).It is now easy to see (perhaps with a little help from Maple V) thatthe above eight ases of pairs (p, q) are all solutions of the equations(3) and (4). �While it is easy to �nd the oordinates of the enters P, . . . , Y ofthe eight Thébault irles and their radii |yP |, . . . , |yY |, it is di�ultto desribe them preisely by purely geometri means beause whenthe point D hanges position on the line BC these irles are hangingonsiderably so that it is hard to tell one from the other. For thepoints P , Q, S and T this was done in [3, Setion 3℄ by use of orientedon�gurations.For a real number λ 6= −1 and di�erent pointsM and N , the λ-pointof the segment MN is a unique point F on the line MN suh that theratio of oriented distanes |MF | and |FN | is equal to λ. We an extendthis de�nition to the ase when M = N taking that the λ-point is thepoint M for every real number λ 6= −1. Reall that the oordinates ofthe λ-point are (

xM+λxN

λ+1
, yM+λ yN

λ+1

).Let ka(Ia, ra), kb(Ib, rb) and kc(Ic, rc) be the exirles of the triangle
ABC. Then I, Ia, Ib and Ic have the oordinates r(f, 1), rg(1, −f),
rgz

h
(f, 1) and rz

h
(−1, f). Also, ra = rfg, rb = rgz

h
and rc = rfz

h
.The part of the following result for the segment QP is the orretform of Thébault's theorem while the part for the segment TS is theorret form of the Thébault's external theorem (see [27, Remark 2℄).In [21℄, Shail alls Theorem 3 the full Thébault theorem.
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Figure 2. Theorems 3 and 4 together.Teorem 3. The points I, Ia, Ib and Ic are the k2-points of the segments
QP , TS, V U and Y X.Proof. Sine

xQ + k2xP
K

=
r f+ + k2 rϕ−

k

K
= rf = xIand

yQ + k2yP
K

=
−rf+g−

h
+ k2 rϕ− ψ+

hk2

K
= r = yI ,it follows that I is the k2-point of the segment QP . The other aseshave similar proofs. �Corollary 1. The absises of the enters of Thébault's irles satisfy:(5) xQ + k2 xP = Krf, xT + k2 xS = Krg,(6) xV + k2 xU = Krbf, f(xY + k2 xX) = −Krc.



ON THÉBAULT'S PROBLEM 3887 5Corollary 2. The ordinates of the enters of Thébault's irles satisfy:(7) yQ + k2 yP = Kr, yT + k2 yS = −Kra,(8) yV + k2 yU = Krb, yY + k2 yX = Krc.Note that only when the point D is on the segment BC it holds
yP = r1, yQ = r2, yS = −r3 and yT = −r4 so that from (7) we get (2)sine k = 1

τ
. The seond relation in (7) gives us the analogous formula

r3 + r4 τ
2 = ra(1 + τ 2) for the Thébault's external theorem.On the other hand, when the point D is on the left from the point

B, the ordinate yP of the enter P is negative so that the relation (7)gives r2 − k2 r1 = (1 + k2)r. Moreover, when the point D is on theright from the point C, the ordinate yQ is negative so that the relation(7) implies the third part k2 r1 − r2 = (1 + k2)r of the orret versionof the formula (2).As was already notied in [23℄, the eight Thébault's irles are alsoonneted with the triangle EBC, where the point E is the seondintersetion (besides the point A) of the line AD and the irumirle
o. Its oordinates are r f+ ϕ−

hK2

(

ψ2
+ − g2

−, 2ψ+ g−
). One an easily �ndthat its inenter J and the exenters Jb, Jc and Je have the oordinates

r z ϕ−

hK
(ψ+, g−), r f+

K
(ψ+, g−), r ϕ−

K
(g−, −ψ+) and r z f+

hK
(−g−, ψ+). It isimportant to note here that as the parameter k hanges the atual roleof these points hanges so that from the exenters they an beomeother exenters or the inenter and vie verse.Teorem 4. The four points J , Jb, Jc and Je are the k2-points of thesegments Y U , QS, TP and V X.Proof. Sine

xY + k2xU
K

=
rzϕ−
hK

+
rzgkϕ−
hK

=
rzϕ−ψ+

hK
= xJand

yY + k2yU
K

=
rfϕ−g−
hK

+
rgϕ−g−
hK

=
rzϕ−g−
hK

= yJ ,it follows that J is the k2-point of the segment Y U . The other aseshave similar proofs. �The approah in [23℄ also suggests that the other two triangles ABEand ACE and their inenters and the exenters should play a simi-lar role. We denote those enters by I, Ia, Ib, Ie and J, Ja, Jc, Je.Their oordinates are r ϕ−

hK
(h k + d, z k − h), −r g ϕ−

hK
(h− z k, h k + z),

r f+ g

hK
(h k + z, z k − h), r f+

hK
(h− z k, h k + z), r

hK
(ζ z k2 − g+ k + f h,

g−(h k − z)), r
hK

(g h k2 − f 2 g+ k − z, f g−(z k + h)), − r
hK

(z k2 + f 2

g+ k − g h, f ψ+(h k − z)) and r
hK

(f h k2 + g+ k + ζ z, ψ+(z k + h)).



6 ZVONKO �ERINTeorem 5. (i) The points I, Ia, Ib and Ie are the k2-points of thesegments Y P , TU , V S and QX.(ii) The points J, Ja, Jc and Je are the k2-points of the segments
QU , Y S, TX and V P .Proof. Sine

xY + k2 xP
K

=
rzϕ−
hK

+
r ϕ− k

K
=
r ϕ−(h k + z)

hK
= xIand

yY + k2 yP
K

=
r f ϕ− g−
hK

+
r ϕ− ψ+

hK
=
r ϕ−(z k − h)

hK
= yI,it follows that I is the k2-point of the segment Y P . The other aseshave similar proofs. �Now we ould say that the Theorems 3, 4 and 5 together representthe omplete Thébault theorem.The rather simple oordinates of the inenters and the exenters ofthe triangles ABC, BCE, ABE and ACE allow us to prove easilythe following results that Johnson in [9, p. 193℄ alls the "JapaneseTheorem" (see also [16℄).Teorem 6. (i) The following quadrangles IIJJ, IaIbJeJc, IbIaJcJeand IcIeJbJa are the retangles.(ii) Their areas satisfy: |IIJJ| |IaIbJeJc| = |IbIaJcJe| |IcIeJbJa|.(ii) Their enters are verties of a parallelogram with the enter atthe irumenter O of the triangle ABC.Proof. Sine |II|2 = |JJ|2 = r2(f+)2(g−)2

h2K
and |IJ|2 = |JI|2 = r2(g+)2(ϕ−)2

h2K
,it follows that IIJJ is a parallelogram. On the other hand, sine thelines II and IJ have the equations k x− y = r ϕ− and x+ k y = r f+,we onlude that they are perpendiular and IIJJ is a retangle.Sine the area of a retangle is the produt of the lengths of itsadjaent sides, we see that |IIJJ| = r2 f+ g+ |g− ϕ−|

h2K
. Similarly,

|IaIbJeJc| =
r2 ζ f+ g+ f+ ψ+

h2 K
, |IbIaJcJe| =

r2 g f+ g+ ψ+ |ϕ−|
h2 K

,and |IcIeJbJa| = r2 f f+ g+ f+ |g−|
h2K

. The identity in (ii) is now obvious.Finally, it is easy to hek that the irumenter O is the midpoint ofthe segments GIIJJGIaIbJeJc
and GIbIaJcJe

GIcIeJbJa
joining the enters(i. e., the entroids) of these retangles. �Note that the inradii j, r and j and the exradii jb, jc, je, ra, rb, re,

ja, jc and je of the triangles BCE, ABE and ACE are the absolutevalues of the quotients r g− z ϕ−

hK
, r ϕ−(h̄−d k)

hK
, r g−(h̄ k+d)

hK
, r f+ g−

K
, r ϕ− ψ+

K
,

r f+ ψ+ z

hK
, r ϕ− g(h̄ k+d)

hK
, r f+ g(h̄−d k)

hK
, r f+(h̄ k+d)

hK
, r f g−(h̄−d k)

hK
, r f ψ+(h̄ k+d)

hK
and



ON THÉBAULT'S PROBLEM 3887 7
r ψ+(h̄−d k)

hK
. Now, at least under the assumption thatD is on the segment

BC, we an easily hek the following identities:
r + j = r + j, ra + je = rb + jc, rb + jc = ra + je, rc + jb = re + ja.The �rst is the relation (2.2) in [16℄.3. Some onis as loi and envelopesIn order to �nd the lous of Thébault's enter P , let us eliminatethe parameter k from the equations xP = x and yP = y. We get theequation y = x(rz−x)

rh
of the parabola µ with the irumenter O as thefous and the horizontal line ε above the line BC at the distane R (theirumradius) as the diretrix. Repeating this for the enters Q, S and

T will always produe the same parabola µ. On the other hand, doingthis for the enters U , V , X and Y , will give the equation y = hx(x−rz)
rz2of the parabola ν also with the irumenter O as the fous and thehorizontal line ε∗ below the line BC at the distane R as the diretrix.Corollary 3. The points P , Q, S and T are on the parabola µ and thepoints U , V , X and Y are on the parabola ν.The parabolas µ and ν interset only in the points B and C and theyenlose the region with the area 2

3
aR.When the point D moves on the line BC, the many lines joiningpairs of Thébault's enters provide families of lines that envelop someinteresting onis of the triangle ABC .For example, one interpretation of the Theorem 3 is that the lines

PQ, ST , UV and XY envelop the points I, Ia, Ib and Ic (onsideredas degenerated ellipses), respetively.On the other hand, it was noted in [3℄, the lines PS, QT , UX and
V Y envelop the parabola λ of fous A and diretrix BC having theequation y = h

4rζ
x2 − f−

2f
x+ rg(f+)2

4fh
.The parabolas λ, µ and ν are losely related in many respets: Theyhave parallel diretries and axes and the distane between the foiof λ and µ and between the foi of λ and ν is equal to the distanebetween their diretries. It is not di�ult to see that λ and µ touhin the (b+c)2−a2

a2
-point Tµ of the segment AO and that λ and ν touh inthe (b−c)2−a2

a2
-point Tν of the segment AO (when b 6= c).When b 6= c, the lines PT and QS envelop the same hyperbola ηwith the equation ζ(2x− rz)2 − (hy − 2rζ)2 = r2d2ζ ([3, Remark 7℄).The lines UY and V X envelop the same ellipsis χ with the equation

h2ζ(2x− rz)2 + z2(hy − 2rζ)2 = r2h̄2z2ζ. It an be shown that χ issymmetri with respet to the perpendiular bisetor of BC, tangent to
ν at B and C, tangent to lines TνIb and TνIc and to the perpendiularsto BC through Ib and Ic.



8 ZVONKO �ERIN4. The line AD tangent to the irumirleWe shall see that some positions of the point D on the line BC arepartiularly important. In the following two results we identify whathappens when the line AD is the tangent to the irumirle o in thepoint A. In this exeptional ase many points of the on�gurationoinide. Of ourse, this an happen only when the angles B and Care di�erent.Let Po, . . . , Yo denote the points in whih the Thébault's irles touhthe irumirle o. Their oordinates are rϕ−

P1
(P2, 2hψ+), rf+

Q1
(Q2, 2hg−),

rgf+
S1

(S2, 2hfg−), rgϕ−

T1
(T2,−2hfψ+), rgzϕ−

hU1
(U2, 2zg−), rgzf+

hV1
(V2, 2zψ+),

rzf+
hX1

(X2, 2zfψ+) and rzϕ−

hY1
(Y2, 2zfg−), where P1, . . . , Y1 are (h2 + d2)k2

−4dk + 4, 4k(k + d) + h2 + d2, (h2 + d2)k2 − 4ζ(dk − ζ), 4ζk(ζk + d)
+h2 + d2, (h̄2 + z2)k2 − 4g(h̄k − g), 4gk(gk + h̄) + h̄2 + z2, (h̄2 + z2)k2

+4f(h̄k + f), 4fk(fk − h̄) + h̄2 + z2 and P2, . . . , Y2 are (h2 + dz)k−
2z, 2zk + h2 + dz, (h2 − dz)k + 2zζ , 2zζk − h2 + dz, (ζ2 + z2 − 1)k−
2gh, 2ghk + ζ2 + z2 − 1, (ζ2 − z2 − 1)k + 2fh, 2fhk − ζ2 + z2 + 1.For eight points P1,. . . , P8, let D(P1, . . . , P8) be the determinant

∣

∣

∣

∣

∣

∣

∣

∣

xP1
yP1

xP2
yP2

xP3
yP3

xP4
yP4

xP5
yP5

xP6
yP6

xP7
yP7

xP8
yP8

∣

∣

∣

∣

∣

∣

∣

∣

.Teorem 7. The following statements are equivalent: (i) P = S, (ii)
V = Y , (iii) Po = A, (iv) So = A, (v) Vo = A, (vi) Yo = A, (vii) I = Jc,(viii) Ia = Jb, (xi) Ib = J , (x) Ic = Ja, (xi) I = Ib, (xii) I = Ja, (xiii)
I = Je, (xiv) Ja = Je, (xv) the lines IbJc and IcJe are perpendiu-lar, (xvi) D(I, Ia, Ib, Ic, J, Je, Jb, Jc) = 0, (xv) Ib ∈ AD, (xvi) Je ∈ AD,(xvii) the lines IbJe and AD are perpendiular, (xviii) the lines IcJaand AD are parallel, (xix) the lines IaJc and AD are parallel and (xx)the angle B is smaller than the angle C and the lines AD and AO areperpendiular.Proof. Sine |PS|2 = r2K(h̄−dk)2

k4 , we onlude that P = S if and onlyif k = h̄
d
. However, the parameter k is positive, so that f > g (i. e.,the angle B is smaller than the angle C) and the point D divides thesegment BC in the ratio − |AB|2

|AC|2 (i. e., the point D is the intersetion ofthe tangent to the irumirle at the vertex A with the line BC). Thisshows the equivalene of (i) and (xx). For the other parts, it su�es tonote that the only fator that ould be zero in the squares of distanesof the points in this part is always the same h̄− dk. �The following ompanion result has similar proof. This time theommon fator is d+ h̄k.



ON THÉBAULT'S PROBLEM 3887 9Teorem 8. The following are equivalent: (i) Q = T , (ii) U = X, (iii)
Qo = A, (iv) To = A, (v) Uo = A, (vi) Xo = A, (vii) I = Jb, (viii)
Ia = Jc, (xi) Ib = Ja, (x) Ic = J , (xi) J = Ia, (xii) J = Ie, (xiii) J = Jc,(xiv) Ia = Ie, (xv) the lines IbJc and IbJe are perpendiular, (xvi)
Ie ∈ AD, (xvii) Jc ∈ AD, (xviii) the lines IeJc and AD are perpen-diular, (xix) the lines IbJa and AD are parallel, (xx) the lines IaJband AD are parallel and (xxi) the angle B is larger than the angle Cand the lines AD and AO are perpendiular.5. Identities for oordinatesSome of the basi algebrai identities among the produts of theordinates of the enters of Thébault's irles are given in the next result.Teorem 9. The following relations hold:(9) ζ2yPyQ = ySyT , k2ζyPyQ = −yV yY , g2yUyX = f 2yV yY ,(10) k2ζyUyX = −ySyT , yPyS = yUyX , k4yPyS = yV yY ,(11) yQyT = yV yY , yQyT = k4yUyX , f 2

+yPyT = −ϕ2
−yV yX ,(12) g2

−yPyT = −ψ2
+yUyY , ϕ2

−yQyS = −f 2
+yUyY ,(13) ψ2

+yQyS = −g2
−yV yX , k

4f 2yPyU = −yTyY , f 2yQyV = −ySyX ,(14) f 2yPyV = −yTyX , f 2yQyU = −ySyY , k4g2yPyX = −yTyV ,(15) g2yQyY = −k4ySyU , g
2yPyY = −yTyU , g2yQyX = −ySyV .Proof. Sine yP = rϕ−ψ+

hk2 , yQ = −rf+g−
h

, yS = rζf+g−
hk2 and yT = −rζϕ−ψ+

h
,it is easy to verify the �rst relation in (9). All other identities are provedsimilarly by diret inspetion. �Sine the absolute values of yP , . . . , yY are the radii r1, . . . , r8 ofThébault's irles and the absolute value of the produt is the produtof the absolute values of the fators, from the above relations, we havethe following results. The �rst identity in (17) is from [3, Corollary 5℄.Corollary 4. The radii of Thébault's irles satisfy:(16) r1 r3 = r5 r7, r2 r4 = r6 r8, k4 r5 r7 = r2 r4,(17) r1 r2

r2
=
r3 r4
r2
a

,
r5 r6
r2
b

=
r7 r8
r2
c

,
r5 r8
j2

=
r6 r7
j2
e

,
r2 r3
j2
b

=
r1 r4
j2
c

,(18) r1 r8
r2

=
r3 r6
r2
b

,
r4 r5
r2
a

=
r2 r7
r2
e

,
r2 r5
j2

=
r4 r7
j2c

,
r3 r8
j2a

=
r1 r6
j2e

.For the absises many relations also hold. The following two arerather simple.



10 ZVONKO �ERINTeorem 10. The following relations hold:(19) xP xS xV xY = xQ xT xU xX ,(20) k4 xP xS xU xX = xQ xT xV xY ,Proof. The produts on the left and on the right sides of the relation(19) have as the ommon value the square of r2f+ϕ−gz

hk
. The ommonvalue in the relation (20) is minus the square of r2f+ϕ−gz

h
. �We ontinue with the formulae that involve the radii of the inirleand the exirles.Teorem 11. The following relations hold:

(21)
yS
ra

+
yU
rb

+
yX
rc

=
yP
r
, (22)

yT
ra

+
yV
rb

+
yY
rc

=
yQ
r
,

(23)
yT
jb

+
yP
jc

+
yX
je

=
yU
j
, (24)

yQ
jb

+
yS
jc

+
yV
je

=
yY
j
,

(25)
yU
ra

+
yS
rb

+
yX
re

=
yP
r
, (26)

yT
ra

+
yV
rb

+
yQ
re

=
yY
r
,

(27)
yY
ja

+
yT
jc

+
yV
je

=
yQ
j
, (28)

yS
ja

+
yX
jc

+
yP
je

=
yU
j
,(29) yT yS

ra
+
yV yU
rb

+
yY yX
rc

=
yQ yP
r

,(30) yQ yS
jb

+
yT yP
jc

+
yV yX
je

=
yY yU
j

,(31) yT yU
ra

+
yV yS

rb
+
yQ yX

re
=
yY yP

r
,(32) yY yS

ja
+
yT yX

jc
+
yV yP

je
=
yQ yU

j
.Proof. Sine yS

ra
= f+g−

hk2 , yU

rb
= ϕ−g−

zk2 and yX

rc
= f+ψ+

zk2 , we get
yS
ra

+
yU
rb

+
yX
rc

=
ϕ−ψ+

hk2
=
yP
r
.This proves the relation (21). The other identities have similar proofs.

�It is interesting to note that any of the formulae (29)-(32) remainstrue if ordinates are replaed onsistently by absises. For example,the analogues of the formula (29) with absises are the following threerelations:(33) xT yS
ra

+
xV yU
rb

+
xY yX
rc

=
xQ yP
r

,(34) yT xS
ra

+
yV xU
rb

+
yY xX
rc

=
yQ xP
r

,



ON THÉBAULT'S PROBLEM 3887 11(35) xT xS
ra

+
xV xU
rb

+
xY xX
rc

=
xQ xP
r

.Remark 1. The relations (21)�(28) hold also for the absises in plaeof the ordinates.Corollary 5. The radii of Thébault's irles satisfy:(36) r3 r4
ra

− r1 r2
r

=
r5 r6
rb

+
r7 r8
rc

,(37) r6 r7
je

+
r5 r8
j

=
r2 r3
jb

+
r1 r4
jc

,(38) r4 r5
ra

− r1 r8
r

=
r3 r6
rb

+
r2 r7
re

,(39) r3 r8
ja

− r2 r5
j

=
r4 r7
jc

+
r1 r6
je

,and for the point D in the segment BC,(40) r1 + r2
r

+
r3 + r4
ra

=
r5 − r6
rb

+
r7 − r8
rc

,(41) r6 − r7
je

+
r5 − r8
j

=
r2 − r3
jb

+
r1 − r4
jc

,(42) r4 + r5
ra

+
r1 − r8

r
=
r2 + r7

re
− r3 + r6

rb
,(43) r3 + r8

ja
+
r2 + r5

j
=
r7 − r4

jc
+
r1 − r6

je
.Proof. The identity (36) is a onsequene of the relation (29). Theordinates of the enters of Thébault's irles are their radii up to asign. These signs depend on the position of the point D on the line

BC and are given in the next table.
D is in yP yQ yS yT yU yV yX yY

(−∞, B) - + - + + + + +
(B,C) + + - - - + + -

(C,+∞) + - + - + + + +Hene, from (29) we get (36) and from the sum of (21) and (22) weobtain (40). Of ourse, there are also the versions of (40) when D is in
(−∞, B) and when it is in (C,+∞). �Let us lose this group of identities with the following eight. Theproofs are very similar to the ones above.



12 ZVONKO �ERINTeorem 12. The following relations hold:(44) y2
S

ra
+
y2
U

rb
+
y2
X

rc
=
y2
P

r
+

4KR

k4
,(45) y2

T

ra
+
y2
V

rb
+
y2
Y

rc
=
y2
Q

r
+ 4k2KR,(46) y2

S

jb
+
y2
P

jc
+
y2
X

je
=
y2
U

j
+

4KR

k4
,(47) y2

Q

jb
+
y2
T

jc
+
y2
V

je
=
y2
Y

j
+ 4k2KR,(48) y2

U

ra
+
y2
S

rb
+
y2
P

re
=
y2
X

r
+

4KR

k4
,(49) y2

T

ra
+
y2
V

rb
+
y2
Q

rc
=
y2
Y

r
+ 4k2KR,(50) y2

S

ja
+
y2
X

jc
+
y2
P

je
=
y2
U

j
+

4KR

k4
,(51) y2

Y

ja
+
y2
T

jc
+
y2
V

je
=
y2
Q

j
+ 4k2KR.Remark 2. For the absises in the identities (44)�(51), the last termsare 4KR

k2 and 4KR, respetively.In the next group of formulae we prove that the produts of squaresof the Thébault's radii divided by fourth powers of the appropriateinradius or exradius also show onsiderable regularity.Teorem 13. The radii of Thébault's irles satisfy the identities:
r2
1r

2
2

r4
+
r2
7r

2
8

r4
c

=
r2
3r

2
4

r4
a

+
r2
5r

2
6

r4
b

,
r2
1r

2
2

r4
+
r2
5r

2
6

r4
b

=
r2
3r

2
4

r4
a

+
r2
7r

2
8

r4
c

,

r2
5r

2
8

j4
+
r2
2r

2
3

j4
b

=
r2
1r

2
4

j4
c

+
r2
6r

2
7

j4
e

,
r2
5r

2
8

j4
+
r2
1r

2
4

j4
c

=
r2
2r

2
3

j4
b

+
r2
6r

2
7

j4
e

,

r2
1r

2
8

r4
+
r2
2r

2
7

r4
e

=
r2
4r

2
5

r4
a

+
r2
3r

2
6

r4
b

,
r2
1r

2
8

r4
+
r2
4r

2
5

r4
a

=
r2
2r

2
7

r4
e

+
r2
3r

2
6

r4
b

,

r2
2r

2
5

j4
+
r2
1r

2
6

j4e
=
r2
3r

2
8

j4a
+
r2
4r

2
7

j4c
,

r2
2r

2
5

j4
+
r2
3r

2
8

j4a
=
r2
1r

2
6

j4e
+
r2
4r

2
7

j4c
.



ON THÉBAULT'S PROBLEM 3887 13Proof. Let f 2+ = f 4 + 1 and g2+ = g4 + 1. One an easily hek thatboth sides in the �rst relation have the value
f 2

+ g
2
− ϕ

2
− ψ

2
+(f 2+ g2+ − 4 ζ f− g− + 12 ζ2)

(h k z)4
.The other identities in this group have analogous proofs. �In the next result we show that a ertain relationship among theradii of Thébault's irles an hold only when either the point D or thetriangle ABC are rather speial.Teorem 14. (i) The radii of the Thébault's irles satisfy the identity

r2
1r

2
2

r4
+
r2
3r

2
4

r4
a

=
r2
5r

2
6

r4
b

+
r2
7r

2
8

r4
cif and only if either D = B, D = C or the angle A is right.(ii) The radii of the Thébault's irles satisfy the identity

r2
5r

2
8

j4
+
r2
6r

2
7

j4
e

=
r2
2r

2
3

j4
b

+
r2
1r

2
4

j4
cif and only if the angle A is right.(iii) If the lines AD and AO are not perpendiular (see Theorems 7and 8), then the radii of the Thébault's irles satisfy the identity

r2
1r

2
8

r4
+
r2
3r

2
6

r4
b

=
r2
2r

2
7

r4
e

+
r2
4r

2
5

r4
aif and only if either D = C or the point D is on the line AO.Similarly, they satisfy the identity

r2
2r

2
5

j4
+
r2
4r

2
7

j4c
=
r2
1r

2
6

j4e
+
r2
3r

2
8

j4aif and only if either D = B or the point D is on the line AO.Proof. (i) This follows immediately from the identity
(

r2
5r

2
6

r4
b

+
r2
7r

2
8

r4
c

)

−
(

r2
1r

2
2

r4
+
r2
3r

2
4

r4
a

)

=
2f+g+f 2

+g
2
−ϕ

2
−ψ

2
+(h2 − z2)

(hkz)4
.The other ases have similar proofs. �Here is an interesting inequality.Teorem 15. The ordinates of the enters of Thébault's irles satisfythe inequality:(52) (yS + yT )2

ra
+

(yU + yV )2

rb
+

(yX + yY )2

rc
≥ 16R+

(yP + yQ)2

r
.The equality holds if and only if the line AD is perpendiular to theline BC. The same holds also for the absises in plae of the ordinates.



14 ZVONKO �ERINProof. Sine (yS+yT )2

ra
+ (yU +yV )2

rb
+ (yX+yY )2

rc
− (yP +yQ)2

r
= 4RK2(k2L+1)

k4 andthe funtion k 7→ K2(k2L+1)
k4 has the minimum 16 for k = 1, we onludethat the inequality (52) holds.It remains to note that the line AD is perpendiular to the line BCif and only if k = 1. �Of ourse, there are three similar inequalities involving the inradiiand the exradii of the triangles BCE, ABE and ACE. Also, theseinequalities have the usual interpretations in terms of the radii of theThébault's irles leading to the three versions depending on the posi-tion of the point D on the line BC.6. Equal radii r1 and r2In this setion we shall explore when the pair r1 and r2 of the radiiof the �rst and the seond Thébault's irles are equal. In fat, theproblem is to desribe the positions of the point D on the line BCwhen r1 = r2 holds. It turns out that the equality happens for threevalues of the parameter k. The simpler value orresponds to the asewhen r1 = r2 = r (see Theorem 16) and the two more ompliated val-ues to the ase r1 = r2 and either r1 6= r or r2 6= r (see Theorem 17).In eah situation many other geometri onsequenes hold. Some areharateristi for the equality of r1 and r2 (with r).Let kI′a =

√
d2+4−d

2
be the positive root of the polynomial pI′a = L+ dk.Let the perpendiular bisetor of the segment BC interset the ir-umirle o in the points Z1 and Z2 suh that Z1 is above and Z2 isbelow the line BC. Note that Z1 is the midpoint of IbIc and the irle

kIbIc goes through B, C and Ja. Similarly, Z2 is the midpoint of JbJcand the irle kJbJc
goes through B, C and Ia.Teorem 16. The following statements are equivalent: (i) the point Dis the orthogonal projetion I ′a of the exenter Ia onto the line BC, (ii)the parameter k is kI′a, (iii) the lines PQ and BC are parallel, (iv) thelines PoQo and BC are parallel, (v) the line AD bisets the segment

PQ, (vi) the segments PQ and P ′′Q′′ share the midpoints, (vii) the linejoining the inenter I and the midpoint of the segment BC is parallel tothe line AD, (viii) the line joining the irumenter O and the midpointof either the segment P ′Q′ or P ′′Q′′ is perpendiular to the line PQ,(ix) the midpoint of the segment BC has the same power with respetto the irles k1 and k2, (x) the points Po and Qo are equidistant fromthe point Z1 and/or Z2 and (xi) the equalities r1 = r and r2 = r hold.Proof. Sine the point I ′a has the oordinates (rg, 0), we get that |DI ′a|is equal rζ |pI′a
|

hk
. Hene, (i) and (ii) are equivalent.



ON THÉBAULT'S PROBLEM 3887 15The lines PQ and BC are parallel if and only if the points P and Qhave equal ordinates. Sine yP − yQ =
rKpI′a

hk2 , we see that (ii) and (iii)are equivalent.Similarly, sine yPo
− yQo

=
2rhKf+g+pI′a

P1Q1
, it follows that (ii) and (iv)are equivalent.The midpoint of the segment PQ has the oordinates r

2k
(L+ 2fk,

− p4
hk

), where p4 is de�ned bellow. It is on the line AD whose equationis 2kx+ Ly = 2rgf+ϕ−

h
if and only if r2ζK2pI′a

2h2k3 = 0. Hene, (ii) and (v)are equivalent.The orthogonal projetions P ′′ and Q′′ of P and Q onto the line
AD have rϕ−

hkK

(

hk2 + 2gk + h̄, 2ψ+k
) and rf+

hK

(

h̄k2 − 2gk + h,−2g−
) asoordinates. It follows that the midpoints of the segments PQ and

P ′′Q′′ are rK|pI′a
|

2hk2 apart. Therefore, (ii) and (vi) are equivalent.The line joining the inenter I and the midpoint of the segment BChas the equation 2x− dy = rz. It will be parallel to the line AD if andonly if r2ζpI′a

hk
= 0. This shows the equivalene of (ii) and (vii).The line PQ has the equation pI′a x+ hk y = r f+ ϕ−. The line join-ing the irumenter O and the midpoint of the segment P ′Q′ has theequation 2(h2 − z2)k y − 4 h pI′a y = r(L+ 2 f k)(h2 − z2). They will beperpendiular if and only if r2K f+ g+ pI′a

4h2 k2 = 0. The line joining O andthe midpoint of the segment P ′′Q′′ is more ompliated but it will beperpendiular to the line PQ if and only if the same ondition holds.This shows the equivalene of (ii) and (viii).The power w(Ag, k2) of the midpoint Ag of the segment BC withrespet to the irle k2 is |AgQ|2 − r2
2 or r2(d+2k)2

4
. Similarly, w(Ag, k1) is

r2(dk−2)2

4k2 . Their di�erene is r2KpI′a

k2 . Hene, (ix) and (ii) are equivalent.The di�erenes of squares |QZ1|2 − |PZ1|2 and |PZ2|2 − |QZ2|2 ofdistanes are equal r2K (f+)2 (g+)2 pI′a

[(h2+d2)k2−4 d k+4](4 k2+4 d k+h2+d2)
. It follows that (x)and (ii) are equivalent.Finally, sine r2

1 − r2 =
r2MpI′a

h2k4 and r2
2 − r2 =

r2NpI′a

h2 and the fators
M = (2ζ − 1)k2 + dk − 1 and N = k2 + dk − 2ζ + 1 are not both zeroat any real number k, we onlude that (ii) and (xi) are equivalent. �Let k± =

√
2N±±M−d

4
be the positive roots of the quarti polynomial

p4 = L(L+ dk) − 2hk2, whereM =
√
d2 + 8h andN± = d2 ∓ dM+4h̄.Teorem 17. The following are equivalent: (i) the parameter k is either

k+ or k−, (ii) the lines PQ and AD are parallel, (iii) the line PoQobisets the segment P ′Q′, (iv) the line PQ bisets the segment P ′Q′,(v) the segments PQ and P ′Q′ share the midpoints and (vi) the lines
AD and DIa are perpendiular.



16 ZVONKO �ERINProof. Sine pI′ax+ hky = rf+ϕ− and 2kx+ Ly = 2rgf+ϕ−

h
are the equa-tions of the lines PQ and AD, they will be parallel if and only if p4 = 0.This shows that (i) and (ii) are equivalent.The orthogonal projetions P ′ and Q′ of the enters P and Q ontothe line BC (the x-axis) have the absises rϕ−

k
and rf+. It follows thatthe midpoint of the segment P ′Q′ lies on the line PoQo (i. e., on theline 2hpI′ax− [2dL+ (z2 − h̄2 − 4)k]y = 2rhf+ϕ−), provided

pI′a

(

rL

2k
+ rf

)

− rf+ϕ− =
rp4

2k
= 0.Hene, (i) and (iii) are equivalent.This same alulation applies also in the proof that (i) and (iv) areequivalent beause the line PQ has the equation pI′ax+ hky = rf+ϕ−.The midpoints of PQ and P ′Q′ are r|p4|

2hk2 apart. We easily onludethat (i) and (v) are equivalent.Finally, sine hkx− pI′ay = rf+gϕ− is the equation of the line DIa,we get that this line is perpendiular with the line AD if and only if
2hk2 − pI′aL = −p4 = 0. Hene, the �rst and the last statements areequivalent. �Note that the ondition (ii) in Theorem 17 implies r1 = r2. Hene,the orret version of Theorem 4 in [27℄ is the following result.Corollary 6. The following are equivalent: (i) the equality r1 = r2holds, (ii) the parameter k is either kI′a, k+ or k−, (iii) the points Pand Q are at equal distane from the midpoint of P ′Q′ and/or P ′′Q′′.Proof. Sine r1 = |yP | and r2 = |yQ|, it follows that r1 = r2 if and only if
y2
P − y2

Q =
r2KpI′a

p4

h2k4 = 0. Let M ′ and M ′′ be the midpoints of P ′Q′ and
P ′′Q′′. Then |QM ′|2 − |PM ′|2 = |QM ′′|2 − |PM ′′|2 =

r2KpI′a
p4

h2k4 . Hene,our laim follows from Theorems 16 and 17 beause the parameter k isa positive real number. �7. Equal radii r3 and r4In the next six theorems we state the ompanion results with theprevious two theorems for the remaining three pairs (S, T ), (U, V ) and
(X, Y ) of related enters of Thébault's irles. The situation for thesethree pairs is a little bit di�erent beause the two more ompliatedvalues of the parameter k exist only when the angles B and C satisfyertain onditions.In this setion we onsider the pair r3 and r4 of the radii of the thirdand the fourth Thébault's irles. We will omit the proofs beausethey are very similar to the orresponding proofs of the previous twotheorems.



ON THÉBAULT'S PROBLEM 3887 17Let kI′ =

√
d2+4ζ2−d

2ζ
be the positive root of the quadrati polynomial

pI′ = ζL+ dk.Teorem 18. The following statements are equivalent: (i) the point Dis the orthogonal projetion I ′ of the inenter I onto the line BC, (ii)the parameter k is kI′, (iii) the lines ST and BC are parallel, (iv) thelines SoTo and BC are parallel, (v) the line AD bisets the segment
ST , (vi) the segments ST and S ′′T ′′ share the midpoints, (vii) the linejoining the exenter Ia and the midpoint of the segment BC is parallelto the line AD and (viii) the equalities r3 = ra and r4 = ra are bothtrue.Let d2 − 8hζ ≥ 0. Let m± =

√
2N±±M−d

4ζ
be the positive roots ofthe quarti polynomial q4 = L(ζL+ dk), where M and N± are theexpressions √

d2 − 8hζ and d2 ∓ dM + 4ζ2.Teorem 19. For a triangle ABC whose angles satisfy the inequality
cos(B − C) + 4(cos(B + C) + cosB + cosC) ≤ −3, the following areequivalent: (i) the parameter k is either m+ or m−, (ii) the lines STand AD are parallel, (iii) the line SoTo bisets the segment S ′T ′, (iv)the segments ST and S ′T ′ share the midpoints and (v) the lines ADand DI are perpendiular.Note that the ondition (ii) in Theorem 19 implies r3 = r4. Also,when both angles B and C are aute, then the polynomial q4 is alwayspositive beause it is the sum (2ζL+dk)2

4ζ
+

(8hζ−d2)k2

4ζ
with the seondterm positive. Indeed, the replaement of f and g in 8hζ − d2 with

1 + ϕ and 1 + ψ for ϕ, ψ > 0 gives a positive polynomial
8ϕ2ψ2 + 16ϕ2ψ + 16ϕψ2 + 7ϕ2 + 26ϕψ + 7ψ2 + 8ϕ+ 8ψ.8. Equal radii r5 and r6In this setion we onsider similarly the pair r5 and r6 of the radii ofthe �fth and the sixth Thébault's irles.Let kI′c =

√
h̄2+4g2−h̄

2 g
be the positive root of the quadrati polynomial

pI′c = gL+ h̄k.Teorem 20. The following statements are equivalent: (i) the point Dis the orthogonal projetion I ′c of the exenter Ic onto the line BC, (ii)the parameter k is kI′c, (iii) the lines UV and BC are parallel, (iv) thelines UoVo and BC are parallel, (v) the midpoint of the segment UVis on the perpendiular bisetor of the segment BC, (vi) the segments
UV and U ′′V ′′ share the midpoints, (vii) the line joining the exenter
Ib and the midpoint of the segment BC is parallel to the line AD and(viii) the equalities r5 = rb and r6 = rb are both true.



18 ZVONKO �ERINLet h̄2 − 8gz ≥ 0. Let n± =

√
2N∓±M−h̄

4 g
be the positive roots of thequarti polynomial s4 = L(gL+ h̄k + 2z) + 2z, where M and N± are

√

h̄2 − 8gz and h2 + 4g2 ± h̄M .Teorem 21. If in a triangle ABC its angles satisfy the inequality
cos(B − C) + 4(cos(B + C) + cosB − cosC) ≥ 3,then the following are equivalent: (i) the parameter k is either n+ or

n−, (ii) the lines UV and AD are parallel, (iii) the line UoVo bisetsthe segment U ′V ′, (iv) the segments UV and U ′V ′ share the midpointsand (v) the lines AD and DIc are perpendiular.Note that the ondition (ii) in Theorem 20 implies r5 = r6.9. Equal radii r7 and r8In this setion we onsider similarly the pair r7 and r8 of the radii ofthe seventh and the last eighth Thébault's irles.Let kI′
b
=

h̄+
√
h̄2+4f2

2 f
be the positive root of the quadrati polynomial

pI′
b
= fL− h̄k.Teorem 22. The following statements are equivalent: (i) the point Dis the orthogonal projetion I ′b of the exenter Ib onto the line BC, (ii)the parameter k is kI′

b
, (iii) the lines XY and BC are parallel, (iv) thelines XoYo and BC are parallel, (v) the midpoint of the segment XYis on the perpendiular bisetor of the segment BC, (vi) the segments

XY and X ′′Y ′′ share the midpoints, (vii) the line joining the exenter
Ic and the midpoint of the segment BC is parallel to the line AD and(viii) the equalities r7 = rc and r8 = rc are both true.Let h̄2 − 8fz ≥ 0. Let p± =

√
2N±±M+h̄

4 f
be the positive roots of thequarti polynomial t4 = L(fL− h̄k + 2z) + 2z, where M and N± are

√

h̄2 − 8fz and h2 + 4f 2 ± h̄M .Teorem 23. If in a triangle ABC its angles satisfy the inequality
cos(B − C) + 4(cos(B + C) − cosB + cosC) ≥ 3,then the following are equivalent: (i) the parameter k is either p+ or

p−, (ii) the lines XY and AD are parallel, (iii) the line XoYo bisetsthe segment X ′Y ′, (iv) the segments XY and X ′Y ′ share the midpointsand (v) the lines AD and DIb are perpendiular.Note that the ondition (ii) in the above Theorem 23 implies r7 = r8.Of ourse, we an also study the possibilities for equalities of ri and
rj for other hoies of i and j in the set {1, . . . , 8}. Let us mention onlythat the equalities r1 = r7 and r2 = r8 are impossible and that r3 = r6if and only if D = C and that r4 = r8 if and only if D = B.



ON THÉBAULT'S PROBLEM 3887 1910. When Thébault's irles touh?The following two theorems explore when will some Thébault's irlestouh eah other. We shall prove only the �rst theorem and omit theproof of the seond theorem beause it is analogous.Let k0 be the positive root (
√
d2 + h̄2 − d)/h̄ of the polynomial p2 =

h̄L+ 2dk. Let w denote the perpendiular bisetor of the side BC inthe triangle ABC .Teorem 24. For the irles k1, k2, k3 and k4 the following statementsare equivalent: (i) I ∈ k1, (ii) I ∈ k2, (iii) k1 ∩ k2 = I, (iv) Ia ∈ k3,(v) Ia ∈ k4, (vi) k3 ∩ k4 = Ia, (vii) r2 = k2 r1, (viii) r4 = k2 r3, (ix)
|JaJb| = |JaJc|, (x) |OJb| = |OJc|, (xi) J ∈ w, (xii) Ja ∈ w, (xiii) thelines BC and JbJc are parallel, (xiv) the lines PQ and ST are paral-lel, (xv) the lines PQ and AD are perpendiular, (xvi) the lines STand AD are perpendiular, (xvii) the triangles PTD and SQD havethe same area, (xviii) either the point D, the point I or the point Iahas the same power with respet to the irles k1 and k2, (xix) eitherthe point D, the point I or the point Ia has the same power with re-spet to the irles k3 and k4, (xx) the point D is the intersetion ofthe lines AI and BC, (xxi) D(I, Ie, Ia, Ib, Ja, Je, J, Jc) = 0, (xxii) thelines IaJa and IaJe are perpendiular, (xxiii) |P ′P ′′Q′Q′′| = 0, (xxiv)
|S ′S ′′T ′T ′′| = 0, (xxv) the point D is in the segment BC and the sumof radii of the inirles and the exirles of the triangles ABC, ABE,
BCE and ACE is the largest possible and (xxvi) the parameter k isequal k0.Proof. We shall argue that eah statement (i)�(xxv) is equivalent to(xxvi).Sine I ∈ k1 is equivalent with |PI| = |yP | and y2

P − |PI|2 = r2p2
hk2 , wesee that (i) is equivalent to (xxvi). Similarly, from |QI|2 − y2

Q = r2p2
h
,

|SIa|2 − y2
S = r2ζ2p2

hk2 and y2
T − |TIa|2 = r2ζ2p2

h
it follows that (ii), (iv)and (v) are equivalent with (xxvi). It is obvious now that the same istrue for (iii) and (vi).The identities k4y2

P − y2
Q = r2Kp2

h
and y2

T − k4y2
S = r2ζ2Kp2

h
imply thisfor (vii) and (viii).Sine |JaJb|2 − |JaJc|2 = r2f+g+p2

hK
and |OJb|2 − |OJc|2 = r2f+g+p2

2hK
, thesame onlusion holds also for (ix) and (x).The perpendiular bisetor of the segment BC has the equation

2x = rz. Sine rz − 2xJa
= 2xJ − rz = rzp2

hK
, we inluded (xi) and (xii)too.The line JbJc is parallel to the x-axis BC if and only if the enters

Jb and Jc have equal ordinates. Sine yJc
− yJb

= rp2
K
, it follows that(xiii) and (xxvi) are equivalent.Sine (L+ dk)x+ hky = rf+ϕ− and (ζL+ dk)x− hky = rg2f+ϕ−are the equations of the lines PQ and ST , they are parallel provided
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(ζL+ dk) + (L+ dk) = h̄L+ 2dk = p2 = 0. In other words, (xiv) and(xxvi) are equivalent.Similarly, sine 2kx+ hky = 2rgf+ϕ−

h
is the equation of the line AD,it follows that −L+dk

hk
= − 1

− 2k
L

is the ondition for the lines PQ and ADto be perpendiular. However, this identity redues to p2 = 0. Hene,(xv) and (xxvi) are equivalent. The proof for the statement (xvi) isanalogous.Using the well-known formula(53) |ABC| =

∣

∣

∣

∣

∣

∣

xA yA 1
xB yB 1
xC yC 1

∣

∣

∣

∣

∣

∣for the (oriented) area of any triangleABC, we get that |PTD| − |SQD|is r2K2ζp2
2hk3 . Therefore, (xvii) and (xxi) are equivalent. Notie that

|PTA| = |SQA| if and only if |AB| = |AC|.Sine w(D, k1) − w(D, k2) = r2Kp2
hk2 , we onlude that (xviii) and (xxvi)are equivalent for the point D. Similar arguments holds for the points

I and Ia and also for the three parts of the statement (xix).Observe that the di�erene of the absises of the point Dk and theintersetion (

r f+ g

ζ+1
, 0

) of the lines AI and BC is r ζ p2
(ζ2−1)k

. Hene, (xx)and (xxvi) are equivalent.Sine D(I, Ie, Ia, Ib, Ja, Je, J, Jc) = r4(f+)3 g+ g2 p2
h3K

, we infer that (xxi)is equivalent with (xxvi).The lines IaJa and IaJe have the equations h(M x+N y) = r g ϕ− FandM0 x+N0 y = r g f+ z(h̄− d k), whereN0 = f g+ k2 + d z k − g f+,
M0 = g2 f+ k2 + h̄ z k + f 2 g+,M = f 2 g+ k2 + d h k − g2 f+, N = g f+

k2 − (2 ζ2+f 2+g2)k + f g+ and F = [z3 + g(h2 − z2)]k + h3 + h2 − z2.These lines are perpendiular if and only if MM0 +N N0 = 0. Sine
MM0 +N N0 = f+ g+ ζ K p2, we onlude that (xxii) and (xxvi) areequivalent.Sine |P ′P ′′Q′Q′′| = −r2 p2

hk
and |S ′S ′′T ′T ′′| = r2 ζ2 p2

hk
, we see that theparts (xxiii) and (xxiv) are equivalent with (xxvi).Finally, when D ∈ BC then it is possible to get the radii of theinirles and the exirles of the triangles ABC, ABE, BCE and ACEand hek that their sum is a funtion of k that has the maximal valuepreisely when k = k0. Hene, (xxv) and (xxvi) are also equivalent. �Let ABC be a triangle suh that |AB| 6= |AC|. Then d 6= 0. Let m0be the positive root (h̄ + sgn(d)

√
d2 + h̄2)/d of the polynomial s2 =

dL− 2h̄k.Teorem 25. For the irles k5, k6, k7 and k8 in a triangle ABC with
|AB| 6= |AC|, the following statements are equivalent: (i) Ib ∈ k5, (ii)
Ib ∈ k6, (iii) k5 ∩ k6 = Ib, (iv) Ic ∈ k7, (v) Ic ∈ k8, (iv) k7 ∩ k8 = Ic,



ON THÉBAULT'S PROBLEM 3887 21(vii) r6 = k2 r5, (viii) r8 = k2 r7, (ix) the lines UV and AI are par-allel, (x) the lines XY and AI are parallel, (xi) the lines UV and
XY are parallel, (xii) the lines UV and AD are perpendiular, (xiii)the lines XY and AD are perpendiular, (xvi) the triangles UY Dand XVD have the same area, (xv) either the point D, the point
Ib or the point Ic has the same power with respet to the irles k5and k6, (xvi) either the point D, the point Ib or the point Ic hasthe same power with respet to the irles k7 and k8, (xvii) Jb ∈ w,(xviii) Jc ∈ w, (xix) the point D is the intersetion of the lines IbIc and
BC, (xx) D(I, Ie, Ia, Ib, Je, Ja, Jc, J) = 0, (xxi) |U ′U ′′V ′V ′′| = 0, (xxii)
|X ′X ′′Y ′Y ′′| = 0 and (xxiii) the parameter k is m0.The following theorem explains the onditions for other pairs ofThébault's irles to touh. We give a table that uses short notation forsome statements about the form of the triangle and about the positionof the point D. The proofs are omitted beause they are similar to theproof of Theorem 24. For example, k1 and k3 will touh if and onlyif |PS|2 = (yP ± yS)

2. When we fator the di�erene of the left andthe right sides of these identities we get the three possibilities from thetable.Let Ar, Br and Cr denote the re�etions of the verties A, B and Cin the sidelines BC, CA and AB. The triangle ArBrCr is alled thethree-images triangle.Let q1 and q3 denote the following polynomials in k:
(d2h2 − 4ζ2)k4 − 2dh̄(ζ2 + 1)k3 +M k2 + 4dh̄ζ k − 4ζ2,

(z2h̄2 − 4ζ2)k4 + 2dh̄(f 2 + g2)k3 +N k2 + 4dh̄ζ k − 4ζ2,where M = ζ4 + 6ζ2 + 4f−g−ζ + 1 and N = f 4 + g4 + 6ζ2 + 4f−g−ζ .Let q2 = k4 q1
(

− 1
k

) and q4 = k4 q3
(

− 1
k

). Note that q1 and q2 have atmost three positive real roots while q3 and q4 have at most one positivereal root.Let b, b+, b−, B+, B−, C+, C−, DB, DC , tA, tB, tC , rB, rC , q1, q2,
q3 and q4 be the following statements "B = C", "B > C", "B < C","B > 90◦", "B < 90◦", "C > 90◦", "C < 90◦", "D = B", "D = C","the lines AD and AO are perpendiular", "the lines AD and BOare perpendiular", "the lines AD and CO are perpendiular", "thelines AD and CBr are parallel", "the lines AD and BCr are parallel"and "k is the positive real root of the polynomial qj" (for j = 1, 2, 3, 4).The pairs (k1, k2), (k3, k4) and (k5, k6), (k7, k8) have been overed byTheorems 24 and 25, respetively.Teorem 26. The Table 1 lists the neessary and su�ient onditionsfor pairs among the irles k1,. . . , k8 to touh eah other. For example,
k1 and k3 touh if and only if either D = C or B < C and the lines ADand AO are perpendiular or the parameter k has additional at mostthree di�erent values (the positive real roots of the polynomial q1).
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k2 k3 k4 k5 k6 k7 k8

k1
Th
24

DCb−tAq1

DB
DBC+rB

b−tA B−rC

DBb−tAtC
k2 DC

b+tA
q2

b+tAtB C−rB b+tA b+rC

k3
Th
24

DC

B−rC

b−tA
tC

C+rB
DC

b−tA

k4
DB

b+tA
B+rC

b+tA
tB

DB

C−rB

k5
Th
25

b+tA
q3

b
DB

DC

k6 b
b−tA
q4

k7
Th
25Table 1. Conditions for Thébault's irles to touhIt would be interesting to get a purely geometri desription of thepositions of the point D whih orrespond to the positive real roots ofthe polynomials q1,. . . , q4.11. Thébault's enters on linesThe following theorem explains when the enters of Thébault's irleslie on the perpendiular bisetor w of the segment BC.Teorem 27. (i) The enter P is on the line w if and only if the angle

C is larger than the angle B, the relation 3b 6= a+ c among the lengthsof sides holds and D is the a+b−3 c
3 b−a−c-point of the segment BC.(ii) The enter Q is on w if and only if B > C, the relation 3b 6= a+ cholds and D is the a+b−3 c

3 b−a−c-point of BC.(iii) The enter S is on w if and only if B > C and D is the b−a−3 c
a−c+3 b

-point of BC.(iv) The enter T is on w if and only if C > B and D is the b−a−3 c
a−c+3 b

-point of BC.(v) The enter U is on w if and only if D is the b−a+3 c
a+c+3 b

-point of BC.(vi) The enter Y is on w if and only if D is the a+b+3 c
c−a+3 b

-point of
BC.(vii) The enters V and X an never be on w.Proof. (i) The point P is on the line w if and only if

|PB|2 − |PC|2 =
r2z[dk − 2]

k
= 0.



ON THÉBAULT'S PROBLEM 3887 23The unique positive real value of k when this an hold is 2
d
for f > g.The orresponding point D is the a+b−3c

3b−a−c -point of the segment BC,where a = rz, b = rfg+

h
and c = rgf+

h
.The other parts have similar proofs. �We an make a similar analysis when will the points P ,. . . , Y lie onthe line AO. Let us state only a simpler result for the enters P and Q.Moreover, we omit the disussion of the values when the denominatorsare zero. For example, when B = C, then P is never on the line AO.Teorem 28. (i) The point P is on the line AO if and only if either

k = h̄
d
> 0 (see Theorem 7) or k = 2d

ζ2+d2−1
> 0.(ii) The point Q is on the line AO if and only if either k = − d

ζ+1
> 0(see Theorem 8) or k = 1−ζ2−d2

2d
> 0.Proof. (i) The line AO has the equation

h[(h̄2 − d2)x− 2dh̄y] − rgg−(f+)2 = 0.Substituting the oordinates of the point P for x and y, we get
r[dk − h̄][(ζ2 + d2 − 1)k − 2d]

k2
= 0.Hene, the point P is on the line AO if and only if k is either h̄

d
or

2d
ζ2+d2−1

.The part (ii) has a similar proof. �The following analogous result for the line joining the irumenter
O with the Nagel point N is also stated in a similar partial form toavoid listing many subases. Note that O = N i� B = C = 30◦.We de�ne uP = ζ−3

d(ζ−2)
, vP = 2 d

z2−ζ2−3
, uS = ζ(3−ζ)

d
, vS = 2 d ζ

(h−1)2+z2−1
,

uU = d g

f h−2 g
, vU = 2 g(ζ−3)

h2−d z−4
, uX = d f

g h−2 f
and vX = 2 f(ζ−3)

4+d z−h2 .Teorem 29. (i) The point P is on the line ON if and only if either
k = uP > 0 or k = vP > 0.(ii) The point Q is on the line ON if and only if either k = − 1

uP
> 0or k = − 1

vP
> 0.Proof. (i) The line ON has the equation

h[(ζ − 3)2 − d2)](x+ y) = r(f L− 2 g)(h2 + d2 − 2 g−).Substituting the oordinates of the point P for x and y, we get
r2[d(ζ − 2)k − ζ + 3][(ζ2 − z2 + 3)k + 2d]

4 h2 k2
= 0.Hene, the point P is on the line ON if and only if k is either uP or

vP .The part (ii) has a similar proof. �The idential theorems hold for the pairs (S, T ), (U, V ) and (X, Y ).



24 ZVONKO �ERIN12. Central points as Thébault's entersSine every Thébault's irle is touhing the irumirle and thelines BC and AD, it is now obvious that the irumenter O is neverthe enter of any Thébault's irles. The following result shows thatthe Nagel point N of the triangle ABC is also rarely the enter ofThébault's irles.Teorem 30. The point N is never equal to any of the points P , Q, U ,
V , X or Y . The equality N = S holds if and only if f > √

2, g = 2
fand k = 2f

f2−2
. The equality N = T holds if and only if f < √

2, g = 2
fand k = 2−f2

2f
.Proof. Sine the oordinates of N are r

h
(fg+ − 2g, 2), we an easily �ndthat |PN|2 = r2MN

h2k4 , whereM = (dk − 1)2 + k2 andN = (kζ − 2k)2 + 1are always positive. Hene, the enter P is never the Nagel point. Thearguments for the enters Q, U , V , X and Y are similar.Analogously, |SN|2 = r2MN
h2k4 , where M = ζ2 + k2 is always positiveand N = [d2 + (ζ − 2)2]k2 − 2dζk + ζ2 has the positive leading oe�-ient d2 + (ζ − 2)2 and the disriminant −4ζ2(ζ − 2)2. Hene, when

g = 2
f
, then |SN|2 = r2(k2+4)[k(f2−2)−2f ]2

f2k4 . We infer that S will be N for
k = 2f

f2−2
and onlude, in addition, that f > √

2 beause k is alwayspositive.The argument for the enter T is similar. �13. Speial relationsThis setion begins with two results that illustrate how some speialrelations among radii of Thébault's irles an hold only when the point
D has some partiular position.Teorem 31. (i) The relation r2(r2

3 + r2
4) = r2

a(r
2
1 + r2

2) holds if and onlyif either the lines AD and BC are perpendiular or the line AD goesthrough the inenter I.(ii) The relation r2
b (r

2
7 + r2

8) = r2
c (r

2
5 + r2

6) holds if and only if eitherthe lines AD and BC are perpendiular or the line AD goes throughthe exenters Ib and Ic.Proof. We get this from relations r2(r2
3 + r2

4) − r2
a(r

2
1 + r2

2) = r4ζ2LK2p2
hk4and r2

c (r
2
5 + r2

6) − r2
b (r

2
7 + r2

8) = r4ζ2z3LK2s2
(hk)4

and the fat that for k = 1the point Dk is the orthogonal projetion of the vertex A onto thesideline BC. �Teorem 32. If the produt of the tangents of the angles B and C inthe triangle ABC is 2, then r2 r2
3 r

2
4 + r2

a r
2
1 r

2
2 = r2

b r
2
7 r

2
8 + r2

c r
2
5 r

2
6.
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3 r

2
4 + r2

a r
2
1 r

2
2 − r2

b r
2
7 r

2
8 − r2

c r
2
5 r

2
6 ontains as a fator

ζ2 − z2 + 1 = 2(1+cos(B))(1+cos(C))(2 cos(B) cos(C)−sin(B) sin(C))

(sin(B))2(sin(C))2
, it is lear that

tan(B) tan(C) = 2 implies the above equality. �In the next result we use again the oordinates of the enters ofThébault's irles. For e, f ∈ {x, y}, let E(e, f) denote the identity
eP + eS − eU − eX = fQ + fT − fV − fY .Teorem 33. (i) The identities E(x, y) and E(x, x) are never true.(ii) The identities E(y, y) and E(y, x) hold if and only if the lines
AD and BC are perpendiular.Proof. (i) The di�erene of the left and the right sides of the identities
E(x, y) and E(x, x) are r f+ g+(k+1)(k2−k+1)

hk
and r f+ g+K

hk
. Sine thereis no positive value k for whih these quotients vanish, it follows thatthey are never true.(ii) The di�erene of the left and the right sides of the identities

E(y, x) and E(y, y) are r f+ g+(k−1)(k2+k+1)
h k2 and r f+ g+K L

hk2 . Sine 1 is aunique positive value of k for whih these quotients vanish, it followsthat they hold if and only if the lines AD and BC are perpendiular.
�14. Lines ontaining many inenters and exentersFor any point M in the plane, let M ′ and M ′′ be the orthogonalprojetions of M onto the lines BC and AD.We prove now that the lines P ′P ′′, Q′Q′′, S ′S ′′, T ′T ′′, U ′U ′′, V ′V ′′,

X ′X ′′ and Y ′Y ′′ eah ontains four among inenters and/or exentersof the triangles ABC , BCE, ABE and ACE. In partial form this wasobserved in [23℄.Teorem 34. The following table gives the inidene relations of lines
P ′P ′′,. . . , Y ′Y ′′ and the points I, Ia,. . . , Jc, Je.

P ′P ′′ I Jc I Je
Q′Q′′ I Jb Ie J

S ′S ′′ Ia Jb Ib Ja
T ′T ′′ Ia Jc Ia Jc
U ′U ′′ Ib J Ia J

V ′V ′′ Ib Ja Ib Je
X ′X ′′ Ic Ja Ie Jc
Y ′Y ′′ Ic J I JaProof. Sine the oordinates of P ′ and P ′′ are r

k
(ϕ−, 0) and r ϕ−

h kK
(h k2+

2 g k + h̄, 2ψ+ k
), the line P ′P ′′ has the equation k x− y = r ϕ−. It isnow easy to hek that the oordinates of the points I, Jc, I and Jesatisfy this equation. The proofs for the other lines are analogous. �



26 ZVONKO �ERINFrom the above table it is possible to identify sixteen pairs of per-pendiular lines among P ′P ′′,. . . , Y ′Y ′′ that interset in the sixteenenters I,. . . , Je. All other pairs of lines among P ′P ′′,. . . , Y ′Y ′′ arepairs of parallel lines.For example, from the �rst two rows we onlude that the lines P ′P ′′and Q′Q′′ interset in I while from the �rst and the fourth row it followsthat the lines P ′P ′′ and T ′T ′′ interset in Jc. On the other hand, theline P ′P ′′ is parallel to the lines S ′S ′′, U ′U ′′ and X ′X ′′.15. Cirles with diameters on lines BC and ADLet kMN and sMN denote the irle with the segment MN as adiameter and its enter. In other words, sMN is the midpoint of thesegment MN .Teorem 35. (i) The line AD is parallel with the lines sP ′Q′I, sS′T ′Ia,
sU ′V ′Ib and sX′Y ′Ic.(ii) The lines sP ′′Q′′I, sS′′T ′′Ia, sU ′′V ′′Ib and sX′′Y ′′Ic are parallel withthe line BC.(iii) The intersetion of the irles kP ′Q′ and kP ′′Q′′ is the inenter Iand another point K on the line PQ.(iv) The irles kS′T ′ and kS′′T ′′ interset in the point Ia and inanother point Ka on the line ST .(v) The intersetion of the irles kU ′V ′ and kU ′′V ′′ is the exenter Iband another point Kb on the line PQ.(vi) The irles kX′Y ′ and kX′′Y ′′ interset in the point Ic and inanother point Kc on the line XY .The following relation holds:(54) |PK| · |SKa| · |V Kb| · |Y Kc| = |QK| · |TKa| · |UKb| · |XKc|.

|PK|2
r2

+ |SKa|2
r2a

+ |VKb|2
r2
b

+ |Y Kc|2
r2c

= |QK|2
r2

+ |TKa|2
r2a

+ |UKb|2
r2
b

+ |XKc|2
r2c

istrue if and only if either D = B, D = C or the lines AD and BC areperpendiular.Proof. (i) The midpointM of the segment P ′Q′ has the absissa r(L+2fk)
2kand the ordinate 0. Hene, the line IM is parallel to the line AD astheir equations are 2kx+ Ly = r(L+ 2fk) and 2kx+ Ly = 2rgf+ϕ−.The remaining three laims have similar proofs.(ii) The midpointM of the segment P ′′Q′′ has the absissa r(h̄L+2gf−k)

2hkand the ordinate r. Hene, the line IM is parallel to the line BC be-ause the inenter also has the ordinate r. The remaining three laimshave similar proofs.(iii) Sine P ′, Q′, P ′′ and Q′′ have the oordinates (xP , 0), (xQ, 0),
rϕ−

hkK
(hK + 2ψ+, 2kψ+) and rf+

hK

(

h̄K − 2ψ+,−2g−
), the seond inter-setion of the irles kP ′Q′ and kP ′′Q′′ (besides the inenter I) is thepoint K with the oordinates rf+ϕ−

M
(N,−g−ψ+), where M and N are
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(L+ dk)2 + (hk)2 and L+ (fg+ − 2g)k. Its oordinates satisfy theequation of the line PQ (see the proof of Theorem 24).The proofs of (iv), (v) and (vi) are similar.The easiest way to hek the identity (54) is to show that the squaresof its left and right sides are equal.Finally, the di�erene of the left and the right hand sides of the lastidentity is the quotient 2f+g+LKf+ϕ−g−ψ+

h2k4z2
. Sine the point D is B and

C for k equal 1
f
and g, we onlude that the last laim is true. �Of ourse, the above theorem has three additional versions for thetriangles BCE, ABE and ACE. For example, the lines sP ′Y ′I, sS′V ′Ib,

sT ′U ′Ia and sQ′X′Ie are parallels of AD while the lines sP ′′Y ′′I, sS′′V ′′Ib,
sT ′′U ′′Ia and sQ′′X′′Ie are parallels of BC.16. Three (of twelve) assoiated trianglesLet I, A, B and C be the midpoints of the segments sP ′Q′I, sS′T ′Ia,
sU ′V ′Ib and sX′Y ′Ic. Similarly, let I, A, B and C be the midpoints ofthe segments sP ′′Q′′I, sS′′T ′′Ia, sU ′′V ′′Ib and sX′′Y ′′Ic. Finally, let I, A,
B and C be the midpoints of the segments II, AA, BB and CC.The few basi relationships among these points are desribed in thefollowing result. Let sa, sb and sc denote b+c−a

2
, c+a−b

2
and a+b−c

2
.Teorem 36. (i) The point I is the sb

b
-point of the segment BB and the

sc

c
-point of the segment CC.(ii) The point I is the sa

a
-point of the segment AA.(iii) The vertex A is the sc

sb
-point of the segment BC.(iv) The vertex B is the sa

sc
-point of the segment CA.(v) The vertex C is the sb

sa
-point of the segment AB.(vi) The points I, A, B and C are the 3-points of the segments DI,

DIa, DIb and DIc.Proof. The points A, B and C have oordinates − rg

4k
(fL− 4k, 2fk),

rgz

4hk
(L+ 4fk, 2k) and rz

4hk
(fL− 4k, 2fk). Similarly, the verties A, Band C have as oordinates the pairs rg

4hk

(

fh̄L+ 2(h+ f−)k,−4fk
),

rg

4hk
(dL+ 2(h+ 2f 2)k, 4kz) and r

4hk
(2(fh− 2g)k − dfL, 4fkz). Also,the points I and I have the oordinates r

4hk

(

h̄L+ 2(2fζ − z)k, 4hk
)and r

4k
(L+ 4fk, 2k). Sine sb

b
is equal to h

g+
, it follows that the sb

b
-point of the segment BB is the point I. This proves the �rst laimin the part (i). All other laims in this theorem have similar routineveri�ation. �Teorem 37. The areas of the triangles satisfy the following relations:

|ABC| = |ABC| = 1
2
|IaIbIc|, |ABC| = 9

16
|IaIbIc|.Proof. Using the formula (53), we �nd that |ABC| = |ABC| = r2f+ g+ζz

4h2

= 1
2
|IaIbIc|.



28 ZVONKO �ERINOn the other hand, sine the points A, B and C have the oordi-nates rg

4hk
(fL+ (f− + 3h)k,−3fk), rg

4hk

(

fL+ (4f− + 3h̄)k, 3kz
) and

r
4hk

(

ζL+ (fh̄− 4z)k, 3fkz
), we similarly �nd that |ABC| = 9r2f+ g+ζz

32h2 .
�17. Some orthologi trianglesFor any real number u 6= −1, let Qu, Tu, Vu and Yu denote the u-points of the segments QP , TS, V U and Y X. Let Uu, Xu, Su and Pudenote the u-points of the segments Y U , V X, QS and TP . Reall thatthe pedal triangle of the point M (with respet to the triangle ABC)has the orthogonal projetions of M onto the lines BC, CA and ABas verties. Let Ψ and Ξ denote the pedal triangle of the inenters Iand J with respet to the triangles ABC and EBC.Triangles ABC and DEF are orthologi provided the perpendiularsat the verties of ABC onto the sides EF , FD and DE of DEF areonurrent. The point of onurrene of these perpendiulars is denotedby oDEFABC . It is well-known that this relation is re�exive and symmetri.Hene, the perpendiulars from verties of DEF onto the sides BC,

CA, and AB are onurrent at the point oABCDEF . These points are alledthe �rst and the seond orthology enters of the (orthologi) triangles
ABC and DEF . Replaing perpendiulars with parallels we get theanalogous notion of paralogi triangles and enters pDEFABC and pABCDEF .The quadruple {A,B,C,D} of points in the plane is orthoentriprovided every point is the orthoenter of the triangle on the remainingthree points.Let ∆u = TuVuYu, Γu = XuSuPu, Φ = IaIbIc and Θ = JaJbJc. Let usnotie that the orthoentri quadruples {I, Ia, Ib, Ic} and {J, Ja, Jb, Jc}are assoiated in the sense that the following holds:Teorem 38. For every point N in the plane,
|NI|2 + |NIa|2 + |NIb|2 + |NIc|2 = |NJ |2 + |NJa|2 + |NJb|2 + |NJc|2.Proof. LetN has the oordinates (p, q). Both sides of the above identityhave the value 4(p2 + q2 − rzp) + 2r(h2−z2)

h
q +

(

rf+g+

h

)2. �In a similar way one an show that the orthoentri quadruples
{I, Ia, Ib, Ie} and {J, Ja, Jc, Je} are also assoiated to {I, Ia, Ib, Ic}.Teorem 39. The triangle ∆u is orthologi with the triangle Φ. Thetriangle Γu is orthologi with the triangle Θ. Their areas satisfy

|∆u|
|Φ| =

|Γu|
|Θ| =

K2 u

k2(u+ 1)2
.



ON THÉBAULT'S PROBLEM 3887 29Proof. Reall that the trianglesABC andXY Z are orthologi provided(55) ∣

∣

∣

∣

∣

∣

xA xX 1
xB xY 1
xC xZ 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

yA yX 1
yB yY 1
yC yZ 1

∣

∣

∣

∣

∣

∣

= 0.We an easily �nd the oordinates of the verties of the triangles ∆uand Φ, substitute them into the the above determinants and makesimpli�ations to onlude that the ondition (55) holds for this pairof triangles. The same is true also for the pair (Γu,Θ).Finally, using the formula (53), we get |∆u| = r2ζK2f+g+zu

2(hk)2(u+1)2
. Sine

|Φ| = r2ζf+g+z

2h2 , the quotient |∆u|
|Φ| is K2 u

k2(u+1)2
. For the pair (Γu,Θ) we getthe same value. �Let k2 6= 1. LetQv, Tv, Vv and Yv be the (−k2)-points of the segments

QP , TS, V U and Y X and let Uv, Xv, Sv and Pv be the (−k2)-pointsof the segments Y U , V X, QS and TP . Let ∆ = TvVvYv, Γ = XvSvPv.Teorem 40. The quadruples {Qv, Tv, Vv, Yv} and {Uv, Xv, Sv, Pv} areorthoentri and for every point N in the plane the sums
|NQv|2 + |NTv|2 + |NVv|2 + |NYv|2and |NUv|2 + |NXv|2 + |NSv|2 + |NPv|2 are equal. The triangles ∆and Γ have idential nine-point irles and are reversely similar to theextriangles Φ and Θ, respetively.Proof. The points Qv, Tv, Vv and Yv have the pairs r

hL
(h(fL− 2k),

h̄L+ 2dk
), rg

hL

(

h(L+ 2fk), f(h̄L+ 2dk)
), rg

hL
(z(fL− 2k), dL− h̄k

)and r
hL

(

−z(L + 2fk), f(2h̄k − dL)
) as the oordinates. The perpen-diular through the point Tv onto the line VvYv has the equation(56) (h̄L+ 2dk)x+ (dL− 2h̄k)y = rg(h̄L+2dk)(f−L−4fk)

hLand the perpendiular through the point Vv onto the line TvYv has theequation(57) (L+ 2fk)x+ (fL− 2k)y = 2rg(fL−2k)f+ϕ−

hL
.These perpendiulars interset in the point Qv. In other words, thelinear system of the equations (56) and (57) has the oordinates ofthe point Qv as a unique solution. It follows that {Qv, Tv, Vv, Yv} isan orthoentri quadruple. We an similarly show that the quadruple

{Uv, Xv, Sv, Pv} is also orthoentri.LetN = (p, q). The both sums have the value 4[(p− a)2 + (q − b)2]+
3 r2K2 (f+)2(g+)2

4h2 L2 , where a = r(kz+h)(hk−z)
2hL

and b = r[(h̄−d)2 k2−(h̄+d)2]
4hL

.Sine Qv and Uv are the orthoenters of the triangles ∆ and Γ, theeasiest way to see that they have the same enter of the nine-pointirles is to �nd their entroids G∆ and GΓ and verify that the 3-pointsof QvG∆ and UvGΓ oinide. Their radii are also equal (hek that this
3-point is equidistant from the midpoints of TvVv and XvSv).



30 ZVONKO �ERINThe triangles ∆ and Φ are orthologi by Theorem 39. Hene, inorder to see that they are reversely similar, by [2℄, it su�es to hekthat they are paralogi. Reall that the triangles ABC and XY Z areparalogi provided(58) ∣

∣

∣

∣

∣

∣

xA yX 1
xB yY 1
xC yZ 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

xX yA 1
xY yB 1
xZ xC 1

∣

∣

∣

∣

∣

∣

= 0.Now we substitute the oordinates of the verties of the triangles ∆ and
Φ into the above determinants and make simpli�ations to onludethat the ondition (58) holds for this pair of triangles. The same istrue also for the pair (Γ,Θ). �Reall that the Bevan point X40 of the triangle ABC [10℄ is oABCIaIbIc(the orthology enter of the triangles IaIbIc and ABC) and also theirumenter of IaIbIc. Its oordinates are r

2h

(

2gh, z2 − hh̄
).Corollary 7. The following are distanes among the orthology andparalogy enters of the triangles ∆, Γ, Φ, Ψ, Θ and Ξ.

|oΦ
∆ p

Φ
∆| = |oΘ

Γ p
Θ
Γ | =

4KR

|L| ,

|o∆
Φ p

∆
Φ | = |oΓ

Θ p
Γ
Θ| = 4R, |o∆

Ψ p
∆
Ψ| = 2r, |oΓ

Ξ p
Γ
Ξ| = 2̺.More preisely, o∆

Φ and p∆
Φ are the antipodal points on the irle ofradius 2R with the enter at the Bevan point of the triangle ABC.Similarly, oΓ

Θ and pΓ
Θ are the antipodal points on the irle of radius 2Rwith the enter at the Bevan point of the triangle EBC. Also, o∆

Ψ and
p∆

Ψ are the antipodal points on the inirle of ABC and oΓ
Ξ and pΓ

Ξ arethe antipodal points on the inirle of EBC. The lous of midpoints of
oΦ
∆p

Φ
∆ is a line and the lous of midpoints of oΘ

Γ p
Θ
Γ is a hyperbola.Proof. We prove only the laims about o∆

Ψ and p∆
Ψ beause for otherenters the proofs are similar.We �nd that the oordinates of these enters are r
f+g+K2 (N+, 2p

2
2) and

r
f+g+K2 (N−, 2s2

2), where N± = f 3g+K2 ± 2f−F + fG±, F = (gL+ 2k)

(2gk − L), G+ = (3L+ 2)(L− 2)g2 + 16gkL− (K − 4k)(K + 4k) and
G− = (4k −K)(K + 4k)g2 − 16gkL+ (3L+ 2)(L− 2). Now it is easyto hek that |o∆

ΨI| = r and that p∆
Ψ is the (−2)-point of the segment

o∆
ΨI. Notie that from the ordinates of the points o∆

Ψ and p∆
Ψ we see thatthe statement o∆

Ψ ∈ BC ould be added in Theorem 24 and p∆
Ψ ∈ BCin Theorem 25. �18. Lines onneting the touhing points Po,. . . , YoThe points where the eight Thébault's irles touh the irumirlehave many properties. Some are revelled in the next result.Let M1,. . . , M24 denote the intersetions of the lines PoTo, PoVo,

PoQo, SoTo, QoUo, QoSo, QoSo, QoXo, PoQo, SoTo, PoYo, PoTo, PoTo,
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PoVo, PoYo, SoVo, SoYo, UoYo, QoUo, PoYo, UoVo, PoQo, QoXo and PoVowith the lines UoYo, SoYo, XoYo, UoVo, ToXo, VoXo, UoYo, ToUo, UoVo,
XoYo, SoVo, VoXo, QoSo, QoUo, QoXo, ToUo, ToXo, VoXo, SoYo, ToUo,
XoYo, SoTo, SoVo and ToXo, respetively.

�
Jb

Jc

M21

Je

E

M22

M18

M13

To

So

Qo

Po Vo

Uo

Xo

Yo

�� ��
��

� A

CB

�

Figure 3. The points M13, M18, M22 and M21.Teorem 41. The point D lies on the following lines: PoSo, QoTo, UoXoand VoYo. The intersetionsM1,. . . ,M24 are on the lines IIa, IIb, IIe,
IaIb, IaIe, IbIe, JJa,. . . , IIa,. . . , JcJe, respetively. The points M2,
M5, M8, M11, M13, M18, M21 and M22 are on the line perpendiular tothe line DO. The point D is ollinear with the pointsM1,M6,M9,M10,
M14, M17, M20 and M23 as well as with the points M3, M4, M7, M12,
M15, M16, M19 and M24. The point A is on the irles kM1M6

, kM7M12and kM13M18
, the point B is on the irles kM2M5

, kM14M17
and kM19M24

,the point C is on the irles kM8M11
, kM15M16

and kM20M23
and the point

E is on the irles kM3M4
, kM9M10

and kM21M22
. Moreover, there are32 triples of ollinear points beginning with {M4,M2,M1} and endingwith {M24,M23,M22} (one from eah of the above three groups of eightpoints).Proof. When h̄ 6= dk, then the line PoSo has the equation

2h2kx+ [(h2 + d2)k2 − 2dh̄k + 4ζ ]y = 2rghf+ϕ−.The oordinates of the pointD satisfy this equation. We prove similarlythat D also lies on the lines QoTo, UoXo and VoYo.



32 ZVONKO �ERINThe intersetionM13 has the oordinates rg

M
(N,−2fhs2), whereM =

4dζL+ h̄k(d2 + h2 − 4ζ) and N = 2dfzL+ k[(f−)2g+ − 4ζf+]. It lieson the line IIa with the equation h̄x− dy = rgf+.Similarly, the point M18 has the oordinates rgz

hM
(N, 2fzp2), where

M = 4h̄ζL+ dk(d2 + h2 + 4ζ) andN = 2fhh̄L+ k[(f−)2g+ + 4ζf+]. Itlies on the line IbIc with the equation dx+ h̄y = rgzf+

h
. The lineM13M18is perpendiular to the line DO with the equation

k(h2 − d2)x− (4ζL+ 2dh̄k)y =
(h2 − d2)rgf+ϕ−

h
.Moreover, the midpoint of M13M18 is equidistant from M13 and A.The intersetionsM22 andM21 are treated similarly. Of ourse, theyboth lie on the line M13M18. �19. Some homologi trianglesThe triangles ABC and XY Z are homologi provided the lines AX,

BY and CZ are onurrent. Their ommon intersetion hXY ZABC is alledthe enter (of the homology). In terms of the oordinates the onditionfor homology is(59) ∣

∣

∣

∣

∣

∣

∣

xA − xX xB − xY xC − xZ

yX − yA yY − yB yZ − yC

xAyX − yAxX xByY − yBxY xCyZ − yCxZ

∣

∣

∣

∣

∣

∣

∣

= 0.Let ϕ = SoUoXo and ψ = ToVoYo.Teorem 42. The triangle Φ is homologi to the triangles ϕ and ψ. Thehomology enters hϕΦ and hψΦ are the antipodal points on the irumirle
o. The lines hϕΦhψΦ and AD are perpendiular if and only if either
I ∈ AD or Ib ∈ AD.Proof. One an either show diretly that the ondition (59) holds forthe pairs (Φ, ϕ) and (Φ, ψ) or hek that the intersetions IaSo ∩ IbUoand IaTo ∩ IbVo have the oordinates r(g−k+2g)

2hK
(f− + 2fk, 2f − f−k)and r(2gk−g−)

2hK
(f−k − 2f, 2fk + f−) and that they lie on the lines IcXoand IcYo, respetively. The distane |hϕΦhψΦ| is 2R and the midpoint ofthe segment hϕΦhψΦ is the irumenter O.The lines hϕΦhψΦ and AD are perpendiular if and only if r2ζp2s2

h2kK
= 0.By Theorems 24 and 25, this happens if and only if either I ∈ AD or

Ib ∈ AD. �Let τ = ABC. Reall that the tangential triangle τt = AtBtCt hasthe intersetions of the tangents to the irumirle o at the verties of
τ as verties.Teorem 43. The tangential triangle τt is homologi to the triangles ϕand ψ.



ON THÉBAULT'S PROBLEM 3887 33Proof. Let τt = AtBtCt. These verties have the oordinates rz
2(h2−z2)

(h2

−z2, 2hz), r
2f−h

(ff−g− + 2(f 4 + 1)g, 2fhz) and rg

2g−h
(h2 − z2, 2hz).One an now easily hek that the ondition (59) holds for the pairs

(τt, ϕ) and (τt, ψ). �The above two theorems have more extensive versions that use thesymmetry of the on�guration. More preisely, the orthoentri quad-rangle IIaIbIc is homologi to the quadrangles P0S0U0X0 andQ0T0V0Y0.Similarly, JJaJbJe is homologi to the quadrangles U0S0P0X0 and Y0Q0

T0V0, IIaIbIe is homologi to the quadrangles P0U0S0X0 and Y0T0V0Q0and JJaJcJe is homologi to the quadrangles U0S0X0P0 and Q0Y0T0V0.The enters of these homologies are antipodal points on the irum-irle and are at the distane 2Rk√
K

and 2R√
K

from the verties A, B, Eand C, respetively.On the other hand, the triangles UoXoPo and VoYoQo are homologito the tangential triangle of BCE, the triangles SoUoPo and ToVoQo arehomologi to the tangential triangle of ABE and the triangles SoXoPoand ToYoQo are homologi to the tangential triangle of ACE.20. More on triangles ABC, ABC and ABCIn this setion we explore additional properties of the triangles ABC,
ABC and ABC that have been introdues in setion 15.Teorem 44. The triangles ABC and ABC are homologi if and onlyif either D = I ′ or D = AI ∩ BC. They are orthologi if and only ifthe lines AD and BC are perpendiular. They an never be paralogi.Proof. The ondition (59) for the triangles ABC and ABC is

3 r4 f+ g+ ζ2 pI′ s2 z

32 h4 k2
= 0.Now it su�es to apply Theorems 18 and 25.Similarly, the onditions (55) and (58) for these triangles are

3 r2 f+ g+ ζ L z

8 h2 k
= 0, −5 r2 f+ g+ ζ z

4 h2
= 0.The �rst holds if and only if k = 1, i. e., if and only if D = A′. Theseond does not depend on k and is never true so that the triangles

ABC and ABC are not paralogi. �Teorem 45. The triangles ABC and ABC are homologi if and onlyif D = AI ∩BC.Proof. The ondition (59) for the triangles ABC and ABC is
−r

4 ζ2 p2 z
3

4 h3 k
= 0.The laim of the theorem now follows from Theorem 24. �



34 ZVONKO �ERINTeorem 46. The triangles ABC and ABC are orthologi to Φ (theextriangle IaIbIc) and/or Ψ (the pedal triangle AqBqCq of the inenter
I) if and only if the lines AD and BC are perpendiular. These pairsof triangles are never paralogi.Proof. The onditions (55) and (58) for the pair (ABC,Φ) are

r2 f+ g+ ζ L z

4 h2 k
= 0, −3 r2 f+ g+ ζ z

2 h2
= 0.The �rst holds if and only if k = 1, i. e., if and only if the lines AD and

BC are perpendiular. The seond does not depend on k and is nevertrue so that the triangles ABC and Φ are not paralogi. The similarargument holds for the pairs (ABC,Ψ), (ABC,Φ) and (ABC,Ψ). �It follows from the part (vi) of Theorem 35 that the points I, A, Band C are the images of the points I, Ia, Ib and Ic under the homothety
h

(

D, 3
4

). Sine I is the orthoenter of the extriangle IaIbIc, we inferthat the quadruple {A,B,C, I} is orthoentri.The variable triangle ABC has many additional nie properties thatwe now desribe. They are all the onsequene of the fat that it ishomotheti with the extriangle for all positions of the point D.(1) The triangles ABC and Φ are homologi and their homologyenter is the point D.(2) The triangles ABC and Ψ are homologi and their homologyenter is the −3(ζ2+d2+3)
2h

-point of the segment joining the point
D with the entral point X57, the isogonal onjugate of theMittenpunkt X9.(3) The triangles ABC and ABC are orthologi. Moreover, oABC

ABC =
I and oABC

ABC
is the 3-point of the segment joining the point Dwith the Bevan point X40.The triangle ABC is also orthologi with other triangles assoiatedwith the triangle ABC. For example, with the antiomplementarytriangle AaBaCa (on the re�etions of the verties in the midpointsof opposite sides), the Euler triangle AeBeCe (on the midpoints of thesegments joining the verties with the orthoenter), the omplementarytriangle AgBgCg (on the midpoints of the sides), the extriangle Φ, theevian triangle AiBiCi of the inenter, the triangle AjBjCj (on thetouhing points of the exirles with the sides), the triangle AmBmCm(on the outer Gergonne points) and the pedal triangle Ψ of the inenter.Some of the orthology enters for these pairs are interesting entralpoints of the triangleABC. For example, oABC

AiBiCi
= oABC

Φ = X1 = I (theinenter), oABC

AaBaCa
= oABC

AmBmCm
= X8 = N (the Nagel point), oABC

AgBgCg
isthe Spieker point X10 (the inenter of the omplementary triangle),

oABC

AeBeCe
is the intersetion of the entral lines X1X4 and X2X40, oABC

AjBjCj

= X72 and oABC

Ψ = X65.



ON THÉBAULT'S PROBLEM 3887 35On the other hand, oABC
ABC

= oAaBaCa

ABC
= oAeBeCe

ABC
= o

AgBgCg

ABC
. Moreover,

oΦ
ABC

= oAmBmCm

ABC
= o

AqBqCq

ABC
and oΦ

ABC
is the 3-point of the segment join-ing the point D with the inenter I and oAiBiCi

ABC
is the 3-point of thesegment joining the point D with the irumenter O.21. Properties of quadrangles q1, q2, q3 and q4Let us all the quadrangle tame provided it has equal sums of squaresof opposite sides.We shall now show that q1 = PQST , q2 = PV SY , q3 = UV XY and

q4 = QUTX are tame quadrangles. There are many more suh tamequadrangles from the Thébault's enters. Moreover, the quadrangles
PoQoSoTo and UoVoXoYo have equal symmetri produts of four sides.Teorem 47. The quadrangles q1, q2, q3 and q4 are tame and

|PoQo| · |SoTo| · |UoYo| · |VoXo| = |PoTo| · |QoSo| · |UoVo| · |XoYo|.Proof. The formula |MN |2 = (xM − xN)2 + (yM − yN)2 gives us easily
|ST |2 = r2K2ζ2[ζ2K++2ζkL+(d2+h2−2ζ2)k2]

h2k4 , |PT |2 = r2Kϕ−ψ+(k2ζ2+1)
h2k4 , |QS|2

=
r2Kf2

+g
2
−(k2+ζ2)

h2k4 and |PQ|2 = r2K2[K++2dkL+(d2+h2−2)k2]
h2k4 . From this onean derive the algebrai identity |PQ|2 + |ST |2 = |PT |2 + |QS|2 whihproves that q1 is a tame quadrangle. For the other quadrangles q2, q3and q4 the proof is similar. For the long identity, we atually provethat both sides have equal squares. �Next, we �nd a situation when the quadrangles q1, q2, q3 and q4 areyli.Teorem 48. If the line AD and the sideline BC are perpendiular,then the quadrangles q1, q2, q3 and q4 are yli. Their irumenters

Oq1, Oq2, Oq3 and Oq4 are verties of a square with the side 2
√

2R suhthat Oq2Oq4 is parallel to the sideline BC.Proof. Let us reall that k = 1 if and only if the lines AD and BC areperpendiular. Hene, the irumenter of the triangle PQS has theoordinates r
h

(fg−,−h2) and is equidistant from the points P and T .It follows that q1 is a yli quadrangle. Similarly, the irumenterof the triangle UV X has the oordinates r
h

(fg−, z2) and is equidistantfrom the points U and Y so that the quadrangle q3 is also yli. Infat, this argument shows that these quadrangles are non-degenerateand yli if and only if k = 1 (see [3, Remark 6℄ for PQST ). Forthe quadrangles q2 and q4 these equivalenes do not hold but for k = 1they are also yli. The remaining laims have easy proofs by diretomputation of oordinates and use of the distane formula. �The entroids Gq1 , Gq2, Gq3 and Gq4 of the quadrangles q1, q2, q3 and
q4 are verties of an interesting retangle whose diagonals are nevershorter than the diameter of the irumirle of the triangle ABC .



36 ZVONKO �ERINTeorem 49. The quadrangle Gq1Gq2Gq3Gq4 is a retangle with sides
|Gq1Gq2| = Rk

√
K and |Gq2Gq3| = R

√
K

k2 and the diagonals RK
√
k2L+1
k2 .Hene, |Gq1Gq3| ≥ 2R.Proof. The entroids Gq1 and Gq1 have the oordinates

− r

4hk2

(

hk(hL− 2zk), ζ+L2 + (2h2 + dh̄k)L+ 2h2
)and

r

4hk2

(

zk(zL + 2hk), (f 2 + g2)L2 + (2z2 − dh̄k)L+ 2z2
)

.The oordinates of Gq2 and Gq4 are similar. It is now routine to hekthat Gq1Gq2Gq3Gq4 is a retangle and to ompute the lengths of its sidesand diagonals and prove the above inequality. �The following results explores when the diagonals of the quadrangle
Gq1Gq2Gq3Gq4 have their minimal value 2R.Teorem 50. The following are equivalent: (i) |Gq1Gq3| = 2R, (ii) theline Gq1Gq3 is perpendiular to the line BC, (iii) the line Gq1Gq3 isparallel to the line AD and (iv) the line AD is perpendiular to theline BC.Proof. The only singular value for the funtion k 7→ K2(k2L+1)

k4 is k = 1.This shows that (i) and (iv) are equivalent.The line Gq1Gq3 is perpendiular to the line BC if and only if Gq1and Gq3 have equal absises. However, xGq3
− xGq1

= rf+g+L

4hk
. Hene,again k = 1 and we onlude that (ii) and (iv) are equivalent.Finally, the line Gq1Gq3 is parallel to the line AD if and only if theyhave equal slopes, i. e., if and only if k = 1. Therefore, (iii) and (iv)are also equivalent. �The following three theorems onsider the Newton lines of the quad-rangles q1 and q3. Reall that the Newton line joins the midpoints ofthe diagonals of a quadrangle and its entroid.Let ζ+ = ζ2 + 1.Teorem 51. The following are equivalent: (i) the Newton lines of thequadrangles q1 and q3 are parallel, (ii) the point D lies on the linejoining the entroids Gq1 and Gq3 of the quadrangles q1 and q3 and (iii)the point D is the midpoint of the segment BC.Proof. The equations of the Newton lines of PQST and UV XY are

2[ζ+L+ dh̄k]x− 2h2ky = r[zζ+L+ (h3 + dh̄z)k]and
2h[(f 2 + g2)L− dh̄k]x− 2hkz2y = rz[h(f 2 + g2)L− (z3 + dhh̄)k].The ondition for these lines to be parallel is 4f+g+h(2ζL+ dh̄k) = 0.In order to prove the equivalene of (i) and (iii), it remains to notie



ON THÉBAULT'S PROBLEM 3887 37that the distane between the point D and the midpoint of the segment
BC is r|2ζL+dh̄k|

2hk
.Let K+ = k4 + 1. The line Gq1Gq3 has the equation

4hk(K+x− kLy) = r[2ζL3 + (dh̄+ 2hz)kL2 + 4hk3z].When we substitute x = xD and y = yD = 0 and move the free termto the left, we get rK2(2ζL+ dh̄k). This shows that (ii) and (iii) areequivalent. �Teorem 52. The Newton lines of the quadrangles q1, q3, q2 and q4 gothrough the points Z2, Z1, R1 and R2, respetively.Proof. The oordinates of the point Z2 are r
2
(z,−h). The equation ofthe Newton line of PQST is

2[ζ+L+ dh̄k]x− 2h2ky = r[zζ+L+ (h3 + dh̄z)k].It is now easy to hek that Z2 is on it. The other laims in this theoremhave similar proofs. �Reall that the entral point X69 is the symmedian point of theantiomplementary triangle. It is also the isotomi onjugate of theorthoenter.Teorem 53. The lous of intersetions of Newton lines of the quadran-gles q1 and q3 is the perpendiular to the line AX69 from the intersetionof the line BC with the perpendiular in the vertex A to the line AO.Proof. The oordinates of the intersetion M of the Newton lines ofthe quadrangles q1 and q3 are (see the proof of Theorem 50)
r

2h(2ζL+dh̄k)

(

2ghzf+ϕ−, (4ζ2 + (ζ2 + 1)(f 2 + g2))L− d(h2 − z2)h̄k
)

.By eliminating the variable k from the equations x = xM and y = yM ,we get the equation dhh̄x+ 2ζhy = rg2(f+)2 of the lous. Sine theentral point X69 has the oordinates
rf2

h((f2+g2)(ζ2+1)+ζf−g−)
(2f−g(g4 + 1) + f(g−)2,−2g2(h2 − z2)) ,it is now easy to hek that the lous is the line desribed in the state-ment of the theorem. �Teorem 54. The diagonals of the van Aubel pseudo-squares of thequadrangles PQST , UV XY , PQUY and STXV are on angle bisetorsof the line AD and the perpendiular at the point D onto the line BC.Proof. The angle bisetors of the line AD and the perpendiular at thepoint D onto the line BC have the equations(60) (k − 1)x− (k + 1)y = (k − 1)xD,and(61) (k + 1)x+ (k − 1)y = (k + 1)xD.



38 ZVONKO �ERINThe oordinates of the enters M and N of the negative squares onthe segments QS and TP are rf+
2hk2 (uM , vM) and rϕ−

2hk2 (uN , vN), where
uM = (k − 1)(k2 + gζ) + k(k + 1)(ζ − g), vM = (k + 1)g−(ζ − k), uN
= (k − 1)(k2gζ − 1) + k(k + 1)(ζ + g) and vN = (k + 1)ψ+(1 − ζk). Itis now easy to hek that these oordinates of both M and N satisfythe equation (60). The similar argument applies to the enters of theother negative and positive squares on sides of the quadrangles PQST ,
UV XY , PQUY and STXV . �Many other quadrangles from Thébault's enters P ,. . . , Y share theabove properties with the quadrangles q1, q2, q3 and q4.22. Lines onurrent in the points R1, R2, Z1 and Z2Teorem 55. The lines PoP ′, QoQ

′, SoS ′ and ToT ′ onur in the point
Z2. The lines UoU ′, VoV ′, XoX

′ and YoY ′ onur in the point Z1.Proof. The line PoP ′ has the equation hkx+ (2 − dk)y = rhϕ−. It isnow easy to hek that Z2 is on the line PoP ′. The other laims in thistheorem have similar proofs. �Let the perpendiular bisetor of the segment AD interset the ir-umirle o in the points R1 and R2 suh that R1 is loser to A thanto B while R2 is loser to B than to A. Hene,
|AR1|2 − |BR1|2 = |BR2|2 − |AR2|2 =

4 aRk

K
.Note that R1 is the midpoint of JaJe and R2 is the midpoint of IaIe.Teorem 56. The lines PoP ′′, SoS ′′, VoV ′′ and YoY ′′ onur in the point

R1. The lines QoQ
′′, ToT ′′, UoU ′′ and XoX

′′ onur in the point R2.Proof. The oordinates of the point R1 are r(kz+h)
2hK

(hk + z, kz − h).The line PoP ′′ has the equation
(dk + h− 2)kx+ (hk2 − dk + 2)y = rϕ−(kz + h).It is now easy to hek that R1 is on the line PoP ′′. The other laimsin this theorem have similar proofs. �23. The points that envelop PoQo, SoTo, UoVo and XoYoIn this setion we show that the lines PoQo, SoTo, UoVo and XoYopass through the �xed points of the triangle ABC. The following isthe part (a) of Proposition 9 in [3℄.Teorem 57. The entral point X56 of the triangle ABC (i. e., theisogonal onjugate of the Nagel point X8) lies on the line PoQo.



ON THÉBAULT'S PROBLEM 3887 39Proof. The oordinates of the point X56 are
r

d2 + h2 + 4

(

f−g(h− 1) + f(f 2 + 3), h2
)

.The line PoQo has the equation
2(dk + L)hx+ [(h̄2 − z2 + 4)k − 2dL]y = 2hrf+ϕ−.It is now easy to hek that X56 is on the line PoQo. �Of ourse, there are three related results where the entral points

X56 of the triangles BCE, ABE and ACE appear. Sine the point Evaries, these points are not �xed. They lie on the lines UoYo, PoYo and
QoUo, respetively.Let N∗

a , N∗
b and N∗

c be the points on the lines AX55, BX55 and CX55with the oordinates rg

d2+5ζ2−2ζ+1
(g2(3f+ − 2) + f−(2ζ − 1),−2fh2) ,

rgz

h(z2+h̄2+4g2)
(f(g+f 2 + 3g− + 2) + 2f−g, 2z2) and rz

h(z2+h̄2+4f2)
(f−(g2+

2ζ) − 3f+ + 2, 2fz2). Notie that N∗
a , N∗

b and N∗
c are isogonal onju-gates of the assoiated Nagel points Na, Nb and Nc with oordinates

− r
h

(fg+ + 2g, 2g2), rf
h

(g+ + 2ζ,−2f) and rf

h
(2ζ − g+, 2gζ).Teorem 58. The lines SoTo, UoVo and XoYo pass through the points

N∗
a , N∗

b and N∗
c , respetively.Proof. The line SoTo has the equation

2(dk + ζL)hx+ [2dζL− (5ζ2 − f 2 − g2 + 1)k]y = 2g2hrf+ϕ−.It is now easy to hek thatN∗
a is on the line SoTo. This is the part (b) ofProposition 9 in [3℄. The remaining two laims are proved similarly. �24. Perpendiulars passing through the point DThe pointD is very important for the Thébault's on�guration. Thisis supported by four similar results in this setion about D being onsome interesting perpendiulars to sides of the four orthoentri quad-rangles from the inenters and the exenters.Teorem 59. If k 6= k0, then the point D lies on the perpendiular fromthe intersetion of the lines PQ and ST onto the line IIa. If k 6= m0,then the point D lies on the perpendiular from the intersetion of thelines UV and XY onto the line IbIc. These perpendiulars are perpen-diular.Proof. Let k 6= k0. The intersetion M of the lines PQ and ST hasthe oordinates rf+ϕ−

hkp2
(g+hk, dg−ψ+) . Hene, the perpendiular from

M onto the line IIa has the equation hk(dx+ h̄y) = rdgf+ϕ−. It isnow obvious that this perpendiular goes through the point D.Let k 6= m0. The intersetion N of the lines UV and XY has theoordinates −rf+ϕ−

hks2

(

g+zk, h̄g−ψ+

)

. Hene, the perpendiular from Nonto the line IbIc has the equation hk(h̄x− dy) = rgh̄f+ϕ−. It is nowlear that this perpendiular goes through the point D. �



40 ZVONKO �ERINTeorem 60. Let D 6= B,C. The point D lies on the perpendiularfrom the intersetion of the lines PT and QS onto the line JbJc. If,in addition, |AB| 6= |AC|, then the point D lies on the perpendiularfrom the intersetion of the lines UY and V X onto the line JJa. Theseperpendiulars are perpendiular.Proof. The intersetion M of the lines PT and QS has the oordinates
rg

hh̄k
(f+hk,−fs2) . Hene, the perpendiular fromM onto the line JbJchas the equation hk(s2x− p2y) = rgs2f+ϕ−. It is now obvious that thisperpendiular goes through the point D.Let |AB| 6= |AC| (i. e., let d 6= 0). The intersetionN of the lines UYand V X has the oordinates rg

dhk
(f+zk, fp2) . Hene, the perpendiularfrom N onto the line JJa has the equation hk(p2x+ s2y) = rgp2f+ϕ−.It is now lear that this perpendiular goes through the point D. �Teorem 61. Let D 6= B,C. The point D lies on the perpendiularfrom the intersetion of the lines PY and QX onto the line IaIb. Thepoint D lies on the perpendiular from the intersetion of the lines UTand SV onto the line IIe. These perpendiulars are perpendiular.Proof. The intersetionM of the lines PY and QX has the oordinates

r
h k

((g f− − 2 f)k, f(2 g k − L)) . Hene, the perpendiular fromM ontothe line IaIb has the equation
hk[(2 g k − L)x+ (g L+ 2 k)y] = rg(2 g k − L)f+ϕ−.It is now obvious that this perpendiular goes through the point D.The intersetion N of the lines UT and SV has the oordinates

rg

hk
((f− + 2 ζ)k, f(g L+ 2 k)) . Hene, the perpendiular from N ontothe line IIe has the equation

hk[(g L+ 2 k)x− (2 g k − L)y] = rg(g L+ 2 k)f+ϕ−.It is now lear that the point D lies on this perpendiular. �Teorem 62. The point D, di�erent from the vertex C, lies on theperpendiular from the intersetion of the lines SY and QU onto theline JcJe. The point D lies on the perpendiular from the intersetionof the lines PV and TX onto the line JJa. These perpendiulars areperpendiular.Proof. The intersetionM of the lines SY and QU has the oordinates
r f+ ϕ−

h kK
(g+ k, k2 − g2) . Hene, the perpendiular from M onto the line

JcJe has the equation hk(g+ x+ ψ− y) = r g f+ ϕ− g+. It is now obviousthat this perpendiular goes through the point D.The intersetion N of the lines PV and TX has the oordinates
−r f+ ϕ−

hkK
(g+ k, ψ− ψ+) . Hene, the perpendiular from N onto the line

JJa has the equation hk(ψ− x− g+ y) = r g f+ ϕ− ψ−. It is now learthat the point D lies on this perpendiular. �



ON THÉBAULT'S PROBLEM 3887 4125. Certain pairs of perpendiular linesTeorem 63. The lines DI, DIa, DIb and DIc are perpendiular to thelines ST , PQ, XY and UV , respetively.Proof. The lines DI and ST have the equations hkx+ pI′y = rgf+ϕ−and pI′x− hky = rg2f+ϕ−. It follows that they are perpendiular. Theproofs for the remaining three pairs of lines are similar. �Teorem 64. The lines DJ, DJa, DJb and DJc are perpendiular tothe lines V X, UY , QS and PT , respetively.Proof. The lines DJ and V X are perpendiular beause they have theequations kzx+ (gL− d)y = rgzf+ϕ− and (gL− d)x− kzy = −rgzf 2
+.The proofs for the remaining three pairs of lines are analogous. �In a similar way it is possible to prove the following:Teorem 65. (i) The lines DI, DIa, DIb and DIe are perpendiularto the lines SV , XQ, PY and UT , respetively.(ii) The lines DJ, DJa, DJc and DJe are perpendiular to the lines

XT , PV , UQ and SY , respetively.26. Speial relations for produts of sides and diagonalsIn this setion, we onsider some onsequenes of equalities amongthe produts of lengths of sides and diagonals of some quadrangles fromthe eight enters of Thébault's irles.Teorem 66. If neither the angle B nor the angle C is right, then
|PQ||ST | = |UV ||XY | holds if and only if the line AD is perpendiulareither to the line AB or to the line AC.The equality |PS||QT | = |UX||V Y | holds if and only if either theangle A is right or |AB| 6= |AC| and the line AD is perpendiular tothe line AO.The equality |PT ||QS| = |UY ||V X| holds if and only if either D = B,
D = C, B = 90◦ or C = 90◦.The equality |PU ||QV | = |SX||TY | holds if and only if either D = Bor the angle B is right.The equality |PX||QY | = |SU ||TV | holds if and only if either D = Cor the angle C is right.Proof. The di�erene |PQ|2|ST |2 − |UV |2|XY |2 fators as the quotient
(rK)4ζ2f+g+(f−L+4fk)(g−L+4gk)

h4k6 . When the angle B is not right, then thefator f−L+ 4fk vanishes if and only if the line AD is perpendiularto the line AB. Similarly, when the angle C is not right, then the fator
g−L+ 4gk vanishes if and only if the line AD is perpendiular to theline AC.The di�erene |PS|2|QT |2 − |UX|2|V Y |2 simpli�es to the quotient
r4K2f+g+(h̄−dk)2(h̄k+d)2(h2−z2)

(hk)4
. The fator h2 − z2 vanishes if and only if



42 ZVONKO �ERINthe angle A is right. When |AB| 6= |AC|, the fator (h̄− dk)2(h̄k + d)2vanishes if and only if the line AD is perpendiular to the line AO.The di�erene |PT |2|QS|2 − |UY |2|V X|2 is r4f+f−g+g−(Kf+g+ϕ−ψ+)2

h4k6 .Its numerator vanishes only for k = 1
f
(when D = B), k = g (when

D = C), f = 1 (when B = 90◦) and g = 1 (when C = 90◦).The last two laims have similar (somewhat simpler) proofs. �27. Diagonal pointsThe diagonal points in quadrangles are two intersetions of pairs ofopposite sidelines and the intersetion of diagonals. In this setion weonsider these points for some quadrangles from the eight enters ofThébault's irles.The only assumption in the following result is that |AB| 6= |AC|.Teorem 67. The intersetions M0 and N0 of the lines PT and QSand of the lines UY and V X lie on the perpendiular to the line ADin the point A. The point D is on the irle kM0N0
. When the lines

AO and BC are not parallel, then its enter lies on the line BC if andonly if the irumenter O is on the line AD.Proof. The oordinates of the points M0 and N0 are rg

hh̄k
(f+hk,−fs2)and rg

dhk
(f+kz, fp2). It is now easy to hek that they satisfy the equa-tion h(Lx− 2ky) = rg(ϕ2

− − f 2
+) of the perpendiular to the line ADin the point A.The oordinates of the midpoint M of the segment M0N0 are

rg

2dhh̄k

(

2(f+)2gk, f [(h̄+ d)k − h̄+ d][(h̄− d)k + h̄+ d]
)

.Hene, |MD|2 = |MM0|2. This implies that the pointD is on the irle
kM0N0

.Finally, when the lines AO and BC are not parallel, then the inter-setion N of these lines has the oordinates (

rgg−(f+)2

h(h̄2−d2)
, 0

). It remainsto observe that |ND| = rζ|(h̄+d)k−h̄+d||(h̄−d)k+h̄+d|
hk|h̄2−d2| . �In the following result we assume that |AB| 6= |AC| and that the line

PQ is not parallel to the line ST and that the line UV is not parallel tothe line XY . In other words, the point D an not be the intersetionsof the line BC with the lines AI and IbIc.Teorem 68. The intersetions M and N of the lines PQ and ST andof the lines UV and XY lie on the perpendiular to the line AD inthe point E. The point D is on the irle kMN . The following areequivalent: (i) the midpoint of the segment MN lies on the line BC,(ii) the lines MN0 and NM0 are perpendiular, (iii) the point D is onthe line MN0, (iv) the point D is on the line NM0, (v) the relation
|MN |2 + |M0N0|2 = |MM0|2 + |NN0|2 holds and (vi) either D = B,
D = C or the irumenter O is on the line AD.



ON THÉBAULT'S PROBLEM 3887 43Proof. The oordinates of the pointsM andN are rf+ϕ−

hkp2
(g+hk, dg−ψ+)and −rf+ϕ−

hks2

(

g+zk, h̄g−ψ+

). It is now easy to hek that they satisfythe equation h(Lx− 2ky) = rf+ϕ−g− of the perpendiular to the line
AD in the point E.The oordinates of the midpoint m of the segment MN are

rf+ϕ−

2hkp2s2

(

2f+ϕ−(g+)2k, g−ψ+[(h̄+ d)k − h̄+ d][(h̄− d)k + h̄ + d]
)

.Hene, |mD|2 = |mM |2. This implies that the point D is on the irle
kMN .Finally, in order to prove the equivalene of the six statements, itsu�es to notie that eah ondition desribed analytially involves asfators ϕ−, g−, (h̄ + d)k − h̄+ d and (h̄− d)k + h̄ + d. For example,the sum |MN |2 + |M0N0|2 − |MM0|2 − |NN0|2 is equal

2r2ζf+ϕ−g−ψ+[(h̄+ d)k − h̄+ d]2[(h̄− d)k + h̄ + d]2

dh̄h2k2p2s2

.

�Teorem 69. Let k 6= h
z
. The intersetions M0 and N0 of the lines PYand SV and of the lines TU and QX lie on the perpendiular to theline BC in the point C. The point D is on the irle kM0N0

.Proof. The points M0 and N0 have the absises r z (the same as thatof the point C) and the ordinates r f g− ψ+(hk+z)
hk(z k−h)

and r f g− ψ+(h−z k)
hk(h k+z)

.The ordinate of the midpoint M of the segment M0N0 is
r f g− ψ+[(h + z)k + z − h][(h− z)k + z + h]

2 h k(h k + z)(z k − h)
.Hene, |MD|2 = |MM0|2. This implies that the pointD is on the irle

kM0N0
. �Teorem 70. Let k 6= z

h
. The intersetions M0 and N0 of the lines PVand SY and of the lines QU and TX lie on the perpendiular to theline BC in the point B. The point D is on the irle kM0N0

.Proof. The points M0 and N0 have the absises 0 (the same as that ofthe point B) and the ordinates r g f+ ϕ−(z−hk)
h k(z k+h)

and r g f+ ϕ−(z k+h)
h k(hk−z) .The ordinate of the midpoint M of the segment M0N0 is

r g f+ ϕ−[(h+ z)k + h− z][(z − h)k + z + h]

2 h k(h k − z)(z k + h)
.Hene, |MD|2 = |MM0|2. This implies that the point D is on theirle kM0N0

. �



44 ZVONKO �ERIN28. The role of X40 and X20Two results in this setion use the Longhamps point X20 and theBevan point X40. They give some onsequenes of ertain positions ofthese entral points with respet to the enters of Thébault irles.Teorem 71. (i) The relation cosA = cosB + cosC for the angles ofthe triangle ABC holds if and only if the re�etion of the Bevan point
X40 in the line BC lies on the line ST .(ii) The relation cosB + cosC = 1 holds if and only if the re�etionof the Bevan point X40 in the perpendiular bisetor of the segment BClies on the line PQ.(iii) The Bevan point X40 never lies on the line ST .Proof. The Bevan point X40 has the oordinates r

2h
(2hg, 1 + z2 − ζ2).Its re�etion in the line BC (the x-axis!!) will be on the line ST withthe equation (ζL+ dk)x− hky = rf+ϕ−g2 if and only if

3 ζ2 − 2 ζ − z2 − 1 = 0.When we substitute f = cot B
2
and g = cot C

2
, this ondition is seenequivalent with the identity cosA = cosB + cosC. This proves thepart (i). The proof of (ii) is similar. Finally, in order to prove (iii),when we substitute the oordinates of X40 into the above equation ofthe line ST and move all terms to the left side, we obtain −rf+g+k

2
= 0that is never true. �Teorem 72. (i) Let p2 6= 0. The angle A in the triangle ABC is rightif and only if the Longhamps point X20 is on the perpendiular to theline AD through the intersetion M of the lines PQ and ST .(ii) Let s2 6= 0. The angle A in the triangle ABC is right if and onlyif the Longhamps point X20 is on the perpendiular to the line ADthrough the intersetion N of the lines UV and XY .Proof. (ii) When we substitute the oordinates r

h
(fg−, z2 − ζ2 − 1) of

X20 into the equation h(Lx− 2ky) = rf+ϕ−g− of the perpendiular tothe line AD through the intersetion N and move all terms to the leftside, we obtain rk(h2 − z2) = 0 that is equivalent with the onditionthat the angle A is right. �Referenes[1℄ J. -L. Ayme, Sawayama and Thébault's theorem, Forum Geometriorum, 3(2003), 225�229.[2℄ Z. �erin, On propellers from triangles, Beitrage zur Algebra and Geometrie,42 (2001), No. 2, 575�582.[3℄ H. Demir and C. Tezer, Re�etions on a problem of V. Thébault, GeometriaeDediata, 39 (1991), 79�92.[4℄ S. Dutta, Thébault's problem via eulidean geometry, Samay	a, 7 (2001), 2�7.[5℄ B. J. English, Solution of Problem 3887. It's a long story, Amer. Math.Monthly, 110 (2003), 156�158.
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