
ON THÉBAULT'S PROBLEM 3887ZVONKO �ERINAbstra
t. The famous Thébault's 
on�guration of the triangle
ABC depends on a variable point D on its sideline BC and 
onsistsof eight 
ir
les tou
hing the lines AD and BC and its 
ir
um
ir
le.These 
ir
les are best 
onsidered in four pairs that are related to thefour 
ir
les tou
hing the sidelinesBC, CA and AB (the in
ir
le andthe three ex
ir
les). We use the analythi
 geometry to determinethe 
oordinates of the 
enters P , Q, S, T , U , V , X and Y of theeight Thébault's 
ir
les with respe
t to a parametrization of thetriangle ABC with the inradius r and the 
otangents f and g of theangles B

2
and C

2
. The position of the point D is des
ribed by the
otangent of the half of the angle between the lines AD and BC.The 
oordinates of many points in this 
on�guration are simplerational fun
tions in r, f , g and k that makes most 
omputationssimple espe
ially when done by a 
omputer. In this approa
h,the proof of the original Thébault's problem about the in
enter Idividing the segment QP in the ratio k2 is straightforward. A largenumber of other interesting properties of this gem of the trianglegeometry are explored by analythi
 methods.1. Introdu
tionIn [27℄, the authors say that the following result is usually 
alledThébault's theorem (see the portion of the Fig. 1 above the line BC).Teorem 1. Let u(I, r) be the in
ir
le of a triangle △ABC (u is thename, I is the 
enter and r is the radius), and D any point on the line

BC. Let k1(P, r1) and k2(Q, r2) be two 
ir
les tou
hing the lines ADand BC and the 
ir
um
ir
le o(O,R) of ABC. Then the three 
enters
P , Q and I are 
ollinear and the following relations hold:(1) PI : IQ = τ 2,(2) r1 + r2 τ

2 = r(1 + τ 2),where 2 θ = ∠ADB and τ = tan θ.The primary goal of this paper is to give 
orre
t versions of theabove "theorem". Its formulation is wrong be
ause the requirement"tou
hing the lines AD and BC and the 
ir
um
ir
le o(O,R)" is notrestri
tive enough. This is obvious from the part of the Figure 1 underthe line BC sin
e the 
enters Y , U and I are not 
ollinear. On theother hand, the relation (2) does not hold for all positions of the point
D on the line BC. 1
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oFigure 1. Thébault's theorem.The Problem 3887 in the Ameri
an Mathemati
al Monthly by Vi
torThébault [25℄ addresses an unusual result in elementary geometry thatis easier to formulate and prove within the analyti
 geometry ratherthan in the syntheti
 geometry. The syntheti
 approa
h is traditionally
onsidered as more valuable while the inferior analyti
 method is alwaysa kind of brute for
e with lengthly 
omputations.We need the following notation to have shorter expressions. Let
d = f − g, z = f + g, ζ = fg, h = ζ − 1, h̄ = ζ + 1, f± = f ± k, g± = k
±g, f± = f 2 ± 1, g± = g2 ± 1, ϕ± = f k ± 1, ψ± = g k ± 1, K = k2 + 1and L = k2 − 1. Let λ(a, b) repla
e (λ a, λ b).Let ABC be a triangle in the plane. Let β = ∠CBA and γ = ∠ACB.Let f = cot

(

β

2

) and g = cot
(

γ

2

) and let u(I, r) be the in
ir
le of thetriangle ABC. We shall use the re
tangular 
oordinate system that hasthe point B as the origin and the point C is on the positive part of the
x-axis while the point A is above it. For a point P , let xP and yP denoteits x- and y-
oordinate with respe
t to this system. Then the verti
es
A, B and C of the triangle ABC have the 
oordinates rg

h
(f−, 2f),

(0, 0) and (r z, 0), where the positive real numbers r, f and g satisfy
h > 0. The position of a variable point D on the line BC is determinedby the positive real number k = cot

(

δ
2

), where δ is the angle betweenthe lines AD and BC. Hen
e, D = Dk = D
(

r g f+ ϕ−

hk
, 0

).2. Thébault's theoremWe shall �rst determine the 
oordinates of the 
enters of Thébault's
ir
les (see Theorem 2). With this important information the proofof the (
omplete) Thébault's theorem (see Theorems 3, 4 and 5 andthe Figure 2) is indeed very simple and straightforward. Of 
ourse,our approa
h is similar to [3℄ and [21℄. However, our 
hoi
e of the



ON THÉBAULT'S PROBLEM 3887 3parametrization gives simpler expressions and allows more extensivestudy of the Thébault's 
on�guration.Teorem 2. The points P , Q, S, T , U , V , X and Y with 
oordinates
rϕ−

k

(

1, ψ+

hk

), rf+

(

1,−g−
h

), rgf+
k

(

1, fg−
hk

), −rgϕ−
(

1, fψ+

h

), rgϕ−

hk

(

z, g−
k

),
rgf+
h

(z, ψ+), rf+
hk

(

−z, fψ+

k

) and rϕ−

h
(z, fg−) are the 
enters and r1 =

|yP |, . . . , r8 = |yY | are the radii of the eight 
ir
les ki (i = 1, . . . , 8) thattou
h the lines BC and AD and the 
ir
um
ir
le o(O, R).Proof. Let P (p, q) be the 
enter of the 
ir
le that tou
hes the lines BCand AD and the 
ir
le o. Then(3) |PP ′′| = |q|,and(4) |PO|2 = (R± q)2,where P ′′ is the orthogonal proje
tion of the point P on the line AD.If u = Lp− 2 k q, v = Lq + 2 k p, w = hK2, then 4 r g k f+ ϕ−+hLu

w
and

2 r g Lf+ ϕ−−2hku
w

are xP ′′ and yP ′′. Hen
e, |PP ′′| =
∣

∣

∣

hv−2 r g f+ ϕ−

w

∣

∣

∣
. Onthe other hand, R = rf+g+

4h
and O has the 
oordinates r

4h
(2z, z2 − h2).It is now easy to see (perhaps with a little help from Maple V) thatthe above eight 
ases of pairs (p, q) are all solutions of the equations(3) and (4). �While it is easy to �nd the 
oordinates of the 
enters P, . . . , Y ofthe eight Thébault 
ir
les and their radii |yP |, . . . , |yY |, it is di�
ultto des
ribe them pre
isely by purely geometri
 means be
ause whenthe point D 
hanges position on the line BC these 
ir
les are 
hanging
onsiderably so that it is hard to tell one from the other. For thepoints P , Q, S and T this was done in [3, Se
tion 3℄ by use of oriented
on�gurations.For a real number λ 6= −1 and di�erent pointsM and N , the λ-pointof the segment MN is a unique point F on the line MN su
h that theratio of oriented distan
es |MF | and |FN | is equal to λ. We 
an extendthis de�nition to the 
ase when M = N taking that the λ-point is thepoint M for every real number λ 6= −1. Re
all that the 
oordinates ofthe λ-point are (

xM+λxN

λ+1
, yM+λ yN

λ+1

).Let ka(Ia, ra), kb(Ib, rb) and kc(Ic, rc) be the ex
ir
les of the triangle
ABC. Then I, Ia, Ib and Ic have the 
oordinates r(f, 1), rg(1, −f),
rgz

h
(f, 1) and rz

h
(−1, f). Also, ra = rfg, rb = rgz

h
and rc = rfz

h
.The part of the following result for the segment QP is the 
orre
tform of Thébault's theorem while the part for the segment TS is the
orre
t form of the Thébault's external theorem (see [27, Remark 2℄).In [21℄, Shail 
alls Theorem 3 the full Thébault theorem.
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Figure 2. Theorems 3 and 4 together.Teorem 3. The points I, Ia, Ib and Ic are the k2-points of the segments
QP , TS, V U and Y X.Proof. Sin
e

xQ + k2xP
K

=
r f+ + k2 rϕ−

k

K
= rf = xIand

yQ + k2yP
K

=
−rf+g−

h
+ k2 rϕ− ψ+

hk2

K
= r = yI ,it follows that I is the k2-point of the segment QP . The other 
aseshave similar proofs. �Corollary 1. The abs
ises of the 
enters of Thébault's 
ir
les satisfy:(5) xQ + k2 xP = Krf, xT + k2 xS = Krg,(6) xV + k2 xU = Krbf, f(xY + k2 xX) = −Krc.



ON THÉBAULT'S PROBLEM 3887 5Corollary 2. The ordinates of the 
enters of Thébault's 
ir
les satisfy:(7) yQ + k2 yP = Kr, yT + k2 yS = −Kra,(8) yV + k2 yU = Krb, yY + k2 yX = Krc.Note that only when the point D is on the segment BC it holds
yP = r1, yQ = r2, yS = −r3 and yT = −r4 so that from (7) we get (2)sin
e k = 1

τ
. The se
ond relation in (7) gives us the analogous formula

r3 + r4 τ
2 = ra(1 + τ 2) for the Thébault's external theorem.On the other hand, when the point D is on the left from the point

B, the ordinate yP of the 
enter P is negative so that the relation (7)gives r2 − k2 r1 = (1 + k2)r. Moreover, when the point D is on theright from the point C, the ordinate yQ is negative so that the relation(7) implies the third part k2 r1 − r2 = (1 + k2)r of the 
orre
t versionof the formula (2).As was already noti
ed in [23℄, the eight Thébault's 
ir
les are also
onne
ted with the triangle EBC, where the point E is the se
ondinterse
tion (besides the point A) of the line AD and the 
ir
um
ir
le
o. Its 
oordinates are r f+ ϕ−

hK2

(

ψ2
+ − g2

−, 2ψ+ g−
). One 
an easily �ndthat its in
enter J and the ex
enters Jb, Jc and Je have the 
oordinates

r z ϕ−

hK
(ψ+, g−), r f+

K
(ψ+, g−), r ϕ−

K
(g−, −ψ+) and r z f+

hK
(−g−, ψ+). It isimportant to note here that as the parameter k 
hanges the a
tual roleof these points 
hanges so that from the ex
enters they 
an be
omeother ex
enters or the in
enter and vi
e verse.Teorem 4. The four points J , Jb, Jc and Je are the k2-points of thesegments Y U , QS, TP and V X.Proof. Sin
e

xY + k2xU
K

=
rzϕ−
hK

+
rzgkϕ−
hK

=
rzϕ−ψ+

hK
= xJand

yY + k2yU
K

=
rfϕ−g−
hK

+
rgϕ−g−
hK

=
rzϕ−g−
hK

= yJ ,it follows that J is the k2-point of the segment Y U . The other 
aseshave similar proofs. �The approa
h in [23℄ also suggests that the other two triangles ABEand ACE and their in
enters and the ex
enters should play a simi-lar role. We denote those 
enters by I, Ia, Ib, Ie and J, Ja, Jc, Je.Their 
oordinates are r ϕ−

hK
(h k + d, z k − h), −r g ϕ−

hK
(h− z k, h k + z),

r f+ g

hK
(h k + z, z k − h), r f+

hK
(h− z k, h k + z), r

hK
(ζ z k2 − g+ k + f h,

g−(h k − z)), r
hK

(g h k2 − f 2 g+ k − z, f g−(z k + h)), − r
hK

(z k2 + f 2

g+ k − g h, f ψ+(h k − z)) and r
hK

(f h k2 + g+ k + ζ z, ψ+(z k + h)).



6 ZVONKO �ERINTeorem 5. (i) The points I, Ia, Ib and Ie are the k2-points of thesegments Y P , TU , V S and QX.(ii) The points J, Ja, Jc and Je are the k2-points of the segments
QU , Y S, TX and V P .Proof. Sin
e

xY + k2 xP
K

=
rzϕ−
hK

+
r ϕ− k

K
=
r ϕ−(h k + z)

hK
= xIand

yY + k2 yP
K

=
r f ϕ− g−
hK

+
r ϕ− ψ+

hK
=
r ϕ−(z k − h)

hK
= yI,it follows that I is the k2-point of the segment Y P . The other 
aseshave similar proofs. �Now we 
ould say that the Theorems 3, 4 and 5 together representthe 
omplete Thébault theorem.The rather simple 
oordinates of the in
enters and the ex
enters ofthe triangles ABC, BCE, ABE and ACE allow us to prove easilythe following results that Johnson in [9, p. 193℄ 
alls the "JapaneseTheorem" (see also [16℄).Teorem 6. (i) The following quadrangles IIJJ, IaIbJeJc, IbIaJcJeand IcIeJbJa are the re
tangles.(ii) Their areas satisfy: |IIJJ| |IaIbJeJc| = |IbIaJcJe| |IcIeJbJa|.(ii) Their 
enters are verti
es of a parallelogram with the 
enter atthe 
ir
um
enter O of the triangle ABC.Proof. Sin
e |II|2 = |JJ|2 = r2(f+)2(g−)2

h2K
and |IJ|2 = |JI|2 = r2(g+)2(ϕ−)2

h2K
,it follows that IIJJ is a parallelogram. On the other hand, sin
e thelines II and IJ have the equations k x− y = r ϕ− and x+ k y = r f+,we 
on
lude that they are perpendi
ular and IIJJ is a re
tangle.Sin
e the area of a re
tangle is the produ
t of the lengths of itsadja
ent sides, we see that |IIJJ| = r2 f+ g+ |g− ϕ−|

h2K
. Similarly,

|IaIbJeJc| =
r2 ζ f+ g+ f+ ψ+

h2 K
, |IbIaJcJe| =

r2 g f+ g+ ψ+ |ϕ−|
h2 K

,and |IcIeJbJa| = r2 f f+ g+ f+ |g−|
h2K

. The identity in (ii) is now obvious.Finally, it is easy to 
he
k that the 
ir
um
enter O is the midpoint ofthe segments GIIJJGIaIbJeJc
and GIbIaJcJe

GIcIeJbJa
joining the 
enters(i. e., the 
entroids) of these re
tangles. �Note that the inradii j, r and j and the exradii jb, jc, je, ra, rb, re,

ja, jc and je of the triangles BCE, ABE and ACE are the absolutevalues of the quotients r g− z ϕ−

hK
, r ϕ−(h̄−d k)

hK
, r g−(h̄ k+d)

hK
, r f+ g−

K
, r ϕ− ψ+

K
,

r f+ ψ+ z

hK
, r ϕ− g(h̄ k+d)

hK
, r f+ g(h̄−d k)

hK
, r f+(h̄ k+d)

hK
, r f g−(h̄−d k)

hK
, r f ψ+(h̄ k+d)

hK
and



ON THÉBAULT'S PROBLEM 3887 7
r ψ+(h̄−d k)

hK
. Now, at least under the assumption thatD is on the segment

BC, we 
an easily 
he
k the following identities:
r + j = r + j, ra + je = rb + jc, rb + jc = ra + je, rc + jb = re + ja.The �rst is the relation (2.2) in [16℄.3. Some 
oni
s as lo
i and envelopesIn order to �nd the lo
us of Thébault's 
enter P , let us eliminatethe parameter k from the equations xP = x and yP = y. We get theequation y = x(rz−x)

rh
of the parabola µ with the 
ir
um
enter O as thefo
us and the horizontal line ε above the line BC at the distan
e R (the
ir
umradius) as the dire
trix. Repeating this for the 
enters Q, S and

T will always produ
e the same parabola µ. On the other hand, doingthis for the 
enters U , V , X and Y , will give the equation y = hx(x−rz)
rz2of the parabola ν also with the 
ir
um
enter O as the fo
us and thehorizontal line ε∗ below the line BC at the distan
e R as the dire
trix.Corollary 3. The points P , Q, S and T are on the parabola µ and thepoints U , V , X and Y are on the parabola ν.The parabolas µ and ν interse
t only in the points B and C and theyen
lose the region with the area 2

3
aR.When the point D moves on the line BC, the many lines joiningpairs of Thébault's 
enters provide families of lines that envelop someinteresting 
oni
s of the triangle ABC .For example, one interpretation of the Theorem 3 is that the lines

PQ, ST , UV and XY envelop the points I, Ia, Ib and Ic (
onsideredas degenerated ellipses), respe
tively.On the other hand, it was noted in [3℄, the lines PS, QT , UX and
V Y envelop the parabola λ of fo
us A and dire
trix BC having theequation y = h

4rζ
x2 − f−

2f
x+ rg(f+)2

4fh
.The parabolas λ, µ and ν are 
losely related in many respe
ts: Theyhave parallel dire
tri
es and axes and the distan
e between the fo
iof λ and µ and between the fo
i of λ and ν is equal to the distan
ebetween their dire
tri
es. It is not di�
ult to see that λ and µ tou
hin the (b+c)2−a2

a2
-point Tµ of the segment AO and that λ and ν tou
h inthe (b−c)2−a2

a2
-point Tν of the segment AO (when b 6= c).When b 6= c, the lines PT and QS envelop the same hyperbola ηwith the equation ζ(2x− rz)2 − (hy − 2rζ)2 = r2d2ζ ([3, Remark 7℄).The lines UY and V X envelop the same ellipsis χ with the equation

h2ζ(2x− rz)2 + z2(hy − 2rζ)2 = r2h̄2z2ζ. It 
an be shown that χ issymmetri
 with respe
t to the perpendi
ular bise
tor of BC, tangent to
ν at B and C, tangent to lines TνIb and TνIc and to the perpendi
ularsto BC through Ib and Ic.



8 ZVONKO �ERIN4. The line AD tangent to the 
ir
um
ir
leWe shall see that some positions of the point D on the line BC areparti
ularly important. In the following two results we identify whathappens when the line AD is the tangent to the 
ir
um
ir
le o in thepoint A. In this ex
eptional 
ase many points of the 
on�guration
oin
ide. Of 
ourse, this 
an happen only when the angles B and Care di�erent.Let Po, . . . , Yo denote the points in whi
h the Thébault's 
ir
les tou
hthe 
ir
um
ir
le o. Their 
oordinates are rϕ−

P1
(P2, 2hψ+), rf+

Q1
(Q2, 2hg−),

rgf+
S1

(S2, 2hfg−), rgϕ−

T1
(T2,−2hfψ+), rgzϕ−

hU1
(U2, 2zg−), rgzf+

hV1
(V2, 2zψ+),

rzf+
hX1

(X2, 2zfψ+) and rzϕ−

hY1
(Y2, 2zfg−), where P1, . . . , Y1 are (h2 + d2)k2

−4dk + 4, 4k(k + d) + h2 + d2, (h2 + d2)k2 − 4ζ(dk − ζ), 4ζk(ζk + d)
+h2 + d2, (h̄2 + z2)k2 − 4g(h̄k − g), 4gk(gk + h̄) + h̄2 + z2, (h̄2 + z2)k2

+4f(h̄k + f), 4fk(fk − h̄) + h̄2 + z2 and P2, . . . , Y2 are (h2 + dz)k−
2z, 2zk + h2 + dz, (h2 − dz)k + 2zζ , 2zζk − h2 + dz, (ζ2 + z2 − 1)k−
2gh, 2ghk + ζ2 + z2 − 1, (ζ2 − z2 − 1)k + 2fh, 2fhk − ζ2 + z2 + 1.For eight points P1,. . . , P8, let D(P1, . . . , P8) be the determinant

∣

∣

∣

∣

∣

∣

∣

∣

xP1
yP1

xP2
yP2

xP3
yP3

xP4
yP4

xP5
yP5

xP6
yP6

xP7
yP7

xP8
yP8

∣

∣

∣

∣

∣

∣

∣

∣

.Teorem 7. The following statements are equivalent: (i) P = S, (ii)
V = Y , (iii) Po = A, (iv) So = A, (v) Vo = A, (vi) Yo = A, (vii) I = Jc,(viii) Ia = Jb, (xi) Ib = J , (x) Ic = Ja, (xi) I = Ib, (xii) I = Ja, (xiii)
I = Je, (xiv) Ja = Je, (xv) the lines IbJc and IcJe are perpendi
u-lar, (xvi) D(I, Ia, Ib, Ic, J, Je, Jb, Jc) = 0, (xv) Ib ∈ AD, (xvi) Je ∈ AD,(xvii) the lines IbJe and AD are perpendi
ular, (xviii) the lines IcJaand AD are parallel, (xix) the lines IaJc and AD are parallel and (xx)the angle B is smaller than the angle C and the lines AD and AO areperpendi
ular.Proof. Sin
e |PS|2 = r2K(h̄−dk)2

k4 , we 
on
lude that P = S if and onlyif k = h̄
d
. However, the parameter k is positive, so that f > g (i. e.,the angle B is smaller than the angle C) and the point D divides thesegment BC in the ratio − |AB|2

|AC|2 (i. e., the point D is the interse
tion ofthe tangent to the 
ir
um
ir
le at the vertex A with the line BC). Thisshows the equivalen
e of (i) and (xx). For the other parts, it su�
es tonote that the only fa
tor that 
ould be zero in the squares of distan
esof the points in this part is always the same h̄− dk. �The following 
ompanion result has similar proof. This time the
ommon fa
tor is d+ h̄k.



ON THÉBAULT'S PROBLEM 3887 9Teorem 8. The following are equivalent: (i) Q = T , (ii) U = X, (iii)
Qo = A, (iv) To = A, (v) Uo = A, (vi) Xo = A, (vii) I = Jb, (viii)
Ia = Jc, (xi) Ib = Ja, (x) Ic = J , (xi) J = Ia, (xii) J = Ie, (xiii) J = Jc,(xiv) Ia = Ie, (xv) the lines IbJc and IbJe are perpendi
ular, (xvi)
Ie ∈ AD, (xvii) Jc ∈ AD, (xviii) the lines IeJc and AD are perpen-di
ular, (xix) the lines IbJa and AD are parallel, (xx) the lines IaJband AD are parallel and (xxi) the angle B is larger than the angle Cand the lines AD and AO are perpendi
ular.5. Identities for 
oordinatesSome of the basi
 algebrai
 identities among the produ
ts of theordinates of the 
enters of Thébault's 
ir
les are given in the next result.Teorem 9. The following relations hold:(9) ζ2yPyQ = ySyT , k2ζyPyQ = −yV yY , g2yUyX = f 2yV yY ,(10) k2ζyUyX = −ySyT , yPyS = yUyX , k4yPyS = yV yY ,(11) yQyT = yV yY , yQyT = k4yUyX , f 2

+yPyT = −ϕ2
−yV yX ,(12) g2

−yPyT = −ψ2
+yUyY , ϕ2

−yQyS = −f 2
+yUyY ,(13) ψ2

+yQyS = −g2
−yV yX , k

4f 2yPyU = −yTyY , f 2yQyV = −ySyX ,(14) f 2yPyV = −yTyX , f 2yQyU = −ySyY , k4g2yPyX = −yTyV ,(15) g2yQyY = −k4ySyU , g
2yPyY = −yTyU , g2yQyX = −ySyV .Proof. Sin
e yP = rϕ−ψ+

hk2 , yQ = −rf+g−
h

, yS = rζf+g−
hk2 and yT = −rζϕ−ψ+

h
,it is easy to verify the �rst relation in (9). All other identities are provedsimilarly by dire
t inspe
tion. �Sin
e the absolute values of yP , . . . , yY are the radii r1, . . . , r8 ofThébault's 
ir
les and the absolute value of the produ
t is the produ
tof the absolute values of the fa
tors, from the above relations, we havethe following results. The �rst identity in (17) is from [3, Corollary 5℄.Corollary 4. The radii of Thébault's 
ir
les satisfy:(16) r1 r3 = r5 r7, r2 r4 = r6 r8, k4 r5 r7 = r2 r4,(17) r1 r2

r2
=
r3 r4
r2
a

,
r5 r6
r2
b

=
r7 r8
r2
c

,
r5 r8
j2

=
r6 r7
j2
e

,
r2 r3
j2
b

=
r1 r4
j2
c

,(18) r1 r8
r2

=
r3 r6
r2
b

,
r4 r5
r2
a

=
r2 r7
r2
e

,
r2 r5
j2

=
r4 r7
j2c

,
r3 r8
j2a

=
r1 r6
j2e

.For the abs
ises many relations also hold. The following two arerather simple.



10 ZVONKO �ERINTeorem 10. The following relations hold:(19) xP xS xV xY = xQ xT xU xX ,(20) k4 xP xS xU xX = xQ xT xV xY ,Proof. The produ
ts on the left and on the right sides of the relation(19) have as the 
ommon value the square of r2f+ϕ−gz

hk
. The 
ommonvalue in the relation (20) is minus the square of r2f+ϕ−gz

h
. �We 
ontinue with the formulae that involve the radii of the in
ir
leand the ex
ir
les.Teorem 11. The following relations hold:

(21)
yS
ra

+
yU
rb

+
yX
rc

=
yP
r
, (22)

yT
ra

+
yV
rb

+
yY
rc

=
yQ
r
,

(23)
yT
jb

+
yP
jc

+
yX
je

=
yU
j
, (24)

yQ
jb

+
yS
jc

+
yV
je

=
yY
j
,

(25)
yU
ra

+
yS
rb

+
yX
re

=
yP
r
, (26)

yT
ra

+
yV
rb

+
yQ
re

=
yY
r
,

(27)
yY
ja

+
yT
jc

+
yV
je

=
yQ
j
, (28)

yS
ja

+
yX
jc

+
yP
je

=
yU
j
,(29) yT yS

ra
+
yV yU
rb

+
yY yX
rc

=
yQ yP
r

,(30) yQ yS
jb

+
yT yP
jc

+
yV yX
je

=
yY yU
j

,(31) yT yU
ra

+
yV yS

rb
+
yQ yX

re
=
yY yP

r
,(32) yY yS

ja
+
yT yX

jc
+
yV yP

je
=
yQ yU

j
.Proof. Sin
e yS

ra
= f+g−

hk2 , yU

rb
= ϕ−g−

zk2 and yX

rc
= f+ψ+

zk2 , we get
yS
ra

+
yU
rb

+
yX
rc

=
ϕ−ψ+

hk2
=
yP
r
.This proves the relation (21). The other identities have similar proofs.

�It is interesting to note that any of the formulae (29)-(32) remainstrue if ordinates are repla
ed 
onsistently by abs
ises. For example,the analogues of the formula (29) with abs
ises are the following threerelations:(33) xT yS
ra

+
xV yU
rb

+
xY yX
rc

=
xQ yP
r

,(34) yT xS
ra

+
yV xU
rb

+
yY xX
rc

=
yQ xP
r

,



ON THÉBAULT'S PROBLEM 3887 11(35) xT xS
ra

+
xV xU
rb

+
xY xX
rc

=
xQ xP
r

.Remark 1. The relations (21)�(28) hold also for the abs
ises in pla
eof the ordinates.Corollary 5. The radii of Thébault's 
ir
les satisfy:(36) r3 r4
ra

− r1 r2
r

=
r5 r6
rb

+
r7 r8
rc

,(37) r6 r7
je

+
r5 r8
j

=
r2 r3
jb

+
r1 r4
jc

,(38) r4 r5
ra

− r1 r8
r

=
r3 r6
rb

+
r2 r7
re

,(39) r3 r8
ja

− r2 r5
j

=
r4 r7
jc

+
r1 r6
je

,and for the point D in the segment BC,(40) r1 + r2
r

+
r3 + r4
ra

=
r5 − r6
rb

+
r7 − r8
rc

,(41) r6 − r7
je

+
r5 − r8
j

=
r2 − r3
jb

+
r1 − r4
jc

,(42) r4 + r5
ra

+
r1 − r8

r
=
r2 + r7

re
− r3 + r6

rb
,(43) r3 + r8

ja
+
r2 + r5

j
=
r7 − r4

jc
+
r1 − r6

je
.Proof. The identity (36) is a 
onsequen
e of the relation (29). Theordinates of the 
enters of Thébault's 
ir
les are their radii up to asign. These signs depend on the position of the point D on the line

BC and are given in the next table.
D is in yP yQ yS yT yU yV yX yY

(−∞, B) - + - + + + + +
(B,C) + + - - - + + -

(C,+∞) + - + - + + + +Hen
e, from (29) we get (36) and from the sum of (21) and (22) weobtain (40). Of 
ourse, there are also the versions of (40) when D is in
(−∞, B) and when it is in (C,+∞). �Let us 
lose this group of identities with the following eight. Theproofs are very similar to the ones above.



12 ZVONKO �ERINTeorem 12. The following relations hold:(44) y2
S

ra
+
y2
U

rb
+
y2
X

rc
=
y2
P

r
+

4KR

k4
,(45) y2

T

ra
+
y2
V

rb
+
y2
Y

rc
=
y2
Q

r
+ 4k2KR,(46) y2

S

jb
+
y2
P

jc
+
y2
X

je
=
y2
U

j
+

4KR

k4
,(47) y2

Q

jb
+
y2
T

jc
+
y2
V

je
=
y2
Y

j
+ 4k2KR,(48) y2

U

ra
+
y2
S

rb
+
y2
P

re
=
y2
X

r
+

4KR

k4
,(49) y2

T

ra
+
y2
V

rb
+
y2
Q

rc
=
y2
Y

r
+ 4k2KR,(50) y2

S

ja
+
y2
X

jc
+
y2
P

je
=
y2
U

j
+

4KR

k4
,(51) y2

Y

ja
+
y2
T

jc
+
y2
V

je
=
y2
Q

j
+ 4k2KR.Remark 2. For the abs
ises in the identities (44)�(51), the last termsare 4KR

k2 and 4KR, respe
tively.In the next group of formulae we prove that the produ
ts of squaresof the Thébault's radii divided by fourth powers of the appropriateinradius or exradius also show 
onsiderable regularity.Teorem 13. The radii of Thébault's 
ir
les satisfy the identities:
r2
1r

2
2

r4
+
r2
7r

2
8

r4
c

=
r2
3r

2
4

r4
a

+
r2
5r

2
6

r4
b

,
r2
1r

2
2

r4
+
r2
5r

2
6

r4
b

=
r2
3r

2
4

r4
a

+
r2
7r

2
8

r4
c

,

r2
5r

2
8

j4
+
r2
2r

2
3

j4
b

=
r2
1r

2
4

j4
c

+
r2
6r

2
7

j4
e

,
r2
5r

2
8

j4
+
r2
1r

2
4

j4
c

=
r2
2r

2
3

j4
b

+
r2
6r

2
7

j4
e

,

r2
1r

2
8

r4
+
r2
2r

2
7

r4
e

=
r2
4r

2
5

r4
a

+
r2
3r

2
6

r4
b

,
r2
1r

2
8

r4
+
r2
4r

2
5

r4
a

=
r2
2r

2
7

r4
e

+
r2
3r

2
6

r4
b

,

r2
2r

2
5

j4
+
r2
1r

2
6

j4e
=
r2
3r

2
8

j4a
+
r2
4r

2
7

j4c
,

r2
2r

2
5

j4
+
r2
3r

2
8

j4a
=
r2
1r

2
6

j4e
+
r2
4r

2
7

j4c
.



ON THÉBAULT'S PROBLEM 3887 13Proof. Let f 2+ = f 4 + 1 and g2+ = g4 + 1. One 
an easily 
he
k thatboth sides in the �rst relation have the value
f 2

+ g
2
− ϕ

2
− ψ

2
+(f 2+ g2+ − 4 ζ f− g− + 12 ζ2)

(h k z)4
.The other identities in this group have analogous proofs. �In the next result we show that a 
ertain relationship among theradii of Thébault's 
ir
les 
an hold only when either the point D or thetriangle ABC are rather spe
ial.Teorem 14. (i) The radii of the Thébault's 
ir
les satisfy the identity

r2
1r

2
2

r4
+
r2
3r

2
4

r4
a

=
r2
5r

2
6

r4
b

+
r2
7r

2
8

r4
cif and only if either D = B, D = C or the angle A is right.(ii) The radii of the Thébault's 
ir
les satisfy the identity

r2
5r

2
8

j4
+
r2
6r

2
7

j4
e

=
r2
2r

2
3

j4
b

+
r2
1r

2
4

j4
cif and only if the angle A is right.(iii) If the lines AD and AO are not perpendi
ular (see Theorems 7and 8), then the radii of the Thébault's 
ir
les satisfy the identity

r2
1r

2
8

r4
+
r2
3r

2
6

r4
b

=
r2
2r

2
7

r4
e

+
r2
4r

2
5

r4
aif and only if either D = C or the point D is on the line AO.Similarly, they satisfy the identity

r2
2r

2
5

j4
+
r2
4r

2
7

j4c
=
r2
1r

2
6

j4e
+
r2
3r

2
8

j4aif and only if either D = B or the point D is on the line AO.Proof. (i) This follows immediately from the identity
(

r2
5r

2
6

r4
b

+
r2
7r

2
8

r4
c

)

−
(

r2
1r

2
2

r4
+
r2
3r

2
4

r4
a

)

=
2f+g+f 2

+g
2
−ϕ

2
−ψ

2
+(h2 − z2)

(hkz)4
.The other 
ases have similar proofs. �Here is an interesting inequality.Teorem 15. The ordinates of the 
enters of Thébault's 
ir
les satisfythe inequality:(52) (yS + yT )2

ra
+

(yU + yV )2

rb
+

(yX + yY )2

rc
≥ 16R+

(yP + yQ)2

r
.The equality holds if and only if the line AD is perpendi
ular to theline BC. The same holds also for the abs
ises in pla
e of the ordinates.



14 ZVONKO �ERINProof. Sin
e (yS+yT )2

ra
+ (yU +yV )2

rb
+ (yX+yY )2

rc
− (yP +yQ)2

r
= 4RK2(k2L+1)

k4 andthe fun
tion k 7→ K2(k2L+1)
k4 has the minimum 16 for k = 1, we 
on
ludethat the inequality (52) holds.It remains to note that the line AD is perpendi
ular to the line BCif and only if k = 1. �Of 
ourse, there are three similar inequalities involving the inradiiand the exradii of the triangles BCE, ABE and ACE. Also, theseinequalities have the usual interpretations in terms of the radii of theThébault's 
ir
les leading to the three versions depending on the posi-tion of the point D on the line BC.6. Equal radii r1 and r2In this se
tion we shall explore when the pair r1 and r2 of the radiiof the �rst and the se
ond Thébault's 
ir
les are equal. In fa
t, theproblem is to des
ribe the positions of the point D on the line BCwhen r1 = r2 holds. It turns out that the equality happens for threevalues of the parameter k. The simpler value 
orresponds to the 
asewhen r1 = r2 = r (see Theorem 16) and the two more 
ompli
ated val-ues to the 
ase r1 = r2 and either r1 6= r or r2 6= r (see Theorem 17).In ea
h situation many other geometri
 
onsequen
es hold. Some are
hara
teristi
 for the equality of r1 and r2 (with r).Let kI′a =

√
d2+4−d

2
be the positive root of the polynomial pI′a = L+ dk.Let the perpendi
ular bise
tor of the segment BC interse
t the 
ir-
um
ir
le o in the points Z1 and Z2 su
h that Z1 is above and Z2 isbelow the line BC. Note that Z1 is the midpoint of IbIc and the 
ir
le

kIbIc goes through B, C and Ja. Similarly, Z2 is the midpoint of JbJcand the 
ir
le kJbJc
goes through B, C and Ia.Teorem 16. The following statements are equivalent: (i) the point Dis the orthogonal proje
tion I ′a of the ex
enter Ia onto the line BC, (ii)the parameter k is kI′a, (iii) the lines PQ and BC are parallel, (iv) thelines PoQo and BC are parallel, (v) the line AD bise
ts the segment

PQ, (vi) the segments PQ and P ′′Q′′ share the midpoints, (vii) the linejoining the in
enter I and the midpoint of the segment BC is parallel tothe line AD, (viii) the line joining the 
ir
um
enter O and the midpointof either the segment P ′Q′ or P ′′Q′′ is perpendi
ular to the line PQ,(ix) the midpoint of the segment BC has the same power with respe
tto the 
ir
les k1 and k2, (x) the points Po and Qo are equidistant fromthe point Z1 and/or Z2 and (xi) the equalities r1 = r and r2 = r hold.Proof. Sin
e the point I ′a has the 
oordinates (rg, 0), we get that |DI ′a|is equal rζ |pI′a
|

hk
. Hen
e, (i) and (ii) are equivalent.



ON THÉBAULT'S PROBLEM 3887 15The lines PQ and BC are parallel if and only if the points P and Qhave equal ordinates. Sin
e yP − yQ =
rKpI′a

hk2 , we see that (ii) and (iii)are equivalent.Similarly, sin
e yPo
− yQo

=
2rhKf+g+pI′a

P1Q1
, it follows that (ii) and (iv)are equivalent.The midpoint of the segment PQ has the 
oordinates r

2k
(L+ 2fk,

− p4
hk

), where p4 is de�ned bellow. It is on the line AD whose equationis 2kx+ Ly = 2rgf+ϕ−

h
if and only if r2ζK2pI′a

2h2k3 = 0. Hen
e, (ii) and (v)are equivalent.The orthogonal proje
tions P ′′ and Q′′ of P and Q onto the line
AD have rϕ−

hkK

(

hk2 + 2gk + h̄, 2ψ+k
) and rf+

hK

(

h̄k2 − 2gk + h,−2g−
) as
oordinates. It follows that the midpoints of the segments PQ and

P ′′Q′′ are rK|pI′a
|

2hk2 apart. Therefore, (ii) and (vi) are equivalent.The line joining the in
enter I and the midpoint of the segment BChas the equation 2x− dy = rz. It will be parallel to the line AD if andonly if r2ζpI′a

hk
= 0. This shows the equivalen
e of (ii) and (vii).The line PQ has the equation pI′a x+ hk y = r f+ ϕ−. The line join-ing the 
ir
um
enter O and the midpoint of the segment P ′Q′ has theequation 2(h2 − z2)k y − 4 h pI′a y = r(L+ 2 f k)(h2 − z2). They will beperpendi
ular if and only if r2K f+ g+ pI′a

4h2 k2 = 0. The line joining O andthe midpoint of the segment P ′′Q′′ is more 
ompli
ated but it will beperpendi
ular to the line PQ if and only if the same 
ondition holds.This shows the equivalen
e of (ii) and (viii).The power w(Ag, k2) of the midpoint Ag of the segment BC withrespe
t to the 
ir
le k2 is |AgQ|2 − r2
2 or r2(d+2k)2

4
. Similarly, w(Ag, k1) is

r2(dk−2)2

4k2 . Their di�eren
e is r2KpI′a

k2 . Hen
e, (ix) and (ii) are equivalent.The di�eren
es of squares |QZ1|2 − |PZ1|2 and |PZ2|2 − |QZ2|2 ofdistan
es are equal r2K (f+)2 (g+)2 pI′a

[(h2+d2)k2−4 d k+4](4 k2+4 d k+h2+d2)
. It follows that (x)and (ii) are equivalent.Finally, sin
e r2

1 − r2 =
r2MpI′a

h2k4 and r2
2 − r2 =

r2NpI′a

h2 and the fa
tors
M = (2ζ − 1)k2 + dk − 1 and N = k2 + dk − 2ζ + 1 are not both zeroat any real number k, we 
on
lude that (ii) and (xi) are equivalent. �Let k± =

√
2N±±M−d

4
be the positive roots of the quarti
 polynomial

p4 = L(L+ dk) − 2hk2, whereM =
√
d2 + 8h andN± = d2 ∓ dM+4h̄.Teorem 17. The following are equivalent: (i) the parameter k is either

k+ or k−, (ii) the lines PQ and AD are parallel, (iii) the line PoQobise
ts the segment P ′Q′, (iv) the line PQ bise
ts the segment P ′Q′,(v) the segments PQ and P ′Q′ share the midpoints and (vi) the lines
AD and DIa are perpendi
ular.



16 ZVONKO �ERINProof. Sin
e pI′ax+ hky = rf+ϕ− and 2kx+ Ly = 2rgf+ϕ−

h
are the equa-tions of the lines PQ and AD, they will be parallel if and only if p4 = 0.This shows that (i) and (ii) are equivalent.The orthogonal proje
tions P ′ and Q′ of the 
enters P and Q ontothe line BC (the x-axis) have the abs
ises rϕ−

k
and rf+. It follows thatthe midpoint of the segment P ′Q′ lies on the line PoQo (i. e., on theline 2hpI′ax− [2dL+ (z2 − h̄2 − 4)k]y = 2rhf+ϕ−), provided

pI′a

(

rL

2k
+ rf

)

− rf+ϕ− =
rp4

2k
= 0.Hen
e, (i) and (iii) are equivalent.This same 
al
ulation applies also in the proof that (i) and (iv) areequivalent be
ause the line PQ has the equation pI′ax+ hky = rf+ϕ−.The midpoints of PQ and P ′Q′ are r|p4|

2hk2 apart. We easily 
on
ludethat (i) and (v) are equivalent.Finally, sin
e hkx− pI′ay = rf+gϕ− is the equation of the line DIa,we get that this line is perpendi
ular with the line AD if and only if
2hk2 − pI′aL = −p4 = 0. Hen
e, the �rst and the last statements areequivalent. �Note that the 
ondition (ii) in Theorem 17 implies r1 = r2. Hen
e,the 
orre
t version of Theorem 4 in [27℄ is the following result.Corollary 6. The following are equivalent: (i) the equality r1 = r2holds, (ii) the parameter k is either kI′a, k+ or k−, (iii) the points Pand Q are at equal distan
e from the midpoint of P ′Q′ and/or P ′′Q′′.Proof. Sin
e r1 = |yP | and r2 = |yQ|, it follows that r1 = r2 if and only if
y2
P − y2

Q =
r2KpI′a

p4

h2k4 = 0. Let M ′ and M ′′ be the midpoints of P ′Q′ and
P ′′Q′′. Then |QM ′|2 − |PM ′|2 = |QM ′′|2 − |PM ′′|2 =

r2KpI′a
p4

h2k4 . Hen
e,our 
laim follows from Theorems 16 and 17 be
ause the parameter k isa positive real number. �7. Equal radii r3 and r4In the next six theorems we state the 
ompanion results with theprevious two theorems for the remaining three pairs (S, T ), (U, V ) and
(X, Y ) of related 
enters of Thébault's 
ir
les. The situation for thesethree pairs is a little bit di�erent be
ause the two more 
ompli
atedvalues of the parameter k exist only when the angles B and C satisfy
ertain 
onditions.In this se
tion we 
onsider the pair r3 and r4 of the radii of the thirdand the fourth Thébault's 
ir
les. We will omit the proofs be
ausethey are very similar to the 
orresponding proofs of the previous twotheorems.



ON THÉBAULT'S PROBLEM 3887 17Let kI′ =

√
d2+4ζ2−d

2ζ
be the positive root of the quadrati
 polynomial

pI′ = ζL+ dk.Teorem 18. The following statements are equivalent: (i) the point Dis the orthogonal proje
tion I ′ of the in
enter I onto the line BC, (ii)the parameter k is kI′, (iii) the lines ST and BC are parallel, (iv) thelines SoTo and BC are parallel, (v) the line AD bise
ts the segment
ST , (vi) the segments ST and S ′′T ′′ share the midpoints, (vii) the linejoining the ex
enter Ia and the midpoint of the segment BC is parallelto the line AD and (viii) the equalities r3 = ra and r4 = ra are bothtrue.Let d2 − 8hζ ≥ 0. Let m± =

√
2N±±M−d

4ζ
be the positive roots ofthe quarti
 polynomial q4 = L(ζL+ dk), where M and N± are theexpressions √

d2 − 8hζ and d2 ∓ dM + 4ζ2.Teorem 19. For a triangle ABC whose angles satisfy the inequality
cos(B − C) + 4(cos(B + C) + cosB + cosC) ≤ −3, the following areequivalent: (i) the parameter k is either m+ or m−, (ii) the lines STand AD are parallel, (iii) the line SoTo bise
ts the segment S ′T ′, (iv)the segments ST and S ′T ′ share the midpoints and (v) the lines ADand DI are perpendi
ular.Note that the 
ondition (ii) in Theorem 19 implies r3 = r4. Also,when both angles B and C are a
ute, then the polynomial q4 is alwayspositive be
ause it is the sum (2ζL+dk)2

4ζ
+

(8hζ−d2)k2

4ζ
with the se
ondterm positive. Indeed, the repla
ement of f and g in 8hζ − d2 with

1 + ϕ and 1 + ψ for ϕ, ψ > 0 gives a positive polynomial
8ϕ2ψ2 + 16ϕ2ψ + 16ϕψ2 + 7ϕ2 + 26ϕψ + 7ψ2 + 8ϕ+ 8ψ.8. Equal radii r5 and r6In this se
tion we 
onsider similarly the pair r5 and r6 of the radii ofthe �fth and the sixth Thébault's 
ir
les.Let kI′c =

√
h̄2+4g2−h̄

2 g
be the positive root of the quadrati
 polynomial

pI′c = gL+ h̄k.Teorem 20. The following statements are equivalent: (i) the point Dis the orthogonal proje
tion I ′c of the ex
enter Ic onto the line BC, (ii)the parameter k is kI′c, (iii) the lines UV and BC are parallel, (iv) thelines UoVo and BC are parallel, (v) the midpoint of the segment UVis on the perpendi
ular bise
tor of the segment BC, (vi) the segments
UV and U ′′V ′′ share the midpoints, (vii) the line joining the ex
enter
Ib and the midpoint of the segment BC is parallel to the line AD and(viii) the equalities r5 = rb and r6 = rb are both true.



18 ZVONKO �ERINLet h̄2 − 8gz ≥ 0. Let n± =

√
2N∓±M−h̄

4 g
be the positive roots of thequarti
 polynomial s4 = L(gL+ h̄k + 2z) + 2z, where M and N± are

√

h̄2 − 8gz and h2 + 4g2 ± h̄M .Teorem 21. If in a triangle ABC its angles satisfy the inequality
cos(B − C) + 4(cos(B + C) + cosB − cosC) ≥ 3,then the following are equivalent: (i) the parameter k is either n+ or

n−, (ii) the lines UV and AD are parallel, (iii) the line UoVo bise
tsthe segment U ′V ′, (iv) the segments UV and U ′V ′ share the midpointsand (v) the lines AD and DIc are perpendi
ular.Note that the 
ondition (ii) in Theorem 20 implies r5 = r6.9. Equal radii r7 and r8In this se
tion we 
onsider similarly the pair r7 and r8 of the radii ofthe seventh and the last eighth Thébault's 
ir
les.Let kI′
b
=

h̄+
√
h̄2+4f2

2 f
be the positive root of the quadrati
 polynomial

pI′
b
= fL− h̄k.Teorem 22. The following statements are equivalent: (i) the point Dis the orthogonal proje
tion I ′b of the ex
enter Ib onto the line BC, (ii)the parameter k is kI′

b
, (iii) the lines XY and BC are parallel, (iv) thelines XoYo and BC are parallel, (v) the midpoint of the segment XYis on the perpendi
ular bise
tor of the segment BC, (vi) the segments

XY and X ′′Y ′′ share the midpoints, (vii) the line joining the ex
enter
Ic and the midpoint of the segment BC is parallel to the line AD and(viii) the equalities r7 = rc and r8 = rc are both true.Let h̄2 − 8fz ≥ 0. Let p± =

√
2N±±M+h̄

4 f
be the positive roots of thequarti
 polynomial t4 = L(fL− h̄k + 2z) + 2z, where M and N± are

√

h̄2 − 8fz and h2 + 4f 2 ± h̄M .Teorem 23. If in a triangle ABC its angles satisfy the inequality
cos(B − C) + 4(cos(B + C) − cosB + cosC) ≥ 3,then the following are equivalent: (i) the parameter k is either p+ or

p−, (ii) the lines XY and AD are parallel, (iii) the line XoYo bise
tsthe segment X ′Y ′, (iv) the segments XY and X ′Y ′ share the midpointsand (v) the lines AD and DIb are perpendi
ular.Note that the 
ondition (ii) in the above Theorem 23 implies r7 = r8.Of 
ourse, we 
an also study the possibilities for equalities of ri and
rj for other 
hoi
es of i and j in the set {1, . . . , 8}. Let us mention onlythat the equalities r1 = r7 and r2 = r8 are impossible and that r3 = r6if and only if D = C and that r4 = r8 if and only if D = B.



ON THÉBAULT'S PROBLEM 3887 1910. When Thébault's 
ir
les tou
h?The following two theorems explore when will some Thébault's 
ir
lestou
h ea
h other. We shall prove only the �rst theorem and omit theproof of the se
ond theorem be
ause it is analogous.Let k0 be the positive root (
√
d2 + h̄2 − d)/h̄ of the polynomial p2 =

h̄L+ 2dk. Let w denote the perpendi
ular bise
tor of the side BC inthe triangle ABC .Teorem 24. For the 
ir
les k1, k2, k3 and k4 the following statementsare equivalent: (i) I ∈ k1, (ii) I ∈ k2, (iii) k1 ∩ k2 = I, (iv) Ia ∈ k3,(v) Ia ∈ k4, (vi) k3 ∩ k4 = Ia, (vii) r2 = k2 r1, (viii) r4 = k2 r3, (ix)
|JaJb| = |JaJc|, (x) |OJb| = |OJc|, (xi) J ∈ w, (xii) Ja ∈ w, (xiii) thelines BC and JbJc are parallel, (xiv) the lines PQ and ST are paral-lel, (xv) the lines PQ and AD are perpendi
ular, (xvi) the lines STand AD are perpendi
ular, (xvii) the triangles PTD and SQD havethe same area, (xviii) either the point D, the point I or the point Iahas the same power with respe
t to the 
ir
les k1 and k2, (xix) eitherthe point D, the point I or the point Ia has the same power with re-spe
t to the 
ir
les k3 and k4, (xx) the point D is the interse
tion ofthe lines AI and BC, (xxi) D(I, Ie, Ia, Ib, Ja, Je, J, Jc) = 0, (xxii) thelines IaJa and IaJe are perpendi
ular, (xxiii) |P ′P ′′Q′Q′′| = 0, (xxiv)
|S ′S ′′T ′T ′′| = 0, (xxv) the point D is in the segment BC and the sumof radii of the in
ir
les and the ex
ir
les of the triangles ABC, ABE,
BCE and ACE is the largest possible and (xxvi) the parameter k isequal k0.Proof. We shall argue that ea
h statement (i)�(xxv) is equivalent to(xxvi).Sin
e I ∈ k1 is equivalent with |PI| = |yP | and y2

P − |PI|2 = r2p2
hk2 , wesee that (i) is equivalent to (xxvi). Similarly, from |QI|2 − y2

Q = r2p2
h
,

|SIa|2 − y2
S = r2ζ2p2

hk2 and y2
T − |TIa|2 = r2ζ2p2

h
it follows that (ii), (iv)and (v) are equivalent with (xxvi). It is obvious now that the same istrue for (iii) and (vi).The identities k4y2

P − y2
Q = r2Kp2

h
and y2

T − k4y2
S = r2ζ2Kp2

h
imply thisfor (vii) and (viii).Sin
e |JaJb|2 − |JaJc|2 = r2f+g+p2

hK
and |OJb|2 − |OJc|2 = r2f+g+p2

2hK
, thesame 
on
lusion holds also for (ix) and (x).The perpendi
ular bise
tor of the segment BC has the equation

2x = rz. Sin
e rz − 2xJa
= 2xJ − rz = rzp2

hK
, we in
luded (xi) and (xii)too.The line JbJc is parallel to the x-axis BC if and only if the 
enters

Jb and Jc have equal ordinates. Sin
e yJc
− yJb

= rp2
K
, it follows that(xiii) and (xxvi) are equivalent.Sin
e (L+ dk)x+ hky = rf+ϕ− and (ζL+ dk)x− hky = rg2f+ϕ−are the equations of the lines PQ and ST , they are parallel provided
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(ζL+ dk) + (L+ dk) = h̄L+ 2dk = p2 = 0. In other words, (xiv) and(xxvi) are equivalent.Similarly, sin
e 2kx+ hky = 2rgf+ϕ−

h
is the equation of the line AD,it follows that −L+dk

hk
= − 1

− 2k
L

is the 
ondition for the lines PQ and ADto be perpendi
ular. However, this identity redu
es to p2 = 0. Hen
e,(xv) and (xxvi) are equivalent. The proof for the statement (xvi) isanalogous.Using the well-known formula(53) |ABC| =

∣

∣

∣

∣

∣

∣

xA yA 1
xB yB 1
xC yC 1

∣

∣

∣

∣

∣

∣for the (oriented) area of any triangleABC, we get that |PTD| − |SQD|is r2K2ζp2
2hk3 . Therefore, (xvii) and (xxi) are equivalent. Noti
e that

|PTA| = |SQA| if and only if |AB| = |AC|.Sin
e w(D, k1) − w(D, k2) = r2Kp2
hk2 , we 
on
lude that (xviii) and (xxvi)are equivalent for the point D. Similar arguments holds for the points

I and Ia and also for the three parts of the statement (xix).Observe that the di�eren
e of the abs
ises of the point Dk and theinterse
tion (

r f+ g

ζ+1
, 0

) of the lines AI and BC is r ζ p2
(ζ2−1)k

. Hen
e, (xx)and (xxvi) are equivalent.Sin
e D(I, Ie, Ia, Ib, Ja, Je, J, Jc) = r4(f+)3 g+ g2 p2
h3K

, we infer that (xxi)is equivalent with (xxvi).The lines IaJa and IaJe have the equations h(M x+N y) = r g ϕ− FandM0 x+N0 y = r g f+ z(h̄− d k), whereN0 = f g+ k2 + d z k − g f+,
M0 = g2 f+ k2 + h̄ z k + f 2 g+,M = f 2 g+ k2 + d h k − g2 f+, N = g f+

k2 − (2 ζ2+f 2+g2)k + f g+ and F = [z3 + g(h2 − z2)]k + h3 + h2 − z2.These lines are perpendi
ular if and only if MM0 +N N0 = 0. Sin
e
MM0 +N N0 = f+ g+ ζ K p2, we 
on
lude that (xxii) and (xxvi) areequivalent.Sin
e |P ′P ′′Q′Q′′| = −r2 p2

hk
and |S ′S ′′T ′T ′′| = r2 ζ2 p2

hk
, we see that theparts (xxiii) and (xxiv) are equivalent with (xxvi).Finally, when D ∈ BC then it is possible to get the radii of thein
ir
les and the ex
ir
les of the triangles ABC, ABE, BCE and ACEand 
he
k that their sum is a fun
tion of k that has the maximal valuepre
isely when k = k0. Hen
e, (xxv) and (xxvi) are also equivalent. �Let ABC be a triangle su
h that |AB| 6= |AC|. Then d 6= 0. Let m0be the positive root (h̄ + sgn(d)

√
d2 + h̄2)/d of the polynomial s2 =

dL− 2h̄k.Teorem 25. For the 
ir
les k5, k6, k7 and k8 in a triangle ABC with
|AB| 6= |AC|, the following statements are equivalent: (i) Ib ∈ k5, (ii)
Ib ∈ k6, (iii) k5 ∩ k6 = Ib, (iv) Ic ∈ k7, (v) Ic ∈ k8, (iv) k7 ∩ k8 = Ic,



ON THÉBAULT'S PROBLEM 3887 21(vii) r6 = k2 r5, (viii) r8 = k2 r7, (ix) the lines UV and AI are par-allel, (x) the lines XY and AI are parallel, (xi) the lines UV and
XY are parallel, (xii) the lines UV and AD are perpendi
ular, (xiii)the lines XY and AD are perpendi
ular, (xvi) the triangles UY Dand XVD have the same area, (xv) either the point D, the point
Ib or the point Ic has the same power with respe
t to the 
ir
les k5and k6, (xvi) either the point D, the point Ib or the point Ic hasthe same power with respe
t to the 
ir
les k7 and k8, (xvii) Jb ∈ w,(xviii) Jc ∈ w, (xix) the point D is the interse
tion of the lines IbIc and
BC, (xx) D(I, Ie, Ia, Ib, Je, Ja, Jc, J) = 0, (xxi) |U ′U ′′V ′V ′′| = 0, (xxii)
|X ′X ′′Y ′Y ′′| = 0 and (xxiii) the parameter k is m0.The following theorem explains the 
onditions for other pairs ofThébault's 
ir
les to tou
h. We give a table that uses short notation forsome statements about the form of the triangle and about the positionof the point D. The proofs are omitted be
ause they are similar to theproof of Theorem 24. For example, k1 and k3 will tou
h if and onlyif |PS|2 = (yP ± yS)

2. When we fa
tor the di�eren
e of the left andthe right sides of these identities we get the three possibilities from thetable.Let Ar, Br and Cr denote the re�e
tions of the verti
es A, B and Cin the sidelines BC, CA and AB. The triangle ArBrCr is 
alled thethree-images triangle.Let q1 and q3 denote the following polynomials in k:
(d2h2 − 4ζ2)k4 − 2dh̄(ζ2 + 1)k3 +M k2 + 4dh̄ζ k − 4ζ2,

(z2h̄2 − 4ζ2)k4 + 2dh̄(f 2 + g2)k3 +N k2 + 4dh̄ζ k − 4ζ2,where M = ζ4 + 6ζ2 + 4f−g−ζ + 1 and N = f 4 + g4 + 6ζ2 + 4f−g−ζ .Let q2 = k4 q1
(

− 1
k

) and q4 = k4 q3
(

− 1
k

). Note that q1 and q2 have atmost three positive real roots while q3 and q4 have at most one positivereal root.Let b, b+, b−, B+, B−, C+, C−, DB, DC , tA, tB, tC , rB, rC , q1, q2,
q3 and q4 be the following statements "B = C", "B > C", "B < C","B > 90◦", "B < 90◦", "C > 90◦", "C < 90◦", "D = B", "D = C","the lines AD and AO are perpendi
ular", "the lines AD and BOare perpendi
ular", "the lines AD and CO are perpendi
ular", "thelines AD and CBr are parallel", "the lines AD and BCr are parallel"and "k is the positive real root of the polynomial qj" (for j = 1, 2, 3, 4).The pairs (k1, k2), (k3, k4) and (k5, k6), (k7, k8) have been 
overed byTheorems 24 and 25, respe
tively.Teorem 26. The Table 1 lists the ne
essary and su�
ient 
onditionsfor pairs among the 
ir
les k1,. . . , k8 to tou
h ea
h other. For example,
k1 and k3 tou
h if and only if either D = C or B < C and the lines ADand AO are perpendi
ular or the parameter k has additional at mostthree di�erent values (the positive real roots of the polynomial q1).
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k2 k3 k4 k5 k6 k7 k8

k1
Th
24

DCb−tAq1

DB
DBC+rB

b−tA B−rC

DBb−tAtC
k2 DC

b+tA
q2

b+tAtB C−rB b+tA b+rC

k3
Th
24

DC

B−rC

b−tA
tC

C+rB
DC

b−tA

k4
DB

b+tA
B+rC

b+tA
tB

DB

C−rB

k5
Th
25

b+tA
q3

b
DB

DC

k6 b
b−tA
q4

k7
Th
25Table 1. Conditions for Thébault's 
ir
les to tou
hIt would be interesting to get a purely geometri
 des
ription of thepositions of the point D whi
h 
orrespond to the positive real roots ofthe polynomials q1,. . . , q4.11. Thébault's 
enters on linesThe following theorem explains when the 
enters of Thébault's 
ir
leslie on the perpendi
ular bise
tor w of the segment BC.Teorem 27. (i) The 
enter P is on the line w if and only if the angle

C is larger than the angle B, the relation 3b 6= a+ c among the lengthsof sides holds and D is the a+b−3 c
3 b−a−c-point of the segment BC.(ii) The 
enter Q is on w if and only if B > C, the relation 3b 6= a+ cholds and D is the a+b−3 c

3 b−a−c-point of BC.(iii) The 
enter S is on w if and only if B > C and D is the b−a−3 c
a−c+3 b

-point of BC.(iv) The 
enter T is on w if and only if C > B and D is the b−a−3 c
a−c+3 b

-point of BC.(v) The 
enter U is on w if and only if D is the b−a+3 c
a+c+3 b

-point of BC.(vi) The 
enter Y is on w if and only if D is the a+b+3 c
c−a+3 b

-point of
BC.(vii) The 
enters V and X 
an never be on w.Proof. (i) The point P is on the line w if and only if

|PB|2 − |PC|2 =
r2z[dk − 2]

k
= 0.



ON THÉBAULT'S PROBLEM 3887 23The unique positive real value of k when this 
an hold is 2
d
for f > g.The 
orresponding point D is the a+b−3c

3b−a−c -point of the segment BC,where a = rz, b = rfg+

h
and c = rgf+

h
.The other parts have similar proofs. �We 
an make a similar analysis when will the points P ,. . . , Y lie onthe line AO. Let us state only a simpler result for the 
enters P and Q.Moreover, we omit the dis
ussion of the values when the denominatorsare zero. For example, when B = C, then P is never on the line AO.Teorem 28. (i) The point P is on the line AO if and only if either

k = h̄
d
> 0 (see Theorem 7) or k = 2d

ζ2+d2−1
> 0.(ii) The point Q is on the line AO if and only if either k = − d

ζ+1
> 0(see Theorem 8) or k = 1−ζ2−d2

2d
> 0.Proof. (i) The line AO has the equation

h[(h̄2 − d2)x− 2dh̄y] − rgg−(f+)2 = 0.Substituting the 
oordinates of the point P for x and y, we get
r[dk − h̄][(ζ2 + d2 − 1)k − 2d]

k2
= 0.Hen
e, the point P is on the line AO if and only if k is either h̄

d
or

2d
ζ2+d2−1

.The part (ii) has a similar proof. �The following analogous result for the line joining the 
ir
um
enter
O with the Nagel point N is also stated in a similar partial form toavoid listing many sub
ases. Note that O = N i� B = C = 30◦.We de�ne uP = ζ−3

d(ζ−2)
, vP = 2 d

z2−ζ2−3
, uS = ζ(3−ζ)

d
, vS = 2 d ζ

(h−1)2+z2−1
,

uU = d g

f h−2 g
, vU = 2 g(ζ−3)

h2−d z−4
, uX = d f

g h−2 f
and vX = 2 f(ζ−3)

4+d z−h2 .Teorem 29. (i) The point P is on the line ON if and only if either
k = uP > 0 or k = vP > 0.(ii) The point Q is on the line ON if and only if either k = − 1

uP
> 0or k = − 1

vP
> 0.Proof. (i) The line ON has the equation

h[(ζ − 3)2 − d2)](x+ y) = r(f L− 2 g)(h2 + d2 − 2 g−).Substituting the 
oordinates of the point P for x and y, we get
r2[d(ζ − 2)k − ζ + 3][(ζ2 − z2 + 3)k + 2d]

4 h2 k2
= 0.Hen
e, the point P is on the line ON if and only if k is either uP or

vP .The part (ii) has a similar proof. �The identi
al theorems hold for the pairs (S, T ), (U, V ) and (X, Y ).



24 ZVONKO �ERIN12. Central points as Thébault's 
entersSin
e every Thébault's 
ir
le is tou
hing the 
ir
um
ir
le and thelines BC and AD, it is now obvious that the 
ir
um
enter O is neverthe 
enter of any Thébault's 
ir
les. The following result shows thatthe Nagel point N of the triangle ABC is also rarely the 
enter ofThébault's 
ir
les.Teorem 30. The point N is never equal to any of the points P , Q, U ,
V , X or Y . The equality N = S holds if and only if f > √

2, g = 2
fand k = 2f

f2−2
. The equality N = T holds if and only if f < √

2, g = 2
fand k = 2−f2

2f
.Proof. Sin
e the 
oordinates of N are r

h
(fg+ − 2g, 2), we 
an easily �ndthat |PN|2 = r2MN

h2k4 , whereM = (dk − 1)2 + k2 andN = (kζ − 2k)2 + 1are always positive. Hen
e, the 
enter P is never the Nagel point. Thearguments for the 
enters Q, U , V , X and Y are similar.Analogously, |SN|2 = r2MN
h2k4 , where M = ζ2 + k2 is always positiveand N = [d2 + (ζ − 2)2]k2 − 2dζk + ζ2 has the positive leading 
oe�-
ient d2 + (ζ − 2)2 and the dis
riminant −4ζ2(ζ − 2)2. Hen
e, when

g = 2
f
, then |SN|2 = r2(k2+4)[k(f2−2)−2f ]2

f2k4 . We infer that S will be N for
k = 2f

f2−2
and 
on
lude, in addition, that f > √

2 be
ause k is alwayspositive.The argument for the 
enter T is similar. �13. Spe
ial relationsThis se
tion begins with two results that illustrate how some spe
ialrelations among radii of Thébault's 
ir
les 
an hold only when the point
D has some parti
ular position.Teorem 31. (i) The relation r2(r2

3 + r2
4) = r2

a(r
2
1 + r2

2) holds if and onlyif either the lines AD and BC are perpendi
ular or the line AD goesthrough the in
enter I.(ii) The relation r2
b (r

2
7 + r2

8) = r2
c (r

2
5 + r2

6) holds if and only if eitherthe lines AD and BC are perpendi
ular or the line AD goes throughthe ex
enters Ib and Ic.Proof. We get this from relations r2(r2
3 + r2

4) − r2
a(r

2
1 + r2

2) = r4ζ2LK2p2
hk4and r2

c (r
2
5 + r2

6) − r2
b (r

2
7 + r2

8) = r4ζ2z3LK2s2
(hk)4

and the fa
t that for k = 1the point Dk is the orthogonal proje
tion of the vertex A onto thesideline BC. �Teorem 32. If the produ
t of the tangents of the angles B and C inthe triangle ABC is 2, then r2 r2
3 r

2
4 + r2

a r
2
1 r

2
2 = r2

b r
2
7 r

2
8 + r2

c r
2
5 r

2
6.
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e r2 r2
3 r

2
4 + r2

a r
2
1 r

2
2 − r2

b r
2
7 r

2
8 − r2

c r
2
5 r

2
6 
ontains as a fa
tor

ζ2 − z2 + 1 = 2(1+cos(B))(1+cos(C))(2 cos(B) cos(C)−sin(B) sin(C))

(sin(B))2(sin(C))2
, it is 
lear that

tan(B) tan(C) = 2 implies the above equality. �In the next result we use again the 
oordinates of the 
enters ofThébault's 
ir
les. For e, f ∈ {x, y}, let E(e, f) denote the identity
eP + eS − eU − eX = fQ + fT − fV − fY .Teorem 33. (i) The identities E(x, y) and E(x, x) are never true.(ii) The identities E(y, y) and E(y, x) hold if and only if the lines
AD and BC are perpendi
ular.Proof. (i) The di�eren
e of the left and the right sides of the identities
E(x, y) and E(x, x) are r f+ g+(k+1)(k2−k+1)

hk
and r f+ g+K

hk
. Sin
e thereis no positive value k for whi
h these quotients vanish, it follows thatthey are never true.(ii) The di�eren
e of the left and the right sides of the identities

E(y, x) and E(y, y) are r f+ g+(k−1)(k2+k+1)
h k2 and r f+ g+K L

hk2 . Sin
e 1 is aunique positive value of k for whi
h these quotients vanish, it followsthat they hold if and only if the lines AD and BC are perpendi
ular.
�14. Lines 
ontaining many in
enters and ex
entersFor any point M in the plane, let M ′ and M ′′ be the orthogonalproje
tions of M onto the lines BC and AD.We prove now that the lines P ′P ′′, Q′Q′′, S ′S ′′, T ′T ′′, U ′U ′′, V ′V ′′,

X ′X ′′ and Y ′Y ′′ ea
h 
ontains four among in
enters and/or ex
entersof the triangles ABC , BCE, ABE and ACE. In partial form this wasobserved in [23℄.Teorem 34. The following table gives the in
iden
e relations of lines
P ′P ′′,. . . , Y ′Y ′′ and the points I, Ia,. . . , Jc, Je.

P ′P ′′ I Jc I Je
Q′Q′′ I Jb Ie J

S ′S ′′ Ia Jb Ib Ja
T ′T ′′ Ia Jc Ia Jc
U ′U ′′ Ib J Ia J

V ′V ′′ Ib Ja Ib Je
X ′X ′′ Ic Ja Ie Jc
Y ′Y ′′ Ic J I JaProof. Sin
e the 
oordinates of P ′ and P ′′ are r

k
(ϕ−, 0) and r ϕ−

h kK
(h k2+

2 g k + h̄, 2ψ+ k
), the line P ′P ′′ has the equation k x− y = r ϕ−. It isnow easy to 
he
k that the 
oordinates of the points I, Jc, I and Jesatisfy this equation. The proofs for the other lines are analogous. �



26 ZVONKO �ERINFrom the above table it is possible to identify sixteen pairs of per-pendi
ular lines among P ′P ′′,. . . , Y ′Y ′′ that interse
t in the sixteen
enters I,. . . , Je. All other pairs of lines among P ′P ′′,. . . , Y ′Y ′′ arepairs of parallel lines.For example, from the �rst two rows we 
on
lude that the lines P ′P ′′and Q′Q′′ interse
t in I while from the �rst and the fourth row it followsthat the lines P ′P ′′ and T ′T ′′ interse
t in Jc. On the other hand, theline P ′P ′′ is parallel to the lines S ′S ′′, U ′U ′′ and X ′X ′′.15. Cir
les with diameters on lines BC and ADLet kMN and sMN denote the 
ir
le with the segment MN as adiameter and its 
enter. In other words, sMN is the midpoint of thesegment MN .Teorem 35. (i) The line AD is parallel with the lines sP ′Q′I, sS′T ′Ia,
sU ′V ′Ib and sX′Y ′Ic.(ii) The lines sP ′′Q′′I, sS′′T ′′Ia, sU ′′V ′′Ib and sX′′Y ′′Ic are parallel withthe line BC.(iii) The interse
tion of the 
ir
les kP ′Q′ and kP ′′Q′′ is the in
enter Iand another point K on the line PQ.(iv) The 
ir
les kS′T ′ and kS′′T ′′ interse
t in the point Ia and inanother point Ka on the line ST .(v) The interse
tion of the 
ir
les kU ′V ′ and kU ′′V ′′ is the ex
enter Iband another point Kb on the line PQ.(vi) The 
ir
les kX′Y ′ and kX′′Y ′′ interse
t in the point Ic and inanother point Kc on the line XY .The following relation holds:(54) |PK| · |SKa| · |V Kb| · |Y Kc| = |QK| · |TKa| · |UKb| · |XKc|.

|PK|2
r2

+ |SKa|2
r2a

+ |VKb|2
r2
b

+ |Y Kc|2
r2c

= |QK|2
r2

+ |TKa|2
r2a

+ |UKb|2
r2
b

+ |XKc|2
r2c

istrue if and only if either D = B, D = C or the lines AD and BC areperpendi
ular.Proof. (i) The midpointM of the segment P ′Q′ has the abs
issa r(L+2fk)
2kand the ordinate 0. Hen
e, the line IM is parallel to the line AD astheir equations are 2kx+ Ly = r(L+ 2fk) and 2kx+ Ly = 2rgf+ϕ−.The remaining three 
laims have similar proofs.(ii) The midpointM of the segment P ′′Q′′ has the abs
issa r(h̄L+2gf−k)

2hkand the ordinate r. Hen
e, the line IM is parallel to the line BC be-
ause the in
enter also has the ordinate r. The remaining three 
laimshave similar proofs.(iii) Sin
e P ′, Q′, P ′′ and Q′′ have the 
oordinates (xP , 0), (xQ, 0),
rϕ−

hkK
(hK + 2ψ+, 2kψ+) and rf+

hK

(

h̄K − 2ψ+,−2g−
), the se
ond inter-se
tion of the 
ir
les kP ′Q′ and kP ′′Q′′ (besides the in
enter I) is thepoint K with the 
oordinates rf+ϕ−

M
(N,−g−ψ+), where M and N are
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(L+ dk)2 + (hk)2 and L+ (fg+ − 2g)k. Its 
oordinates satisfy theequation of the line PQ (see the proof of Theorem 24).The proofs of (iv), (v) and (vi) are similar.The easiest way to 
he
k the identity (54) is to show that the squaresof its left and right sides are equal.Finally, the di�eren
e of the left and the right hand sides of the lastidentity is the quotient 2f+g+LKf+ϕ−g−ψ+

h2k4z2
. Sin
e the point D is B and

C for k equal 1
f
and g, we 
on
lude that the last 
laim is true. �Of 
ourse, the above theorem has three additional versions for thetriangles BCE, ABE and ACE. For example, the lines sP ′Y ′I, sS′V ′Ib,

sT ′U ′Ia and sQ′X′Ie are parallels of AD while the lines sP ′′Y ′′I, sS′′V ′′Ib,
sT ′′U ′′Ia and sQ′′X′′Ie are parallels of BC.16. Three (of twelve) asso
iated trianglesLet I, A, B and C be the midpoints of the segments sP ′Q′I, sS′T ′Ia,
sU ′V ′Ib and sX′Y ′Ic. Similarly, let I, A, B and C be the midpoints ofthe segments sP ′′Q′′I, sS′′T ′′Ia, sU ′′V ′′Ib and sX′′Y ′′Ic. Finally, let I, A,
B and C be the midpoints of the segments II, AA, BB and CC.The few basi
 relationships among these points are des
ribed in thefollowing result. Let sa, sb and sc denote b+c−a

2
, c+a−b

2
and a+b−c

2
.Teorem 36. (i) The point I is the sb

b
-point of the segment BB and the

sc

c
-point of the segment CC.(ii) The point I is the sa

a
-point of the segment AA.(iii) The vertex A is the sc

sb
-point of the segment BC.(iv) The vertex B is the sa

sc
-point of the segment CA.(v) The vertex C is the sb

sa
-point of the segment AB.(vi) The points I, A, B and C are the 3-points of the segments DI,

DIa, DIb and DIc.Proof. The points A, B and C have 
oordinates − rg

4k
(fL− 4k, 2fk),

rgz

4hk
(L+ 4fk, 2k) and rz

4hk
(fL− 4k, 2fk). Similarly, the verti
es A, Band C have as 
oordinates the pairs rg

4hk

(

fh̄L+ 2(h+ f−)k,−4fk
),

rg

4hk
(dL+ 2(h+ 2f 2)k, 4kz) and r

4hk
(2(fh− 2g)k − dfL, 4fkz). Also,the points I and I have the 
oordinates r

4hk

(

h̄L+ 2(2fζ − z)k, 4hk
)and r

4k
(L+ 4fk, 2k). Sin
e sb

b
is equal to h

g+
, it follows that the sb

b
-point of the segment BB is the point I. This proves the �rst 
laimin the part (i). All other 
laims in this theorem have similar routineveri�
ation. �Teorem 37. The areas of the triangles satisfy the following relations:

|ABC| = |ABC| = 1
2
|IaIbIc|, |ABC| = 9

16
|IaIbIc|.Proof. Using the formula (53), we �nd that |ABC| = |ABC| = r2f+ g+ζz

4h2

= 1
2
|IaIbIc|.



28 ZVONKO �ERINOn the other hand, sin
e the points A, B and C have the 
oordi-nates rg

4hk
(fL+ (f− + 3h)k,−3fk), rg

4hk

(

fL+ (4f− + 3h̄)k, 3kz
) and

r
4hk

(

ζL+ (fh̄− 4z)k, 3fkz
), we similarly �nd that |ABC| = 9r2f+ g+ζz

32h2 .
�17. Some orthologi
 trianglesFor any real number u 6= −1, let Qu, Tu, Vu and Yu denote the u-points of the segments QP , TS, V U and Y X. Let Uu, Xu, Su and Pudenote the u-points of the segments Y U , V X, QS and TP . Re
all thatthe pedal triangle of the point M (with respe
t to the triangle ABC)has the orthogonal proje
tions of M onto the lines BC, CA and ABas verti
es. Let Ψ and Ξ denote the pedal triangle of the in
enters Iand J with respe
t to the triangles ABC and EBC.Triangles ABC and DEF are orthologi
 provided the perpendi
ularsat the verti
es of ABC onto the sides EF , FD and DE of DEF are
on
urrent. The point of 
on
urren
e of these perpendi
ulars is denotedby oDEFABC . It is well-known that this relation is re�exive and symmetri
.Hen
e, the perpendi
ulars from verti
es of DEF onto the sides BC,

CA, and AB are 
on
urrent at the point oABCDEF . These points are 
alledthe �rst and the se
ond orthology 
enters of the (orthologi
) triangles
ABC and DEF . Repla
ing perpendi
ulars with parallels we get theanalogous notion of paralogi
 triangles and 
enters pDEFABC and pABCDEF .The quadruple {A,B,C,D} of points in the plane is ortho
entri
provided every point is the ortho
enter of the triangle on the remainingthree points.Let ∆u = TuVuYu, Γu = XuSuPu, Φ = IaIbIc and Θ = JaJbJc. Let usnoti
e that the ortho
entri
 quadruples {I, Ia, Ib, Ic} and {J, Ja, Jb, Jc}are asso
iated in the sense that the following holds:Teorem 38. For every point N in the plane,
|NI|2 + |NIa|2 + |NIb|2 + |NIc|2 = |NJ |2 + |NJa|2 + |NJb|2 + |NJc|2.Proof. LetN has the 
oordinates (p, q). Both sides of the above identityhave the value 4(p2 + q2 − rzp) + 2r(h2−z2)

h
q +

(

rf+g+

h

)2. �In a similar way one 
an show that the ortho
entri
 quadruples
{I, Ia, Ib, Ie} and {J, Ja, Jc, Je} are also asso
iated to {I, Ia, Ib, Ic}.Teorem 39. The triangle ∆u is orthologi
 with the triangle Φ. Thetriangle Γu is orthologi
 with the triangle Θ. Their areas satisfy

|∆u|
|Φ| =

|Γu|
|Θ| =

K2 u

k2(u+ 1)2
.
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all that the trianglesABC andXY Z are orthologi
 provided(55) ∣

∣

∣

∣

∣

∣

xA xX 1
xB xY 1
xC xZ 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

yA yX 1
yB yY 1
yC yZ 1

∣

∣

∣

∣

∣

∣

= 0.We 
an easily �nd the 
oordinates of the verti
es of the triangles ∆uand Φ, substitute them into the the above determinants and makesimpli�
ations to 
on
lude that the 
ondition (55) holds for this pairof triangles. The same is true also for the pair (Γu,Θ).Finally, using the formula (53), we get |∆u| = r2ζK2f+g+zu

2(hk)2(u+1)2
. Sin
e

|Φ| = r2ζf+g+z

2h2 , the quotient |∆u|
|Φ| is K2 u

k2(u+1)2
. For the pair (Γu,Θ) we getthe same value. �Let k2 6= 1. LetQv, Tv, Vv and Yv be the (−k2)-points of the segments

QP , TS, V U and Y X and let Uv, Xv, Sv and Pv be the (−k2)-pointsof the segments Y U , V X, QS and TP . Let ∆ = TvVvYv, Γ = XvSvPv.Teorem 40. The quadruples {Qv, Tv, Vv, Yv} and {Uv, Xv, Sv, Pv} areortho
entri
 and for every point N in the plane the sums
|NQv|2 + |NTv|2 + |NVv|2 + |NYv|2and |NUv|2 + |NXv|2 + |NSv|2 + |NPv|2 are equal. The triangles ∆and Γ have identi
al nine-point 
ir
les and are reversely similar to theextriangles Φ and Θ, respe
tively.Proof. The points Qv, Tv, Vv and Yv have the pairs r

hL
(h(fL− 2k),

h̄L+ 2dk
), rg

hL

(

h(L+ 2fk), f(h̄L+ 2dk)
), rg

hL
(z(fL− 2k), dL− h̄k

)and r
hL

(

−z(L + 2fk), f(2h̄k − dL)
) as the 
oordinates. The perpen-di
ular through the point Tv onto the line VvYv has the equation(56) (h̄L+ 2dk)x+ (dL− 2h̄k)y = rg(h̄L+2dk)(f−L−4fk)

hLand the perpendi
ular through the point Vv onto the line TvYv has theequation(57) (L+ 2fk)x+ (fL− 2k)y = 2rg(fL−2k)f+ϕ−

hL
.These perpendi
ulars interse
t in the point Qv. In other words, thelinear system of the equations (56) and (57) has the 
oordinates ofthe point Qv as a unique solution. It follows that {Qv, Tv, Vv, Yv} isan ortho
entri
 quadruple. We 
an similarly show that the quadruple

{Uv, Xv, Sv, Pv} is also ortho
entri
.LetN = (p, q). The both sums have the value 4[(p− a)2 + (q − b)2]+
3 r2K2 (f+)2(g+)2

4h2 L2 , where a = r(kz+h)(hk−z)
2hL

and b = r[(h̄−d)2 k2−(h̄+d)2]
4hL

.Sin
e Qv and Uv are the ortho
enters of the triangles ∆ and Γ, theeasiest way to see that they have the same 
enter of the nine-point
ir
les is to �nd their 
entroids G∆ and GΓ and verify that the 3-pointsof QvG∆ and UvGΓ 
oin
ide. Their radii are also equal (
he
k that this
3-point is equidistant from the midpoints of TvVv and XvSv).



30 ZVONKO �ERINThe triangles ∆ and Φ are orthologi
 by Theorem 39. Hen
e, inorder to see that they are reversely similar, by [2℄, it su�
es to 
he
kthat they are paralogi
. Re
all that the triangles ABC and XY Z areparalogi
 provided(58) ∣

∣

∣

∣

∣

∣

xA yX 1
xB yY 1
xC yZ 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

xX yA 1
xY yB 1
xZ xC 1

∣

∣

∣

∣

∣

∣

= 0.Now we substitute the 
oordinates of the verti
es of the triangles ∆ and
Φ into the above determinants and make simpli�
ations to 
on
ludethat the 
ondition (58) holds for this pair of triangles. The same istrue also for the pair (Γ,Θ). �Re
all that the Bevan point X40 of the triangle ABC [10℄ is oABCIaIbIc(the orthology 
enter of the triangles IaIbIc and ABC) and also the
ir
um
enter of IaIbIc. Its 
oordinates are r

2h

(

2gh, z2 − hh̄
).Corollary 7. The following are distan
es among the orthology andparalogy 
enters of the triangles ∆, Γ, Φ, Ψ, Θ and Ξ.

|oΦ
∆ p

Φ
∆| = |oΘ

Γ p
Θ
Γ | =

4KR

|L| ,

|o∆
Φ p

∆
Φ | = |oΓ

Θ p
Γ
Θ| = 4R, |o∆

Ψ p
∆
Ψ| = 2r, |oΓ

Ξ p
Γ
Ξ| = 2̺.More pre
isely, o∆

Φ and p∆
Φ are the antipodal points on the 
ir
le ofradius 2R with the 
enter at the Bevan point of the triangle ABC.Similarly, oΓ

Θ and pΓ
Θ are the antipodal points on the 
ir
le of radius 2Rwith the 
enter at the Bevan point of the triangle EBC. Also, o∆

Ψ and
p∆

Ψ are the antipodal points on the in
ir
le of ABC and oΓ
Ξ and pΓ

Ξ arethe antipodal points on the in
ir
le of EBC. The lo
us of midpoints of
oΦ
∆p

Φ
∆ is a line and the lo
us of midpoints of oΘ

Γ p
Θ
Γ is a hyperbola.Proof. We prove only the 
laims about o∆

Ψ and p∆
Ψ be
ause for other
enters the proofs are similar.We �nd that the 
oordinates of these 
enters are r
f+g+K2 (N+, 2p

2
2) and

r
f+g+K2 (N−, 2s2

2), where N± = f 3g+K2 ± 2f−F + fG±, F = (gL+ 2k)

(2gk − L), G+ = (3L+ 2)(L− 2)g2 + 16gkL− (K − 4k)(K + 4k) and
G− = (4k −K)(K + 4k)g2 − 16gkL+ (3L+ 2)(L− 2). Now it is easyto 
he
k that |o∆

ΨI| = r and that p∆
Ψ is the (−2)-point of the segment

o∆
ΨI. Noti
e that from the ordinates of the points o∆

Ψ and p∆
Ψ we see thatthe statement o∆

Ψ ∈ BC 
ould be added in Theorem 24 and p∆
Ψ ∈ BCin Theorem 25. �18. Lines 
onne
ting the tou
hing points Po,. . . , YoThe points where the eight Thébault's 
ir
les tou
h the 
ir
um
ir
lehave many properties. Some are revelled in the next result.Let M1,. . . , M24 denote the interse
tions of the lines PoTo, PoVo,

PoQo, SoTo, QoUo, QoSo, QoSo, QoXo, PoQo, SoTo, PoYo, PoTo, PoTo,
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PoVo, PoYo, SoVo, SoYo, UoYo, QoUo, PoYo, UoVo, PoQo, QoXo and PoVowith the lines UoYo, SoYo, XoYo, UoVo, ToXo, VoXo, UoYo, ToUo, UoVo,
XoYo, SoVo, VoXo, QoSo, QoUo, QoXo, ToUo, ToXo, VoXo, SoYo, ToUo,
XoYo, SoTo, SoVo and ToXo, respe
tively.

�
Jb

Jc

M21

Je

E

M22

M18

M13

To

So

Qo

Po Vo

Uo

Xo

Yo

�� ��
��

� A

CB

�

Figure 3. The points M13, M18, M22 and M21.Teorem 41. The point D lies on the following lines: PoSo, QoTo, UoXoand VoYo. The interse
tionsM1,. . . ,M24 are on the lines IIa, IIb, IIe,
IaIb, IaIe, IbIe, JJa,. . . , IIa,. . . , JcJe, respe
tively. The points M2,
M5, M8, M11, M13, M18, M21 and M22 are on the line perpendi
ular tothe line DO. The point D is 
ollinear with the pointsM1,M6,M9,M10,
M14, M17, M20 and M23 as well as with the points M3, M4, M7, M12,
M15, M16, M19 and M24. The point A is on the 
ir
les kM1M6

, kM7M12and kM13M18
, the point B is on the 
ir
les kM2M5

, kM14M17
and kM19M24

,the point C is on the 
ir
les kM8M11
, kM15M16

and kM20M23
and the point

E is on the 
ir
les kM3M4
, kM9M10

and kM21M22
. Moreover, there are32 triples of 
ollinear points beginning with {M4,M2,M1} and endingwith {M24,M23,M22} (one from ea
h of the above three groups of eightpoints).Proof. When h̄ 6= dk, then the line PoSo has the equation

2h2kx+ [(h2 + d2)k2 − 2dh̄k + 4ζ ]y = 2rghf+ϕ−.The 
oordinates of the pointD satisfy this equation. We prove similarlythat D also lies on the lines QoTo, UoXo and VoYo.



32 ZVONKO �ERINThe interse
tionM13 has the 
oordinates rg

M
(N,−2fhs2), whereM =

4dζL+ h̄k(d2 + h2 − 4ζ) and N = 2dfzL+ k[(f−)2g+ − 4ζf+]. It lieson the line IIa with the equation h̄x− dy = rgf+.Similarly, the point M18 has the 
oordinates rgz

hM
(N, 2fzp2), where

M = 4h̄ζL+ dk(d2 + h2 + 4ζ) andN = 2fhh̄L+ k[(f−)2g+ + 4ζf+]. Itlies on the line IbIc with the equation dx+ h̄y = rgzf+

h
. The lineM13M18is perpendi
ular to the line DO with the equation

k(h2 − d2)x− (4ζL+ 2dh̄k)y =
(h2 − d2)rgf+ϕ−

h
.Moreover, the midpoint of M13M18 is equidistant from M13 and A.The interse
tionsM22 andM21 are treated similarly. Of 
ourse, theyboth lie on the line M13M18. �19. Some homologi
 trianglesThe triangles ABC and XY Z are homologi
 provided the lines AX,

BY and CZ are 
on
urrent. Their 
ommon interse
tion hXY ZABC is 
alledthe 
enter (of the homology). In terms of the 
oordinates the 
onditionfor homology is(59) ∣

∣

∣

∣

∣

∣

∣

xA − xX xB − xY xC − xZ

yX − yA yY − yB yZ − yC

xAyX − yAxX xByY − yBxY xCyZ − yCxZ

∣

∣

∣

∣

∣

∣

∣

= 0.Let ϕ = SoUoXo and ψ = ToVoYo.Teorem 42. The triangle Φ is homologi
 to the triangles ϕ and ψ. Thehomology 
enters hϕΦ and hψΦ are the antipodal points on the 
ir
um
ir
le
o. The lines hϕΦhψΦ and AD are perpendi
ular if and only if either
I ∈ AD or Ib ∈ AD.Proof. One 
an either show dire
tly that the 
ondition (59) holds forthe pairs (Φ, ϕ) and (Φ, ψ) or 
he
k that the interse
tions IaSo ∩ IbUoand IaTo ∩ IbVo have the 
oordinates r(g−k+2g)

2hK
(f− + 2fk, 2f − f−k)and r(2gk−g−)

2hK
(f−k − 2f, 2fk + f−) and that they lie on the lines IcXoand IcYo, respe
tively. The distan
e |hϕΦhψΦ| is 2R and the midpoint ofthe segment hϕΦhψΦ is the 
ir
um
enter O.The lines hϕΦhψΦ and AD are perpendi
ular if and only if r2ζp2s2

h2kK
= 0.By Theorems 24 and 25, this happens if and only if either I ∈ AD or

Ib ∈ AD. �Let τ = ABC. Re
all that the tangential triangle τt = AtBtCt hasthe interse
tions of the tangents to the 
ir
um
ir
le o at the verti
es of
τ as verti
es.Teorem 43. The tangential triangle τt is homologi
 to the triangles ϕand ψ.



ON THÉBAULT'S PROBLEM 3887 33Proof. Let τt = AtBtCt. These verti
es have the 
oordinates rz
2(h2−z2)

(h2

−z2, 2hz), r
2f−h

(ff−g− + 2(f 4 + 1)g, 2fhz) and rg

2g−h
(h2 − z2, 2hz).One 
an now easily 
he
k that the 
ondition (59) holds for the pairs

(τt, ϕ) and (τt, ψ). �The above two theorems have more extensive versions that use thesymmetry of the 
on�guration. More pre
isely, the ortho
entri
 quad-rangle IIaIbIc is homologi
 to the quadrangles P0S0U0X0 andQ0T0V0Y0.Similarly, JJaJbJe is homologi
 to the quadrangles U0S0P0X0 and Y0Q0

T0V0, IIaIbIe is homologi
 to the quadrangles P0U0S0X0 and Y0T0V0Q0and JJaJcJe is homologi
 to the quadrangles U0S0X0P0 and Q0Y0T0V0.The 
enters of these homologies are antipodal points on the 
ir
um-
ir
le and are at the distan
e 2Rk√
K

and 2R√
K

from the verti
es A, B, Eand C, respe
tively.On the other hand, the triangles UoXoPo and VoYoQo are homologi
to the tangential triangle of BCE, the triangles SoUoPo and ToVoQo arehomologi
 to the tangential triangle of ABE and the triangles SoXoPoand ToYoQo are homologi
 to the tangential triangle of ACE.20. More on triangles ABC, ABC and ABCIn this se
tion we explore additional properties of the triangles ABC,
ABC and ABC that have been introdu
es in se
tion 15.Teorem 44. The triangles ABC and ABC are homologi
 if and onlyif either D = I ′ or D = AI ∩ BC. They are orthologi
 if and only ifthe lines AD and BC are perpendi
ular. They 
an never be paralogi
.Proof. The 
ondition (59) for the triangles ABC and ABC is

3 r4 f+ g+ ζ2 pI′ s2 z

32 h4 k2
= 0.Now it su�
es to apply Theorems 18 and 25.Similarly, the 
onditions (55) and (58) for these triangles are

3 r2 f+ g+ ζ L z

8 h2 k
= 0, −5 r2 f+ g+ ζ z

4 h2
= 0.The �rst holds if and only if k = 1, i. e., if and only if D = A′. These
ond does not depend on k and is never true so that the triangles

ABC and ABC are not paralogi
. �Teorem 45. The triangles ABC and ABC are homologi
 if and onlyif D = AI ∩BC.Proof. The 
ondition (59) for the triangles ABC and ABC is
−r

4 ζ2 p2 z
3

4 h3 k
= 0.The 
laim of the theorem now follows from Theorem 24. �



34 ZVONKO �ERINTeorem 46. The triangles ABC and ABC are orthologi
 to Φ (theextriangle IaIbIc) and/or Ψ (the pedal triangle AqBqCq of the in
enter
I) if and only if the lines AD and BC are perpendi
ular. These pairsof triangles are never paralogi
.Proof. The 
onditions (55) and (58) for the pair (ABC,Φ) are

r2 f+ g+ ζ L z

4 h2 k
= 0, −3 r2 f+ g+ ζ z

2 h2
= 0.The �rst holds if and only if k = 1, i. e., if and only if the lines AD and

BC are perpendi
ular. The se
ond does not depend on k and is nevertrue so that the triangles ABC and Φ are not paralogi
. The similarargument holds for the pairs (ABC,Ψ), (ABC,Φ) and (ABC,Ψ). �It follows from the part (vi) of Theorem 35 that the points I, A, Band C are the images of the points I, Ia, Ib and Ic under the homothety
h

(

D, 3
4

). Sin
e I is the ortho
enter of the extriangle IaIbIc, we inferthat the quadruple {A,B,C, I} is ortho
entri
.The variable triangle ABC has many additional ni
e properties thatwe now des
ribe. They are all the 
onsequen
e of the fa
t that it ishomotheti
 with the extriangle for all positions of the point D.(1) The triangles ABC and Φ are homologi
 and their homology
enter is the point D.(2) The triangles ABC and Ψ are homologi
 and their homology
enter is the −3(ζ2+d2+3)
2h

-point of the segment joining the point
D with the 
entral point X57, the isogonal 
onjugate of theMittenpunkt X9.(3) The triangles ABC and ABC are orthologi
. Moreover, oABC

ABC =
I and oABC

ABC
is the 3-point of the segment joining the point Dwith the Bevan point X40.The triangle ABC is also orthologi
 with other triangles asso
iatedwith the triangle ABC. For example, with the anti
omplementarytriangle AaBaCa (on the re�e
tions of the verti
es in the midpointsof opposite sides), the Euler triangle AeBeCe (on the midpoints of thesegments joining the verti
es with the ortho
enter), the 
omplementarytriangle AgBgCg (on the midpoints of the sides), the extriangle Φ, the
evian triangle AiBiCi of the in
enter, the triangle AjBjCj (on thetou
hing points of the ex
ir
les with the sides), the triangle AmBmCm(on the outer Gergonne points) and the pedal triangle Ψ of the in
enter.Some of the orthology 
enters for these pairs are interesting 
entralpoints of the triangleABC. For example, oABC

AiBiCi
= oABC

Φ = X1 = I (thein
enter), oABC

AaBaCa
= oABC

AmBmCm
= X8 = N (the Nagel point), oABC

AgBgCg
isthe Spieker point X10 (the in
enter of the 
omplementary triangle),

oABC

AeBeCe
is the interse
tion of the 
entral lines X1X4 and X2X40, oABC

AjBjCj

= X72 and oABC

Ψ = X65.



ON THÉBAULT'S PROBLEM 3887 35On the other hand, oABC
ABC

= oAaBaCa

ABC
= oAeBeCe

ABC
= o

AgBgCg

ABC
. Moreover,

oΦ
ABC

= oAmBmCm

ABC
= o

AqBqCq

ABC
and oΦ

ABC
is the 3-point of the segment join-ing the point D with the in
enter I and oAiBiCi

ABC
is the 3-point of thesegment joining the point D with the 
ir
um
enter O.21. Properties of quadrangles q1, q2, q3 and q4Let us 
all the quadrangle tame provided it has equal sums of squaresof opposite sides.We shall now show that q1 = PQST , q2 = PV SY , q3 = UV XY and

q4 = QUTX are tame quadrangles. There are many more su
h tamequadrangles from the Thébault's 
enters. Moreover, the quadrangles
PoQoSoTo and UoVoXoYo have equal symmetri
 produ
ts of four sides.Teorem 47. The quadrangles q1, q2, q3 and q4 are tame and

|PoQo| · |SoTo| · |UoYo| · |VoXo| = |PoTo| · |QoSo| · |UoVo| · |XoYo|.Proof. The formula |MN |2 = (xM − xN)2 + (yM − yN)2 gives us easily
|ST |2 = r2K2ζ2[ζ2K++2ζkL+(d2+h2−2ζ2)k2]

h2k4 , |PT |2 = r2Kϕ−ψ+(k2ζ2+1)
h2k4 , |QS|2

=
r2Kf2

+g
2
−(k2+ζ2)

h2k4 and |PQ|2 = r2K2[K++2dkL+(d2+h2−2)k2]
h2k4 . From this one
an derive the algebrai
 identity |PQ|2 + |ST |2 = |PT |2 + |QS|2 whi
hproves that q1 is a tame quadrangle. For the other quadrangles q2, q3and q4 the proof is similar. For the long identity, we a
tually provethat both sides have equal squares. �Next, we �nd a situation when the quadrangles q1, q2, q3 and q4 are
y
li
.Teorem 48. If the line AD and the sideline BC are perpendi
ular,then the quadrangles q1, q2, q3 and q4 are 
y
li
. Their 
ir
um
enters

Oq1, Oq2, Oq3 and Oq4 are verti
es of a square with the side 2
√

2R su
hthat Oq2Oq4 is parallel to the sideline BC.Proof. Let us re
all that k = 1 if and only if the lines AD and BC areperpendi
ular. Hen
e, the 
ir
um
enter of the triangle PQS has the
oordinates r
h

(fg−,−h2) and is equidistant from the points P and T .It follows that q1 is a 
y
li
 quadrangle. Similarly, the 
ir
um
enterof the triangle UV X has the 
oordinates r
h

(fg−, z2) and is equidistantfrom the points U and Y so that the quadrangle q3 is also 
y
li
. Infa
t, this argument shows that these quadrangles are non-degenerateand 
y
li
 if and only if k = 1 (see [3, Remark 6℄ for PQST ). Forthe quadrangles q2 and q4 these equivalen
es do not hold but for k = 1they are also 
y
li
. The remaining 
laims have easy proofs by dire
t
omputation of 
oordinates and use of the distan
e formula. �The 
entroids Gq1 , Gq2, Gq3 and Gq4 of the quadrangles q1, q2, q3 and
q4 are verti
es of an interesting re
tangle whose diagonals are nevershorter than the diameter of the 
ir
um
ir
le of the triangle ABC .



36 ZVONKO �ERINTeorem 49. The quadrangle Gq1Gq2Gq3Gq4 is a re
tangle with sides
|Gq1Gq2| = Rk

√
K and |Gq2Gq3| = R

√
K

k2 and the diagonals RK
√
k2L+1
k2 .Hen
e, |Gq1Gq3| ≥ 2R.Proof. The 
entroids Gq1 and Gq1 have the 
oordinates

− r

4hk2

(

hk(hL− 2zk), ζ+L2 + (2h2 + dh̄k)L+ 2h2
)and

r

4hk2

(

zk(zL + 2hk), (f 2 + g2)L2 + (2z2 − dh̄k)L+ 2z2
)

.The 
oordinates of Gq2 and Gq4 are similar. It is now routine to 
he
kthat Gq1Gq2Gq3Gq4 is a re
tangle and to 
ompute the lengths of its sidesand diagonals and prove the above inequality. �The following results explores when the diagonals of the quadrangle
Gq1Gq2Gq3Gq4 have their minimal value 2R.Teorem 50. The following are equivalent: (i) |Gq1Gq3| = 2R, (ii) theline Gq1Gq3 is perpendi
ular to the line BC, (iii) the line Gq1Gq3 isparallel to the line AD and (iv) the line AD is perpendi
ular to theline BC.Proof. The only singular value for the fun
tion k 7→ K2(k2L+1)

k4 is k = 1.This shows that (i) and (iv) are equivalent.The line Gq1Gq3 is perpendi
ular to the line BC if and only if Gq1and Gq3 have equal abs
ises. However, xGq3
− xGq1

= rf+g+L

4hk
. Hen
e,again k = 1 and we 
on
lude that (ii) and (iv) are equivalent.Finally, the line Gq1Gq3 is parallel to the line AD if and only if theyhave equal slopes, i. e., if and only if k = 1. Therefore, (iii) and (iv)are also equivalent. �The following three theorems 
onsider the Newton lines of the quad-rangles q1 and q3. Re
all that the Newton line joins the midpoints ofthe diagonals of a quadrangle and its 
entroid.Let ζ+ = ζ2 + 1.Teorem 51. The following are equivalent: (i) the Newton lines of thequadrangles q1 and q3 are parallel, (ii) the point D lies on the linejoining the 
entroids Gq1 and Gq3 of the quadrangles q1 and q3 and (iii)the point D is the midpoint of the segment BC.Proof. The equations of the Newton lines of PQST and UV XY are

2[ζ+L+ dh̄k]x− 2h2ky = r[zζ+L+ (h3 + dh̄z)k]and
2h[(f 2 + g2)L− dh̄k]x− 2hkz2y = rz[h(f 2 + g2)L− (z3 + dhh̄)k].The 
ondition for these lines to be parallel is 4f+g+h(2ζL+ dh̄k) = 0.In order to prove the equivalen
e of (i) and (iii), it remains to noti
e
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e between the point D and the midpoint of the segment
BC is r|2ζL+dh̄k|

2hk
.Let K+ = k4 + 1. The line Gq1Gq3 has the equation

4hk(K+x− kLy) = r[2ζL3 + (dh̄+ 2hz)kL2 + 4hk3z].When we substitute x = xD and y = yD = 0 and move the free termto the left, we get rK2(2ζL+ dh̄k). This shows that (ii) and (iii) areequivalent. �Teorem 52. The Newton lines of the quadrangles q1, q3, q2 and q4 gothrough the points Z2, Z1, R1 and R2, respe
tively.Proof. The 
oordinates of the point Z2 are r
2
(z,−h). The equation ofthe Newton line of PQST is

2[ζ+L+ dh̄k]x− 2h2ky = r[zζ+L+ (h3 + dh̄z)k].It is now easy to 
he
k that Z2 is on it. The other 
laims in this theoremhave similar proofs. �Re
all that the 
entral point X69 is the symmedian point of theanti
omplementary triangle. It is also the isotomi
 
onjugate of theortho
enter.Teorem 53. The lo
us of interse
tions of Newton lines of the quadran-gles q1 and q3 is the perpendi
ular to the line AX69 from the interse
tionof the line BC with the perpendi
ular in the vertex A to the line AO.Proof. The 
oordinates of the interse
tion M of the Newton lines ofthe quadrangles q1 and q3 are (see the proof of Theorem 50)
r

2h(2ζL+dh̄k)

(

2ghzf+ϕ−, (4ζ2 + (ζ2 + 1)(f 2 + g2))L− d(h2 − z2)h̄k
)

.By eliminating the variable k from the equations x = xM and y = yM ,we get the equation dhh̄x+ 2ζhy = rg2(f+)2 of the lo
us. Sin
e the
entral point X69 has the 
oordinates
rf2

h((f2+g2)(ζ2+1)+ζf−g−)
(2f−g(g4 + 1) + f(g−)2,−2g2(h2 − z2)) ,it is now easy to 
he
k that the lo
us is the line des
ribed in the state-ment of the theorem. �Teorem 54. The diagonals of the van Aubel pseudo-squares of thequadrangles PQST , UV XY , PQUY and STXV are on angle bise
torsof the line AD and the perpendi
ular at the point D onto the line BC.Proof. The angle bise
tors of the line AD and the perpendi
ular at thepoint D onto the line BC have the equations(60) (k − 1)x− (k + 1)y = (k − 1)xD,and(61) (k + 1)x+ (k − 1)y = (k + 1)xD.



38 ZVONKO �ERINThe 
oordinates of the 
enters M and N of the negative squares onthe segments QS and TP are rf+
2hk2 (uM , vM) and rϕ−

2hk2 (uN , vN), where
uM = (k − 1)(k2 + gζ) + k(k + 1)(ζ − g), vM = (k + 1)g−(ζ − k), uN
= (k − 1)(k2gζ − 1) + k(k + 1)(ζ + g) and vN = (k + 1)ψ+(1 − ζk). Itis now easy to 
he
k that these 
oordinates of both M and N satisfythe equation (60). The similar argument applies to the 
enters of theother negative and positive squares on sides of the quadrangles PQST ,
UV XY , PQUY and STXV . �Many other quadrangles from Thébault's 
enters P ,. . . , Y share theabove properties with the quadrangles q1, q2, q3 and q4.22. Lines 
on
urrent in the points R1, R2, Z1 and Z2Teorem 55. The lines PoP ′, QoQ

′, SoS ′ and ToT ′ 
on
ur in the point
Z2. The lines UoU ′, VoV ′, XoX

′ and YoY ′ 
on
ur in the point Z1.Proof. The line PoP ′ has the equation hkx+ (2 − dk)y = rhϕ−. It isnow easy to 
he
k that Z2 is on the line PoP ′. The other 
laims in thistheorem have similar proofs. �Let the perpendi
ular bise
tor of the segment AD interse
t the 
ir-
um
ir
le o in the points R1 and R2 su
h that R1 is 
loser to A thanto B while R2 is 
loser to B than to A. Hen
e,
|AR1|2 − |BR1|2 = |BR2|2 − |AR2|2 =

4 aRk

K
.Note that R1 is the midpoint of JaJe and R2 is the midpoint of IaIe.Teorem 56. The lines PoP ′′, SoS ′′, VoV ′′ and YoY ′′ 
on
ur in the point

R1. The lines QoQ
′′, ToT ′′, UoU ′′ and XoX

′′ 
on
ur in the point R2.Proof. The 
oordinates of the point R1 are r(kz+h)
2hK

(hk + z, kz − h).The line PoP ′′ has the equation
(dk + h− 2)kx+ (hk2 − dk + 2)y = rϕ−(kz + h).It is now easy to 
he
k that R1 is on the line PoP ′′. The other 
laimsin this theorem have similar proofs. �23. The points that envelop PoQo, SoTo, UoVo and XoYoIn this se
tion we show that the lines PoQo, SoTo, UoVo and XoYopass through the �xed points of the triangle ABC. The following isthe part (a) of Proposition 9 in [3℄.Teorem 57. The 
entral point X56 of the triangle ABC (i. e., theisogonal 
onjugate of the Nagel point X8) lies on the line PoQo.
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oordinates of the point X56 are
r

d2 + h2 + 4

(

f−g(h− 1) + f(f 2 + 3), h2
)

.The line PoQo has the equation
2(dk + L)hx+ [(h̄2 − z2 + 4)k − 2dL]y = 2hrf+ϕ−.It is now easy to 
he
k that X56 is on the line PoQo. �Of 
ourse, there are three related results where the 
entral points

X56 of the triangles BCE, ABE and ACE appear. Sin
e the point Evaries, these points are not �xed. They lie on the lines UoYo, PoYo and
QoUo, respe
tively.Let N∗

a , N∗
b and N∗

c be the points on the lines AX55, BX55 and CX55with the 
oordinates rg

d2+5ζ2−2ζ+1
(g2(3f+ − 2) + f−(2ζ − 1),−2fh2) ,

rgz

h(z2+h̄2+4g2)
(f(g+f 2 + 3g− + 2) + 2f−g, 2z2) and rz

h(z2+h̄2+4f2)
(f−(g2+

2ζ) − 3f+ + 2, 2fz2). Noti
e that N∗
a , N∗

b and N∗
c are isogonal 
onju-gates of the asso
iated Nagel points Na, Nb and Nc with 
oordinates

− r
h

(fg+ + 2g, 2g2), rf
h

(g+ + 2ζ,−2f) and rf

h
(2ζ − g+, 2gζ).Teorem 58. The lines SoTo, UoVo and XoYo pass through the points

N∗
a , N∗

b and N∗
c , respe
tively.Proof. The line SoTo has the equation

2(dk + ζL)hx+ [2dζL− (5ζ2 − f 2 − g2 + 1)k]y = 2g2hrf+ϕ−.It is now easy to 
he
k thatN∗
a is on the line SoTo. This is the part (b) ofProposition 9 in [3℄. The remaining two 
laims are proved similarly. �24. Perpendi
ulars passing through the point DThe pointD is very important for the Thébault's 
on�guration. Thisis supported by four similar results in this se
tion about D being onsome interesting perpendi
ulars to sides of the four ortho
entri
 quad-rangles from the in
enters and the ex
enters.Teorem 59. If k 6= k0, then the point D lies on the perpendi
ular fromthe interse
tion of the lines PQ and ST onto the line IIa. If k 6= m0,then the point D lies on the perpendi
ular from the interse
tion of thelines UV and XY onto the line IbIc. These perpendi
ulars are perpen-di
ular.Proof. Let k 6= k0. The interse
tion M of the lines PQ and ST hasthe 
oordinates rf+ϕ−

hkp2
(g+hk, dg−ψ+) . Hen
e, the perpendi
ular from

M onto the line IIa has the equation hk(dx+ h̄y) = rdgf+ϕ−. It isnow obvious that this perpendi
ular goes through the point D.Let k 6= m0. The interse
tion N of the lines UV and XY has the
oordinates −rf+ϕ−

hks2

(

g+zk, h̄g−ψ+

)

. Hen
e, the perpendi
ular from Nonto the line IbIc has the equation hk(h̄x− dy) = rgh̄f+ϕ−. It is now
lear that this perpendi
ular goes through the point D. �



40 ZVONKO �ERINTeorem 60. Let D 6= B,C. The point D lies on the perpendi
ularfrom the interse
tion of the lines PT and QS onto the line JbJc. If,in addition, |AB| 6= |AC|, then the point D lies on the perpendi
ularfrom the interse
tion of the lines UY and V X onto the line JJa. Theseperpendi
ulars are perpendi
ular.Proof. The interse
tion M of the lines PT and QS has the 
oordinates
rg

hh̄k
(f+hk,−fs2) . Hen
e, the perpendi
ular fromM onto the line JbJchas the equation hk(s2x− p2y) = rgs2f+ϕ−. It is now obvious that thisperpendi
ular goes through the point D.Let |AB| 6= |AC| (i. e., let d 6= 0). The interse
tionN of the lines UYand V X has the 
oordinates rg

dhk
(f+zk, fp2) . Hen
e, the perpendi
ularfrom N onto the line JJa has the equation hk(p2x+ s2y) = rgp2f+ϕ−.It is now 
lear that this perpendi
ular goes through the point D. �Teorem 61. Let D 6= B,C. The point D lies on the perpendi
ularfrom the interse
tion of the lines PY and QX onto the line IaIb. Thepoint D lies on the perpendi
ular from the interse
tion of the lines UTand SV onto the line IIe. These perpendi
ulars are perpendi
ular.Proof. The interse
tionM of the lines PY and QX has the 
oordinates

r
h k

((g f− − 2 f)k, f(2 g k − L)) . Hen
e, the perpendi
ular fromM ontothe line IaIb has the equation
hk[(2 g k − L)x+ (g L+ 2 k)y] = rg(2 g k − L)f+ϕ−.It is now obvious that this perpendi
ular goes through the point D.The interse
tion N of the lines UT and SV has the 
oordinates

rg

hk
((f− + 2 ζ)k, f(g L+ 2 k)) . Hen
e, the perpendi
ular from N ontothe line IIe has the equation

hk[(g L+ 2 k)x− (2 g k − L)y] = rg(g L+ 2 k)f+ϕ−.It is now 
lear that the point D lies on this perpendi
ular. �Teorem 62. The point D, di�erent from the vertex C, lies on theperpendi
ular from the interse
tion of the lines SY and QU onto theline JcJe. The point D lies on the perpendi
ular from the interse
tionof the lines PV and TX onto the line JJa. These perpendi
ulars areperpendi
ular.Proof. The interse
tionM of the lines SY and QU has the 
oordinates
r f+ ϕ−

h kK
(g+ k, k2 − g2) . Hen
e, the perpendi
ular from M onto the line

JcJe has the equation hk(g+ x+ ψ− y) = r g f+ ϕ− g+. It is now obviousthat this perpendi
ular goes through the point D.The interse
tion N of the lines PV and TX has the 
oordinates
−r f+ ϕ−

hkK
(g+ k, ψ− ψ+) . Hen
e, the perpendi
ular from N onto the line

JJa has the equation hk(ψ− x− g+ y) = r g f+ ϕ− ψ−. It is now 
learthat the point D lies on this perpendi
ular. �



ON THÉBAULT'S PROBLEM 3887 4125. Certain pairs of perpendi
ular linesTeorem 63. The lines DI, DIa, DIb and DIc are perpendi
ular to thelines ST , PQ, XY and UV , respe
tively.Proof. The lines DI and ST have the equations hkx+ pI′y = rgf+ϕ−and pI′x− hky = rg2f+ϕ−. It follows that they are perpendi
ular. Theproofs for the remaining three pairs of lines are similar. �Teorem 64. The lines DJ, DJa, DJb and DJc are perpendi
ular tothe lines V X, UY , QS and PT , respe
tively.Proof. The lines DJ and V X are perpendi
ular be
ause they have theequations kzx+ (gL− d)y = rgzf+ϕ− and (gL− d)x− kzy = −rgzf 2
+.The proofs for the remaining three pairs of lines are analogous. �In a similar way it is possible to prove the following:Teorem 65. (i) The lines DI, DIa, DIb and DIe are perpendi
ularto the lines SV , XQ, PY and UT , respe
tively.(ii) The lines DJ, DJa, DJc and DJe are perpendi
ular to the lines

XT , PV , UQ and SY , respe
tively.26. Spe
ial relations for produ
ts of sides and diagonalsIn this se
tion, we 
onsider some 
onsequen
es of equalities amongthe produ
ts of lengths of sides and diagonals of some quadrangles fromthe eight 
enters of Thébault's 
ir
les.Teorem 66. If neither the angle B nor the angle C is right, then
|PQ||ST | = |UV ||XY | holds if and only if the line AD is perpendi
ulareither to the line AB or to the line AC.The equality |PS||QT | = |UX||V Y | holds if and only if either theangle A is right or |AB| 6= |AC| and the line AD is perpendi
ular tothe line AO.The equality |PT ||QS| = |UY ||V X| holds if and only if either D = B,
D = C, B = 90◦ or C = 90◦.The equality |PU ||QV | = |SX||TY | holds if and only if either D = Bor the angle B is right.The equality |PX||QY | = |SU ||TV | holds if and only if either D = Cor the angle C is right.Proof. The di�eren
e |PQ|2|ST |2 − |UV |2|XY |2 fa
tors as the quotient
(rK)4ζ2f+g+(f−L+4fk)(g−L+4gk)

h4k6 . When the angle B is not right, then thefa
tor f−L+ 4fk vanishes if and only if the line AD is perpendi
ularto the line AB. Similarly, when the angle C is not right, then the fa
tor
g−L+ 4gk vanishes if and only if the line AD is perpendi
ular to theline AC.The di�eren
e |PS|2|QT |2 − |UX|2|V Y |2 simpli�es to the quotient
r4K2f+g+(h̄−dk)2(h̄k+d)2(h2−z2)

(hk)4
. The fa
tor h2 − z2 vanishes if and only if



42 ZVONKO �ERINthe angle A is right. When |AB| 6= |AC|, the fa
tor (h̄− dk)2(h̄k + d)2vanishes if and only if the line AD is perpendi
ular to the line AO.The di�eren
e |PT |2|QS|2 − |UY |2|V X|2 is r4f+f−g+g−(Kf+g+ϕ−ψ+)2

h4k6 .Its numerator vanishes only for k = 1
f
(when D = B), k = g (when

D = C), f = 1 (when B = 90◦) and g = 1 (when C = 90◦).The last two 
laims have similar (somewhat simpler) proofs. �27. Diagonal pointsThe diagonal points in quadrangles are two interse
tions of pairs ofopposite sidelines and the interse
tion of diagonals. In this se
tion we
onsider these points for some quadrangles from the eight 
enters ofThébault's 
ir
les.The only assumption in the following result is that |AB| 6= |AC|.Teorem 67. The interse
tions M0 and N0 of the lines PT and QSand of the lines UY and V X lie on the perpendi
ular to the line ADin the point A. The point D is on the 
ir
le kM0N0
. When the lines

AO and BC are not parallel, then its 
enter lies on the line BC if andonly if the 
ir
um
enter O is on the line AD.Proof. The 
oordinates of the points M0 and N0 are rg

hh̄k
(f+hk,−fs2)and rg

dhk
(f+kz, fp2). It is now easy to 
he
k that they satisfy the equa-tion h(Lx− 2ky) = rg(ϕ2

− − f 2
+) of the perpendi
ular to the line ADin the point A.The 
oordinates of the midpoint M of the segment M0N0 are

rg

2dhh̄k

(

2(f+)2gk, f [(h̄+ d)k − h̄+ d][(h̄− d)k + h̄+ d]
)

.Hen
e, |MD|2 = |MM0|2. This implies that the pointD is on the 
ir
le
kM0N0

.Finally, when the lines AO and BC are not parallel, then the inter-se
tion N of these lines has the 
oordinates (

rgg−(f+)2

h(h̄2−d2)
, 0

). It remainsto observe that |ND| = rζ|(h̄+d)k−h̄+d||(h̄−d)k+h̄+d|
hk|h̄2−d2| . �In the following result we assume that |AB| 6= |AC| and that the line

PQ is not parallel to the line ST and that the line UV is not parallel tothe line XY . In other words, the point D 
an not be the interse
tionsof the line BC with the lines AI and IbIc.Teorem 68. The interse
tions M and N of the lines PQ and ST andof the lines UV and XY lie on the perpendi
ular to the line AD inthe point E. The point D is on the 
ir
le kMN . The following areequivalent: (i) the midpoint of the segment MN lies on the line BC,(ii) the lines MN0 and NM0 are perpendi
ular, (iii) the point D is onthe line MN0, (iv) the point D is on the line NM0, (v) the relation
|MN |2 + |M0N0|2 = |MM0|2 + |NN0|2 holds and (vi) either D = B,
D = C or the 
ir
um
enter O is on the line AD.



ON THÉBAULT'S PROBLEM 3887 43Proof. The 
oordinates of the pointsM andN are rf+ϕ−

hkp2
(g+hk, dg−ψ+)and −rf+ϕ−

hks2

(

g+zk, h̄g−ψ+

). It is now easy to 
he
k that they satisfythe equation h(Lx− 2ky) = rf+ϕ−g− of the perpendi
ular to the line
AD in the point E.The 
oordinates of the midpoint m of the segment MN are

rf+ϕ−

2hkp2s2

(

2f+ϕ−(g+)2k, g−ψ+[(h̄+ d)k − h̄+ d][(h̄− d)k + h̄ + d]
)

.Hen
e, |mD|2 = |mM |2. This implies that the point D is on the 
ir
le
kMN .Finally, in order to prove the equivalen
e of the six statements, itsu�
es to noti
e that ea
h 
ondition des
ribed analyti
ally involves asfa
tors ϕ−, g−, (h̄ + d)k − h̄+ d and (h̄− d)k + h̄ + d. For example,the sum |MN |2 + |M0N0|2 − |MM0|2 − |NN0|2 is equal

2r2ζf+ϕ−g−ψ+[(h̄+ d)k − h̄+ d]2[(h̄− d)k + h̄ + d]2

dh̄h2k2p2s2

.

�Teorem 69. Let k 6= h
z
. The interse
tions M0 and N0 of the lines PYand SV and of the lines TU and QX lie on the perpendi
ular to theline BC in the point C. The point D is on the 
ir
le kM0N0

.Proof. The points M0 and N0 have the abs
ises r z (the same as thatof the point C) and the ordinates r f g− ψ+(hk+z)
hk(z k−h)

and r f g− ψ+(h−z k)
hk(h k+z)

.The ordinate of the midpoint M of the segment M0N0 is
r f g− ψ+[(h + z)k + z − h][(h− z)k + z + h]

2 h k(h k + z)(z k − h)
.Hen
e, |MD|2 = |MM0|2. This implies that the pointD is on the 
ir
le

kM0N0
. �Teorem 70. Let k 6= z

h
. The interse
tions M0 and N0 of the lines PVand SY and of the lines QU and TX lie on the perpendi
ular to theline BC in the point B. The point D is on the 
ir
le kM0N0

.Proof. The points M0 and N0 have the abs
ises 0 (the same as that ofthe point B) and the ordinates r g f+ ϕ−(z−hk)
h k(z k+h)

and r g f+ ϕ−(z k+h)
h k(hk−z) .The ordinate of the midpoint M of the segment M0N0 is

r g f+ ϕ−[(h+ z)k + h− z][(z − h)k + z + h]

2 h k(h k − z)(z k + h)
.Hen
e, |MD|2 = |MM0|2. This implies that the point D is on the
ir
le kM0N0

. �



44 ZVONKO �ERIN28. The role of X40 and X20Two results in this se
tion use the Long
hamps point X20 and theBevan point X40. They give some 
onsequen
es of 
ertain positions ofthese 
entral points with respe
t to the 
enters of Thébault 
ir
les.Teorem 71. (i) The relation cosA = cosB + cosC for the angles ofthe triangle ABC holds if and only if the re�e
tion of the Bevan point
X40 in the line BC lies on the line ST .(ii) The relation cosB + cosC = 1 holds if and only if the re�e
tionof the Bevan point X40 in the perpendi
ular bise
tor of the segment BClies on the line PQ.(iii) The Bevan point X40 never lies on the line ST .Proof. The Bevan point X40 has the 
oordinates r

2h
(2hg, 1 + z2 − ζ2).Its re�e
tion in the line BC (the x-axis!!) will be on the line ST withthe equation (ζL+ dk)x− hky = rf+ϕ−g2 if and only if

3 ζ2 − 2 ζ − z2 − 1 = 0.When we substitute f = cot B
2
and g = cot C

2
, this 
ondition is seenequivalent with the identity cosA = cosB + cosC. This proves thepart (i). The proof of (ii) is similar. Finally, in order to prove (iii),when we substitute the 
oordinates of X40 into the above equation ofthe line ST and move all terms to the left side, we obtain −rf+g+k

2
= 0that is never true. �Teorem 72. (i) Let p2 6= 0. The angle A in the triangle ABC is rightif and only if the Long
hamps point X20 is on the perpendi
ular to theline AD through the interse
tion M of the lines PQ and ST .(ii) Let s2 6= 0. The angle A in the triangle ABC is right if and onlyif the Long
hamps point X20 is on the perpendi
ular to the line ADthrough the interse
tion N of the lines UV and XY .Proof. (ii) When we substitute the 
oordinates r

h
(fg−, z2 − ζ2 − 1) of

X20 into the equation h(Lx− 2ky) = rf+ϕ−g− of the perpendi
ular tothe line AD through the interse
tion N and move all terms to the leftside, we obtain rk(h2 − z2) = 0 that is equivalent with the 
onditionthat the angle A is right. �Referen
es[1℄ J. -L. Ayme, Sawayama and Thébault's theorem, Forum Geometri
orum, 3(2003), 225�229.[2℄ Z. �erin, On propellers from triangles, Beitrage zur Algebra and Geometrie,42 (2001), No. 2, 575�582.[3℄ H. Demir and C. Tezer, Re�e
tions on a problem of V. Thébault, GeometriaeDedi
ata, 39 (1991), 79�92.[4℄ S. Dutta, Thébault's problem via eu
lidean geometry, Samay	a, 7 (2001), 2�7.[5℄ B. J. English, Solution of Problem 3887. It's a long story, Amer. Math.Monthly, 110 (2003), 156�158.



ON THÉBAULT'S PROBLEM 3887 45[6℄ H. Fukagawa, Problem 1260, Crux Math., 13 (1987), 156�158.[7℄ Editor's 
omment, Crux Math., 14 (1988), 237�240.[8℄ S. Gueron, Two appli
ations of the generalized Ptolemy theorem, Amer. Math.Monthly, 109 (2002), 362�370.[9℄ R. A. Johnson, Advan
ed Eu
lidean Geometry, Dover Publi
ations, New York,1960.[10℄ Clark Kimberling, En
y
lopedia of Triangle Centers, 2000,http://
edar.evansville.edu/�
k6/en
y
lopedia/.[11℄ D. Kodokostas, A really elementary proof of Thébault's theorem, Wor
esterPolyte
hni
 Insitute, USA.http://users.wpi.edu/�goulet/mme518_2004/.[12℄ E. D. Kulanin and O. Faynshteyn, Vi
tor Mi
hel Jean-Marie Thébault zum125. Geburtstag am 6.März 2007, Elem. Math., 62 (2007), 45�58.[13℄ C. S. Ogilvy, Mathematis
he Le
kerbissen, Vieveg Paperba
k, Brauns
hweig1969.[14℄ A. Ostermann and G. Wanner, A dynami
 proof of Thébault's theorem, Elem.Math., 65 (2010), 12�16.[15℄ W. Pompe, Solution of Problem 8, Crux Math., 21 (1995), 86�87.[16℄ W. Reyes, An Appli
ation of Thébault's Theorem, Forum Geomeri
orum, 2(2002), 183�185.[17℄ J. F. Rigby, Tritangent 
ir
les, Pas
al's theorem and Thébault's problem, J.Geom., 54 (1995), 134�147.[18℄ N. Roman, Aspura unor problema data la O. I. M., Gazete Math. (Bu
uresti),105 (2000), 99�102.[19℄ Y. Sawayama, A new geometri
al proposition, Amer. Math. Monthly, 12(1905), 222�224.[20℄ T. Seimiya, Solution of Problem 1260, Crux Math., 17 (1991), 48.[21℄ R. Shail, A Proof of Thébault's theorem, Amer. Math. Monthly, 108 (2001),319�325.[22℄ S. Shirali, On the generalized Ptolemy theorem, Crux Math., 22 (1996), 49�53.[23℄ R. Stärk, Eine weitere Lösung der Thébault's
hen Aufgabe, Elem. Math., 44(1989), 130�133.[24℄ K. B. Taylor, Solution of Problem 3887, Amer. Math. Monthly, 90 (1983), 487.[25℄ V. Thébault, Problem 3887. Three 
ir
les with 
ollinear 
enters, Amer.Math.Monthly, 45 (1938), 482�483.[26℄ G. Turnwald, Über eine Vermutung von Thébault, Elem. Math., 41 (1986),11�13.[27℄ D. Veljan and V. Volene
, Thébault's theorem, Elem. Math., 63 (2008), 6�13.[28℄ G. R. Veldkamp, Een vraagstuk van Thébault uit 1938, Nieuw. Tijdskr.Wiskunde, 61 (1973), 86�89.[29℄ G. R. Veldkamp, Comment, Crux Math., 15 (1989), 51�53.Kopernikova 7, 10020 Zagreb, Hrvatska, EuropaE-mail address : 
erin�math.hr


