ON THÉBAULT'S PROBLEM 3887

ZVONKO ČERIN

Abstract

The famous Thébault's configuration of the triangle $A B C$ depends on a variable point D on its sideline $B C$ and consists of eight circles touching the lines $A D$ and $B C$ and its circumcircle. These circles are best considered in four pairs that are related to the four circles touching the sidelines $B C, C A$ and $A B$ (the incircle and the three excircles). We use the analythic geometry to determine the coordinates of the centers P, Q, S, T, U, V, X and Y of the eight Thébault's circles with respect to a parametrization of the triangle $A B C$ with the inradius r and the cotangents f and g of the angles $\frac{B}{2}$ and $\frac{C}{2}$. The position of the point D is described by the cotangent of the half of the angle between the lines $A D$ and $B C$. The coordinates of many points in this configuration are simple rational functions in r, f, g and k that makes most computations simple especially when done by a computer. In this approach, the proof of the original Thébault's problem about the incenter I dividing the segment $Q P$ in the ratio k^{2} is straightforward. A large number of other interesting properties of this gem of the triangle geometry are explored by analythic methods.

1. Introduction

In [27], the authors say that the following result is usually called Thébault's theorem (see the portion of the Fig. 1 above the line $B C$).

Teorem 1. Let $u(I, r)$ be the incircle of a triangle $\triangle A B C$ (u is the name, I is the center and r is the radius), and D any point on the line $B C$. Let $k_{1}\left(P, r_{1}\right)$ and $k_{2}\left(Q, r_{2}\right)$ be two circles touching the lines $A D$ and $B C$ and the circumcircle o (O, R) of $A B C$. Then the three centers P, Q and I are collinear and the following relations hold:

$$
\begin{gather*}
P I: I Q=\tau^{2}, \tag{1}\\
r_{1}+r_{2} \tau^{2}=r\left(1+\tau^{2}\right), \tag{2}
\end{gather*}
$$

where $2 \theta=\angle A D B$ and $\tau=\tan \theta$.
The primary goal of this paper is to give correct versions of the above "theorem". Its formulation is wrong because the requirement "touching the lines $A D$ and $B C$ and the circumcircle $o(O, R)$ " is not restrictive enough. This is obvious from the part of the Figure 1 under the line $B C$ since the centers Y, U and I are not collinear. On the other hand, the relation (2) does not hold for all positions of the point D on the line $B C$.

Figure 1. Thébault's theorem.

The Problem 3887 in the American Mathematical Monthly by Victor Thébault [25] addresses an unusual result in elementary geometry that is easier to formulate and prove within the analytic geometry rather than in the synthetic geometry. The synthetic approach is traditionally considered as more valuable while the inferior analytic method is always a kind of brute force with lengthly computations.

We need the following notation to have shorter expressions. Let $d=f-g, z=f+g, \zeta=f g, h=\zeta-1, \bar{h}=\zeta+1, f_{ \pm}=f \pm k, g_{ \pm}=k$ $\pm g, f^{ \pm}=f^{2} \pm 1, g^{ \pm}=g^{2} \pm 1, \varphi_{ \pm}=f k \pm 1, \psi_{ \pm}=g k \pm 1, K=k^{2}+1$ and $L=k^{2}-1$. Let $\lambda(a, b)$ replace $(\lambda a, \lambda b)$.

Let $A B C$ be a triangle in the plane. Let $\beta=\angle C B A$ and $\gamma=\angle A C B$. Let $f=\cot \left(\frac{\beta}{2}\right)$ and $g=\cot \left(\frac{\gamma}{2}\right)$ and let $u(I, r)$ be the incircle of the triangle $A B C$. We shall use the rectangular coordinate system that has the point B as the origin and the point C is on the positive part of the x-axis while the point A is above it. For a point P, let x_{P} and y_{P} denote its x - and y-coordinate with respect to this system. Then the vertices A, B and C of the triangle $A B C$ have the coordinates $\frac{r g}{h}\left(f^{-}, 2 f\right)$, $(0,0)$ and $(r z, 0)$, where the positive real numbers r, f and g satisfy $h>0$. The position of a variable point D on the line $B C$ is determined by the positive real number $k=\cot \left(\frac{\delta}{2}\right)$, where δ is the angle between the lines $A D$ and $B C$. Hence, $D=D_{k}=D\left(\frac{r g f_{+} \varphi_{-}}{h k}, 0\right)$.

2. Thébault's theorem

We shall first determine the coordinates of the centers of Thébault's circles (see Theorem 2). With this important information the proof of the (complete) Thébault's theorem (see Theorems 3, 4 and 5 and the Figure 2) is indeed very simple and straightforward. Of course, our approach is similar to [3] and [21]. However, our choice of the
parametrization gives simpler expressions and allows more extensive study of the Thébault's configuration.

Teorem 2. The points P, Q, S, T, U, V, X and Y with coordinates $\frac{r \varphi_{-}}{k}\left(1, \frac{\psi_{+}}{h k}\right), r f_{+}\left(1,-\frac{g_{-}}{h}\right), \frac{r g f_{+}}{k}\left(1, \frac{f g_{-}}{h k}\right),-r g \varphi_{-}\left(1, \frac{f \psi_{+}}{h}\right), \frac{r g \varphi_{-}}{h k}\left(z, \frac{g_{-}}{k}\right)$, $\frac{r g f_{+}}{h}\left(z, \psi_{+}\right), \frac{r f_{+}}{h k}\left(-z, \frac{f \psi_{+}}{k}\right)$ and $\frac{r \varphi_{-}}{h}\left(z, f g_{-}\right)$are the centers and $r_{1}=$ $\left|y_{P}\right|, \ldots, r_{8}=\left|y_{Y}\right|$ are the radii of the eight circles $k_{i}(i=1, \ldots, 8)$ that touch the lines $B C$ and $A D$ and the circumcircle $o(O, R)$.

Proof. Let $P(p, q)$ be the center of the circle that touches the lines $B C$ and $A D$ and the circle o. Then

$$
\begin{equation*}
\left|P P^{\prime \prime}\right|=|q| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|P O|^{2}=(R \pm q)^{2} \tag{4}
\end{equation*}
$$

where $P^{\prime \prime}$ is the orthogonal projection of the point P on the line $A D$. If $\mathfrak{u}=L p-2 k q, \mathfrak{v}=L q+2 k p, \mathfrak{w}=h K^{2}$, then $\frac{4 r g k f_{+} \varphi_{-}+h L \mathfrak{u}}{\mathfrak{w}}$ and $\frac{2 r g L f_{+} \varphi_{-}-2 h k \mathfrak{u}}{\mathfrak{w}}$ are $x_{P^{\prime \prime}}$ and $y_{P^{\prime \prime}}$. Hence, $\left|P P^{\prime \prime}\right|=\left|\frac{h \mathfrak{v}-2 \mathfrak{r} g f_{+} \varphi_{-}}{\mathfrak{w}}\right|$. On the other hand, $R=\frac{r f^{+} g^{+}}{4 h}$ and O has the coordinates $\frac{r}{4 h}\left(2 z, z^{2}-h^{2}\right)$. It is now easy to see (perhaps with a little help from Maple V) that the above eight cases of pairs (p, q) are all solutions of the equations (3) and (4).

While it is easy to find the coordinates of the centers P, \ldots, Y of the eight Thébault circles and their radii $\left|y_{P}\right|, \ldots,\left|y_{Y}\right|$, it is difficult to describe them precisely by purely geometric means because when the point D changes position on the line $B C$ these circles are changing considerably so that it is hard to tell one from the other. For the points P, Q, S and T this was done in [3, Section 3] by use of oriented configurations.

For a real number $\lambda \neq-1$ and different points M and N, the λ-point of the segment $M N$ is a unique point F on the line $M N$ such that the ratio of oriented distances $|M F|$ and $|F N|$ is equal to λ. We can extend this definition to the case when $M=N$ taking that the λ-point is the point M for every real number $\lambda \neq-1$. Recall that the coordinates of the λ-point are $\left(\frac{x_{M}+\lambda x_{N}}{\lambda+1}, \frac{y_{M}+\lambda y_{N}}{\lambda+1}\right)$.

Let $k_{a}\left(I_{a}, r_{a}\right), k_{b}\left(I_{b}, r_{b}\right)$ and $k_{c}\left(I_{c}, r_{c}\right)$ be the excircles of the triangle $A B C$. Then I, I_{a}, I_{b} and I_{c} have the coordinates $r(f, 1), r g(1,-f)$, $\frac{r g z}{h}(f, 1)$ and $\frac{r z}{h}(-1, f)$. Also, $r_{a}=r f g, r_{b}=\frac{r g z}{h}$ and $r_{c}=\frac{r f z}{h}$.

The part of the following result for the segment $Q P$ is the correct form of Thébault's theorem while the part for the segment $T S$ is the correct form of the Thébault's external theorem (see [27, Remark 2]). In [21], Shail calls Theorem 3 the full Thébault theorem.

Figure 2. Theorems 3 and 4 together.

Teorem 3. The points I, I_{a}, I_{b} and I_{c} are the k^{2}-points of the segments $Q P, T S, V U$ and $Y X$.

Proof. Since

$$
\frac{x_{Q}+k^{2} x_{P}}{K}=\frac{r f_{+}+k^{2} \frac{r \varphi_{-}}{k}}{K}=r f=x_{I}
$$

and

$$
\frac{y_{Q}+k^{2} y_{P}}{K}=\frac{-\frac{r f_{+} g_{-}}{h}+k^{2} \frac{r \varphi_{-} \psi_{+}}{h k^{2}}}{K}=r=y_{I},
$$

it follows that I is the k^{2}-point of the segment $Q P$. The other cases have similar proofs.

Corollary 1. The abscises of the centers of Thébault's circles satisfy:

$$
\begin{equation*}
x_{Q}+k^{2} x_{P}=\operatorname{Krf}, \quad x_{T}+k^{2} x_{S}=\operatorname{Krg}, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x_{V}+k^{2} x_{U}=K r_{b} f, \quad f\left(x_{Y}+k^{2} x_{X}\right)=-K r_{c} \tag{6}
\end{equation*}
$$

Corollary 2. The ordinates of the centers of Thébault's circles satisfy:

$$
\begin{align*}
& y_{Q}+k^{2} y_{P}=K r, \quad y_{T}+k^{2} y_{S}=-K r_{a}, \tag{7}\\
& y_{V}+k^{2} y_{U}=K r_{b}, \quad y_{Y}+k^{2} y_{X}=K r_{c} . \tag{8}
\end{align*}
$$

Note that only when the point D is on the segment $B C$ it holds $y_{P}=r_{1}, y_{Q}=r_{2}, y_{S}=-r_{3}$ and $y_{T}=-r_{4}$ so that from (7) we get (2) since $k=\frac{1}{\tau}$. The second relation in (7) gives us the analogous formula $r_{3}+r_{4} \tau^{2}=r_{a}\left(1+\tau^{2}\right)$ for the Thébault's external theorem.

On the other hand, when the point D is on the left from the point B, the ordinate y_{P} of the center P is negative so that the relation (7) gives $r_{2}-k^{2} r_{1}=\left(1+k^{2}\right) r$. Moreover, when the point D is on the right from the point C, the ordinate y_{Q} is negative so that the relation (7) implies the third part $k^{2} r_{1}-r_{2}=\left(1+k^{2}\right) r$ of the correct version of the formula (2).

As was already noticed in [23], the eight Thébault's circles are also connected with the triangle $E B C$, where the point E is the second intersection (besides the point A) of the line $A D$ and the circumcircle o. Its coordinates are $\frac{r f_{+} \varphi_{-}}{h K^{2}}\left(\psi_{+}^{2}-g_{-}^{2}, 2 \psi_{+} g_{-}\right)$. One can easily find that its incenter J and the excenters J_{b}, J_{c} and J_{e} have the coordinates $\frac{r z \varphi_{-}}{h K}\left(\psi_{+}, g_{-}\right), \frac{r f_{+}}{K}\left(\psi_{+}, g_{-}\right), \frac{r \varphi_{-}}{K}\left(g_{-},-\psi_{+}\right)$and $\frac{r z f_{+}}{h K}\left(-g_{-}, \psi_{+}\right)$. It is important to note here that as the parameter k changes the actual role of these points changes so that from the excenters they can become other excenters or the incenter and vice verse.

Teorem 4. The four points J, J_{b}, J_{c} and J_{e} are the k^{2}-points of the segments $Y U, Q S, T P$ and $V X$.

Proof. Since

$$
\frac{x_{Y}+k^{2} x_{U}}{K}=\frac{r z \varphi_{-}}{h K}+\frac{r z g k \varphi_{-}}{h K}=\frac{r z \varphi_{-} \psi_{+}}{h K}=x_{J}
$$

and

$$
\frac{y_{Y}+k^{2} y_{U}}{K}=\frac{r f \varphi_{-} g_{-}}{h K}+\frac{r g \varphi_{-} g_{-}}{h K}=\frac{r z \varphi_{-} g_{-}}{h K}=y_{J}
$$

it follows that J is the k^{2}-point of the segment $Y U$. The other cases have similar proofs.

The approach in [23] also suggests that the other two triangles $A B E$ and $A C E$ and their incenters and the excenters should play a similar role. We denote those centers by $\mathfrak{I}, \mathfrak{I}_{a}, \mathfrak{I}_{b}, \mathfrak{I}_{e}$ and $\mathfrak{J}, \mathfrak{J}_{a}, \mathfrak{J}_{c}, \mathfrak{J}_{e}$. Their coordinates are $\frac{r \varphi_{-}}{h K}(h k+d, z k-h),-\frac{r g \varphi_{-}}{h K}(h-z k, h k+z)$, $\frac{r f_{+} g}{h K}(h k+z, z k-h), \frac{r f_{+}}{h K}(h-z k, h k+z), \frac{r}{h K}\left(\zeta z k^{2}-g^{+} k+f h\right.$, $\left.g_{-}(h k-z)\right), \frac{r}{h K}\left(g h k^{2}-f^{2} g^{+} k-z, f g_{-}(z k+h)\right),-\frac{r}{h K}\left(z k^{2}+f^{2}\right.$ $\left.g^{+} k-g h, f \psi_{+}(h k-z)\right)$ and $\frac{r}{h K}\left(f h k^{2}+g^{+} k+\zeta z, \psi_{+}(z k+h)\right)$.

Teorem 5. (i) The points $\mathfrak{I}, \mathfrak{I}_{a}, \mathfrak{I}_{b}$ and \mathfrak{I}_{e} are the k^{2}-points of the segments $Y P, T U, V S$ and $Q X$.
(ii) The points $\mathfrak{J}, \mathfrak{J}_{a}, \mathfrak{J}_{c}$ and \mathfrak{J}_{e} are the k^{2}-points of the segments $Q U, Y S, T X$ and $V P$.

Proof. Since

$$
\frac{x_{Y}+k^{2} x_{P}}{K}=\frac{r z \varphi_{-}}{h K}+\frac{r \varphi_{-} k}{K}=\frac{r \varphi_{-}(h k+z)}{h K}=x_{\mathfrak{I}}
$$

and

$$
\frac{y_{Y}+k^{2} y_{P}}{K}=\frac{r f \varphi_{-} g_{-}}{h K}+\frac{r \varphi_{-} \psi_{+}}{h K}=\frac{r \varphi_{-}(z k-h)}{h K}=y_{\mathfrak{I}},
$$

it follows that \mathfrak{I} is the k^{2}-point of the segment $Y P$. The other cases have similar proofs.

Now we could say that the Theorems 3, 4 and 5 together represent the complete Thébault theorem.

The rather simple coordinates of the incenters and the excenters of the triangles $A B C, B C E, A B E$ and $A C E$ allow us to prove easily the following results that Johnson in [9, p. 193] calls the "Japanese Theorem" (see also [16]).

Teorem 6. (i) The following quadrangles $I \mathfrak{I} J \mathfrak{J}, I_{a} \mathfrak{I}_{b} J_{e} \mathfrak{J}_{c}, I_{b} \mathfrak{J}_{a} J_{c} \mathfrak{J}_{e}$ and $I_{c} \mathfrak{J}_{e} J_{b} \mathfrak{J}_{a}$ are the rectangles.
(ii) Their areas satisfy: $|I \mathfrak{I} J \mathfrak{J}|\left|I_{a} \mathfrak{I}_{b} J_{e} \mathfrak{J}_{c}\right|=\left|I_{b} \mathfrak{I}_{a} J_{c} \mathfrak{J}_{e}\right|\left|I_{c} \mathfrak{I}_{e} J_{b} \mathfrak{J}_{a}\right|$.
(ii) Their centers are vertices of a parallelogram with the center at the circumcenter O of the triangle $A B C$.

Proof. Since $|I \Im|^{2}=|J \mathfrak{J}|^{2}=\frac{r^{2}\left(f^{+}\right)^{2}\left(g_{-}\right)^{2}}{h^{2} K}$ and $|I \mathfrak{J}|^{2}=|J \Im|^{2}=\frac{r^{2}\left(g^{+}\right)^{2}\left(\varphi_{-}\right)^{2}}{h^{2} K}$, it follows that $I \Im J \mathfrak{J}$ is a parallelogram. On the other hand, since the lines $I \mathfrak{I}$ and $I \mathfrak{J}$ have the equations $k x-y=r \varphi_{-}$and $x+k y=r f_{+}$, we conclude that they are perpendicular and $I \mathfrak{I} J \mathfrak{J}$ is a rectangle.

Since the area of a rectangle is the product of the lengths of its adjacent sides, we see that $|I \mathfrak{I} J \mathfrak{J}|=\frac{r^{2} f^{+} g^{+} \mid g_{-}-\varphi_{-}}{h^{2} K}$. Similarly,

$$
\left|I_{a} \mathfrak{I}_{b} J_{e} \mathfrak{J}_{c}\right|=\frac{r^{2} \zeta f^{+} g^{+} f_{+} \psi_{+}}{h^{2} K}, \quad\left|I_{b} \mathfrak{J}_{a} J_{c} \mathfrak{J}_{e}\right|=\frac{r^{2} g f^{+} g^{+} \psi_{+}\left|\varphi_{-}\right|}{h^{2} K}
$$

and $\left|I_{c} \mathfrak{I}_{e} J_{b} \mathfrak{J}_{a}\right|=\frac{r^{2} f f^{+} g^{+} f_{+}\left|g_{-}\right|}{h^{2} K}$. The identity in (ii) is now obvious.
Finally, it is easy to check that the circumcenter O is the midpoint of the segments $G_{I \mathfrak{J} \mathfrak{J} \mathfrak{J}} G_{I_{a} \mathfrak{J}_{b} J_{e} \mathfrak{J}_{c}}$ and $G_{I_{b} \mathfrak{J}_{a} J_{c} \mathfrak{J}_{e}} G_{I_{c} \mathfrak{J}_{e} J_{b} \mathfrak{J}_{a}}$ joining the centers (i. e., the centroids) of these rectangles.

Note that the inradii j, \mathfrak{r} and \mathfrak{j} and the exradii $j_{b}, j_{c}, j_{e}, \mathfrak{r}_{a}, \mathfrak{r}_{b}, \mathfrak{r}_{e}$, $\mathfrak{j}_{a}, \mathfrak{j}_{c}$ and \mathfrak{j}_{e} of the triangles $B C E, A B E$ and $A C E$ are the absolute values of the quotients $\frac{r g_{-} z \varphi_{-}}{h K}, \frac{r \varphi_{-}(\bar{h}-d k)}{h K}, \frac{r g_{-}(\bar{h} k+d)}{h K}, \frac{r f_{+} g_{-}}{K}, \frac{r \varphi_{-} \psi_{+}}{K}$, $\frac{r f_{+} \psi_{+} z}{h K}, \frac{r \varphi_{-} g(\bar{h} k+d)}{h K}, \frac{r f_{+} g(\bar{h}-d k)}{h K}, \frac{r f_{+}(\bar{h} k+d)}{h K}, \frac{r f g_{-}(h-d k)}{h K}, \frac{r f \psi_{+}(\bar{h} k+d)}{h K}$ and
$\frac{r \psi_{+}(\bar{h}-d k)}{h K}$. Now, at least under the assumption that D is on the segment $B C$, we can easily check the following identities:
$r+j=\mathfrak{r}+\mathfrak{j}, \quad r_{a}+j_{e}=\mathfrak{r}_{b}+\mathfrak{j}_{c}, \quad r_{b}+j_{c}=\mathfrak{r}_{a}+\mathfrak{j}_{e}, \quad r_{c}+j_{b}=\mathfrak{r}_{e}+\mathfrak{j}_{a}$.
The first is the relation (2.2) in [16].

3. Some conics as loci and envelopes

In order to find the locus of Thébault's center P, let us eliminate the parameter k from the equations $x_{P}=x$ and $y_{P}=y$. We get the equation $y=\frac{x(r z-x)}{r h}$ of the parabola μ with the circumcenter O as the focus and the horizontal line ε above the line $B C$ at the distance R (the circumradius) as the directrix. Repeating this for the centers Q, S and T will always produce the same parabola μ. On the other hand, doing this for the centers U, V, X and Y, will give the equation $y=\frac{h x(x-r z)}{r z^{2}}$ of the parabola ν also with the circumcenter O as the focus and the horizontal line ε^{*} below the line $B C$ at the distance R as the directrix.

Corollary 3. The points P, Q, S and T are on the parabola μ and the points U, V, X and Y are on the parabola ν.

The parabolas μ and ν intersect only in the points B and C and they enclose the region with the area $\frac{2}{3} a R$.

When the point D moves on the line $B C$, the many lines joining pairs of Thébault's centers provide families of lines that envelop some interesting conics of the triangle $A B C$.

For example, one interpretation of the Theorem 3 is that the lines $P Q, S T, U V$ and $X Y$ envelop the points I, I_{a}, I_{b} and I_{c} (considered as degenerated ellipses), respectively.

On the other hand, it was noted in [3], the lines $P S, Q T, U X$ and $V Y$ envelop the parabola λ of focus A and directrix $B C$ having the equation $y=\frac{h}{4 r \zeta} x^{2}-\frac{f^{-}}{2 f} x+\frac{r g\left(f^{+}\right)^{2}}{4 f h}$.

The parabolas λ, μ and ν are closely related in many respects: They have parallel directrices and axes and the distance between the foci of λ and μ and between the foci of λ and ν is equal to the distance between their directrices. It is not difficult to see that λ and μ touch in the $\frac{(b+c)^{2}-a^{2}}{a^{2}}$-point T_{μ} of the segment $A O$ and that λ and ν touch in the $\frac{(b-c)^{2}-a^{2}}{a^{2}}$-point T_{ν} of the segment $A O$ (when $b \neq c$).

When $b \neq c$, the lines $P T$ and $Q S$ envelop the same hyperbola η with the equation $\zeta(2 x-r z)^{2}-(h y-2 r \zeta)^{2}=r^{2} d^{2} \zeta$ ([3, Remark 7]).

The lines $U Y$ and $V X$ envelop the same ellipsis χ with the equation $h^{2} \zeta(2 x-r z)^{2}+z^{2}(h y-2 r \zeta)^{2}=r^{2} \bar{h}^{2} z^{2} \zeta$. It can be shown that χ is symmetric with respect to the perpendicular bisector of $B C$, tangent to ν at B and C, tangent to lines $T_{\nu} I_{b}$ and $T_{\nu} I_{c}$ and to the perpendiculars to $B C$ through I_{b} and I_{c}.

4. The line $A D$ tangent to the circumcircle

We shall see that some positions of the point D on the line $B C$ are particularly important. In the following two results we identify what happens when the line $A D$ is the tangent to the circumcircle o in the point A. In this exceptional case many points of the configuration coincide. Of course, this can happen only when the angles B and C are different.

Let P_{o}, \ldots, Y_{o} denote the points in which the Thébault's circles touch the circumcircle o. Their coordinates are $\frac{r \varphi_{-}}{P_{1}}\left(P_{2}, 2 h \psi_{+}\right), \frac{r f_{+}}{Q_{1}}\left(Q_{2}, 2 h g_{-}\right)$, $\frac{r g f_{+}}{S_{1}}\left(S_{2}, 2 h f g_{-}\right), \frac{r g \varphi_{-}}{T_{1}}\left(T_{2},-2 h f \psi_{+}\right), \frac{r g z \varphi_{-}}{h U_{1}}\left(U_{2}, 2 z g_{-}\right), \frac{r g z f_{+}}{h V_{1}}\left(V_{2}, 2 z \psi_{+}\right)$, $\frac{r z f_{+}}{h X_{1}}\left(X_{2}, 2 z f \psi_{+}\right)$and $\frac{r z \varphi_{-}}{h Y_{1}}\left(Y_{2}, 2 z f g_{-}\right)$, where P_{1}, \ldots, Y_{1} are $\left(h^{2}+d^{2}\right) k^{2}$ $-4 d k+4,4 k(k+d)+h^{2}+d^{2},\left(h^{2}+d^{2}\right) k^{2}-4 \zeta(d k-\zeta), 4 \zeta k(\zeta k+d)$ $+h^{2}+d^{2},\left(\bar{h}^{2}+z^{2}\right) k^{2}-4 g(\bar{h} k-g), 4 g k(g k+\bar{h})+\bar{h}^{2}+z^{2},\left(\bar{h}^{2}+z^{2}\right) k^{2}$ $+4 f(\bar{h} k+f), 4 f k(f k-\bar{h})+\bar{h}^{2}+z^{2}$ and P_{2}, \ldots, Y_{2} are $\left(h^{2}+d z\right) k-$ $2 z, 2 z k+h^{2}+d z,\left(h^{2}-d z\right) k+2 z \zeta, 2 z \zeta k-h^{2}+d z,\left(\zeta^{2}+z^{2}-1\right) k-$ $2 g h, 2 g h k+\zeta^{2}+z^{2}-1,\left(\zeta^{2}-z^{2}-1\right) k+2 f h, 2 f h k-\zeta^{2}+z^{2}+1$.

For eight points P_{1}, \ldots, P_{8}, let $D\left(P_{1}, \ldots, P_{8}\right)$ be the determinant

$$
\left|\begin{array}{llll}
x_{P_{1}} & y_{P_{1}} & x_{P_{2}} & y_{P_{2}} \\
x_{P_{3}} & y_{P_{3}} & x_{P_{4}} & y_{P_{4}} \\
x_{P_{5}} & y_{P_{5}} & x_{P_{6}} & y_{P_{6}} \\
x_{P_{7}} & y_{P_{7}} & x_{P_{8}} & y_{P_{8}}
\end{array}\right|
$$

Teorem 7. The following statements are equivalent: (i) $P=S$, (ii) $V=Y$, (iii) $P_{o}=A$, (iv) $S_{o}=A$, (v) $V_{o}=A$, (vi) $Y_{o}=A$, (vii) $I=J_{c}$, (viii) $I_{a}=J_{b}$, (xi) $I_{b}=J$,(x) $I_{c}=J_{a}$, (xi) $\mathfrak{I}=\mathfrak{I}_{b}$, (xii) $\mathfrak{I}=\mathfrak{J}_{a}$, (xiii) $\mathfrak{I}=\mathfrak{J}_{e}$, (xiv) $\mathfrak{J}_{a}=\mathfrak{J}_{e}$, (xv) the lines $\mathfrak{I}_{b} \mathfrak{J}_{c}$ and $I_{c} J_{e}$ are perpendicular, (xvi) $D\left(I, I_{a}, I_{b}, I_{c}, J, J_{e}, J_{b}, J_{c}\right)=0$, (xv) $\mathfrak{I}_{b} \in A D$, (xvi) $\mathfrak{J}_{e} \in A D$, (xvii) the lines $\mathfrak{I}_{b} \mathfrak{J}_{e}$ and $A D$ are perpendicular, (xviii) the lines $I_{c} J_{a}$ and $A D$ are parallel, (xix) the lines $I_{a} J_{c}$ and $A D$ are parallel and (xx) the angle B is smaller than the angle C and the lines $A D$ and $A O$ are perpendicular.

Proof. Since $|P S|^{2}=\frac{r^{2} K(\bar{h}-d k)^{2}}{k^{4}}$, we conclude that $P=S$ if and only if $k=\frac{\bar{h}}{d}$. However, the parameter k is positive, so that $f>g$ (i. e., the angle B is smaller than the angle C) and the point D divides the segment $B C$ in the ratio $-\frac{|A B|^{2}}{|A C|^{2}}$ (i. e., the point D is the intersection of the tangent to the circumcircle at the vertex A with the line $B C$). This shows the equivalence of (i) and (xx). For the other parts, it suffices to note that the only factor that could be zero in the squares of distances of the points in this part is always the same $\bar{h}-d k$.

The following companion result has similar proof. This time the common factor is $d+\bar{h} k$.

Teorem 8. The following are equivalent: (i) $Q=T$, (ii) $U=X$, (iii) $Q_{o}=A$, (iv) $T_{o}=A$, (v) $U_{o}=A$, (vi) $X_{o}=A$, (vii) $I=J_{b}$, (viii) $I_{a}=J_{c}$, (xi) $I_{b}=J_{a},(x) I_{c}=J$, (xi) $\mathfrak{J}=\mathfrak{I}_{a}$, (xii) $\mathfrak{J}=\mathfrak{I}_{e}$, (xiii) $\mathfrak{J}=\mathfrak{J}_{c}$, (xiv) $\mathfrak{I}_{a}=\mathfrak{I}_{e}$, (xv) the lines $\mathfrak{I}_{b} \mathfrak{J}_{c}$ and $I_{b} J_{e}$ are perpendicular, (xvi) $\mathfrak{I}_{e} \in A D$, (xvii) $\mathfrak{J}_{c} \in A D$, (xviii) the lines $\mathfrak{I}_{e} \mathfrak{J}_{c}$ and $A D$ are perpendicular, (xix) the lines $I_{b} J_{a}$ and $A D$ are parallel, (xx) the lines $I_{a} J_{b}$ and $A D$ are parallel and (xxi) the angle B is larger than the angle C and the lines $A D$ and $A O$ are perpendicular.

5. Identities for coordinates

Some of the basic algebraic identities among the products of the ordinates of the centers of Thébault's circles are given in the next result.
Teorem 9. The following relations hold:

$$
\begin{gather*}
\zeta^{2} y_{P} y_{Q}=y_{S} y_{T}, \quad k^{2} \zeta y_{P} y_{Q}=-y_{V} y_{Y}, \quad g^{2} y_{U} y_{X}=f^{2} y_{V} y_{Y} \tag{9}\\
k^{2} \zeta y_{U} y_{X}=-y_{S} y_{T}, \quad y_{P} y_{S}=y_{U} y_{X}, \quad k^{4} y_{P} y_{S}=y_{V} y_{Y} \tag{10}\\
y_{Q} y_{T}=y_{V} y_{Y}, \quad y_{Q} y_{T}=k^{4} y_{U} y_{X}, \quad f_{+}^{2} y_{P} y_{T}=-\varphi_{-}^{2} y_{V} y_{X} \tag{11}\\
g_{-}^{2} y_{P} y_{T}=-\psi_{+}^{2} y_{U} y_{Y}, \quad \varphi_{-}^{2} y_{Q} y_{S}=-f_{+}^{2} y_{U} y_{Y} \tag{12}\\
\psi_{+}^{2} y_{Q} y_{S}=-g_{-}^{2} y_{V} y_{X}, \quad k^{4} f^{2} y_{P} y_{U}=-y_{T} y_{Y}, \quad f^{2} y_{Q} y_{V}=-y_{S} y_{X} \tag{13}\\
f^{2} y_{P} y_{V}=-y_{T} y_{X}, \quad f^{2} y_{Q} y_{U}=-y_{S} y_{Y}, \quad k^{4} g^{2} y_{P} y_{X}=-y_{T} y_{V} \tag{14}\\
g^{2} y_{Q} y_{Y}=-k^{4} y_{S} y_{U}, \quad g^{2} y_{P} y_{Y}=-y_{T} y_{U}, \quad g^{2} y_{Q} y_{X}=-y_{S} y_{V} \tag{15}
\end{gather*}
$$

Proof. Since $y_{P}=\frac{r \varphi_{-} \psi_{+}}{h k^{2}}, y_{Q}=-\frac{r f_{+} g_{-}}{h}, y_{S}=\frac{r \zeta f_{+} g_{-}}{h k^{2}}$ and $y_{T}=-\frac{r \zeta \varphi_{-} \psi_{+}}{h}$, it is easy to verify the first relation in (9). All other identities are proved similarly by direct inspection.

Since the absolute values of y_{P}, \ldots, y_{Y} are the radii r_{1}, \ldots, r_{8} of Thébault's circles and the absolute value of the product is the product of the absolute values of the factors, from the above relations, we have the following results. The first identity in (17) is from [3, Corollary 5].

Corollary 4. The radii of Thébault's circles satisfy:

$$
\begin{gather*}
r_{1} r_{3}=r_{5} r_{7}, \quad r_{2} r_{4}=r_{6} r_{8}, \quad k^{4} r_{5} r_{7}=r_{2} r_{4}, \tag{16}\\
\frac{r_{1} r_{2}}{r^{2}}=\frac{r_{3} r_{4}}{r_{a}^{2}}, \quad \frac{r_{5} r_{6}}{r_{b}^{2}}=\frac{r_{7} r_{8}}{r_{c}^{2}}, \quad \frac{r_{5} r_{8}}{j^{2}}=\frac{r_{6} r_{7}}{j_{e}^{2}}, \quad \frac{r_{2} r_{3}}{j_{b}^{2}}=\frac{r_{1} r_{4}}{j_{c}^{2}} \tag{17}\\
\frac{r_{1} r_{8}}{\mathfrak{r}^{2}}=\frac{r_{3} r_{6}}{\mathfrak{r}_{b}^{2}}, \quad \frac{r_{4} r_{5}}{\mathfrak{r}_{a}^{2}}=\frac{r_{2} r_{7}}{\mathfrak{r}_{e}^{2}}, \quad \frac{r_{2} r_{5}}{\mathfrak{j}^{2}}=\frac{r_{4} r_{7}}{\mathfrak{j}_{c}^{2}}, \quad \frac{r_{3} r_{8}}{\mathfrak{j}_{a}^{2}}=\frac{r_{1} r_{6}}{\mathfrak{j}_{e}^{2}} \tag{18}
\end{gather*}
$$

For the abscises many relations also hold. The following two are rather simple.

Teorem 10. The following relations hold:

$$
\begin{gather*}
x_{P} x_{S} x_{V} x_{Y}=x_{Q} x_{T} x_{U} x_{X} \tag{19}\\
k^{4} x_{P} x_{S} x_{U} x_{X}=x_{Q} x_{T} x_{V} x_{Y} \tag{20}
\end{gather*}
$$

Proof. The products on the left and on the right sides of the relation (19) have as the common value the square of $\frac{r^{2} f_{+} \varphi-g z}{h k}$. The common value in the relation (20) is minus the square of $\frac{r^{2} f_{+} \varphi_{-g z}}{h}$.

We continue with the formulae that involve the radii of the incircle and the excircles.

Teorem 11. The following relations hold:

$$
\begin{equation*}
\text { (28) } \frac{y_{S}}{\mathfrak{j}_{a}}+\frac{y_{X}}{\mathfrak{j}_{c}}+\frac{y_{P}}{\mathfrak{j}_{e}}=\frac{y_{U}}{\mathfrak{j}} \tag{27}
\end{equation*}
$$

$$
\begin{align*}
& \frac{y_{S}}{r_{a}}+\frac{y_{U}}{r_{b}}+\frac{y_{X}}{r_{c}}=\frac{y_{P}}{r} \tag{21}\\
& \frac{y_{T}}{j_{b}}+\frac{y_{P}}{j_{c}}+\frac{y_{X}}{j_{e}}=\frac{y_{U}}{j} \tag{23}\\
& \frac{y_{U}}{\mathfrak{r}_{a}}+\frac{y_{S}}{\mathfrak{r}_{b}}+\frac{y_{X}}{\mathfrak{r}_{e}}=\frac{y_{P}}{\mathfrak{r}} \tag{25}\\
& \frac{y_{Y}}{\mathfrak{j}_{a}}+\frac{y_{T}}{\mathfrak{j}_{c}}+\frac{y_{V}}{\mathfrak{j}_{e}}=\frac{y_{Q}}{\mathfrak{j}},
\end{align*}
$$

$$
\begin{equation*}
\frac{y_{T}}{r_{a}}+\frac{y_{V}}{r_{b}}+\frac{y_{Y}}{r_{c}}=\frac{y_{Q}}{r} \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& \frac{y_{T} y_{S}}{r_{a}}+\frac{y_{V} y_{U}}{r_{b}}+\frac{y_{Y} y_{X}}{r_{c}}=\frac{y_{Q} y_{P}}{r}, \tag{29}\\
& \frac{y_{Q} y_{S}}{j_{b}}+\frac{y_{T} y_{P}}{j_{c}}+\frac{y_{V} y_{X}}{j_{e}}=\frac{y_{Y} y_{U}}{j}, \tag{30}\\
& \frac{y_{T} y_{U}}{\mathfrak{r}_{a}}+\frac{y_{V} y_{S}}{\mathfrak{r}_{b}}+\frac{y_{Q} y_{X}}{\mathfrak{r}_{e}}=\frac{y_{Y} y_{P}}{\mathfrak{r}}, \tag{31}\\
& \frac{y_{Y} y_{S}}{\mathfrak{j}_{a}}+\frac{y_{T} y_{X}}{\mathfrak{j}_{c}}+\frac{y_{V} y_{P}}{\mathfrak{j}_{e}}=\frac{y_{Q} y_{U}}{\mathfrak{j}} . \tag{32}
\end{align*}
$$

Proof. Since $\frac{y_{S}}{r_{a}}=\frac{f_{+} g_{-}}{h k^{2}}, \frac{y_{U}}{r_{b}}=\frac{\varphi_{-} g_{-}}{z k^{2}}$ and $\frac{y_{X}}{r_{c}}=\frac{f_{+} \psi_{+}}{z k^{2}}$, we get

$$
\frac{y_{S}}{r_{a}}+\frac{y_{U}}{r_{b}}+\frac{y_{X}}{r_{c}}=\frac{\varphi_{-} \psi_{+}}{h k^{2}}=\frac{y_{P}}{r} .
$$

This proves the relation (21). The other identities have similar proofs.

It is interesting to note that any of the formulae (29)-(32) remains true if ordinates are replaced consistently by abscises. For example, the analogues of the formula (29) with abscises are the following three relations:

$$
\begin{align*}
& \frac{x_{T} y_{S}}{r_{a}}+\frac{x_{V} y_{U}}{r_{b}}+\frac{x_{Y} y_{X}}{r_{c}}=\frac{x_{Q} y_{P}}{r}, \tag{33}\\
& \frac{y_{T} x_{S}}{r_{a}}+\frac{y_{V} x_{U}}{r_{b}}+\frac{y_{Y} x_{X}}{r_{c}}=\frac{y_{Q} x_{P}}{r}, \tag{34}
\end{align*}
$$

$$
\begin{equation*}
\frac{x_{T} x_{S}}{r_{a}}+\frac{x_{V} x_{U}}{r_{b}}+\frac{x_{Y} x_{X}}{r_{c}}=\frac{x_{Q} x_{P}}{r} . \tag{35}
\end{equation*}
$$

Remark 1. The relations (21)-(28) hold also for the abscises in place of the ordinates.

Corollary 5. The radii of Thébault's circles satisfy:

$$
\begin{align*}
& \frac{r_{3} r_{4}}{r_{a}}-\frac{r_{1} r_{2}}{r}=\frac{r_{5} r_{6}}{r_{b}}+\frac{r_{7} r_{8}}{r_{c}}, \tag{36}\\
& \frac{r_{6} r_{7}}{j_{e}}+\frac{r_{5} r_{8}}{j}=\frac{r_{2} r_{3}}{j_{b}}+\frac{r_{1} r_{4}}{j_{c}}, \tag{37}\\
& \frac{r_{4} r_{5}}{\mathfrak{r}_{a}}-\frac{r_{1} r_{8}}{\mathfrak{r}}=\frac{r_{3} r_{6}}{\mathfrak{r}_{b}}+\frac{r_{2} r_{7}}{\mathfrak{r}_{e}}, \tag{38}\\
& \frac{r_{3} r_{8}}{\mathfrak{j}_{a}}-\frac{r_{2} r_{5}}{\mathfrak{j}}=\frac{r_{4} r_{7}}{\mathfrak{j}_{c}}+\frac{r_{1} r_{6}}{\mathfrak{j}_{e}}, \tag{39}
\end{align*}
$$

and for the point D in the segment $B C$,

$$
\begin{align*}
& \frac{r_{1}+r_{2}}{r}+\frac{r_{3}+r_{4}}{r_{a}}=\frac{r_{5}-r_{6}}{r_{b}}+\frac{r_{7}-r_{8}}{r_{c}}, \tag{40}\\
& \frac{r_{6}-r_{7}}{j_{e}}+\frac{r_{5}-r_{8}}{j}=\frac{r_{2}-r_{3}}{j_{b}}+\frac{r_{1}-r_{4}}{j_{c}}, \tag{41}\\
& \frac{r_{4}+r_{5}}{\mathfrak{r}_{a}}+\frac{r_{1}-r_{8}}{\mathfrak{r}}=\frac{r_{2}+r_{7}}{\mathfrak{r}_{e}}-\frac{r_{3}+r_{6}}{\mathfrak{r}_{b}}, \tag{42}\\
& \frac{r_{3}+r_{8}}{\mathfrak{j}_{a}}+\frac{r_{2}+r_{5}}{\mathfrak{j}}=\frac{r_{7}-r_{4}}{\mathfrak{j}_{c}}+\frac{r_{1}-r_{6}}{\mathfrak{j}_{e}} . \tag{43}
\end{align*}
$$

Proof. The identity (36) is a consequence of the relation (29). The ordinates of the centers of Thébault's circles are their radii up to a sign. These signs depend on the position of the point D on the line $B C$ and are given in the next table.

D is in	y_{P}	y_{Q}	y_{S}	y_{T}	y_{U}	y_{V}	y_{X}	y_{Y}
$(-\infty, B)$	-	+	-	+	+	+	+	+
(B, C)	+	+	-	-	-	+	+	-
$(C,+\infty)$	+	-	+	-	+	+	+	+

Hence, from (29) we get (36) and from the sum of (21) and (22) we obtain (40). Of course, there are also the versions of (40) when D is in $(-\infty, B)$ and when it is in $(C,+\infty)$.

Let us close this group of identities with the following eight. The proofs are very similar to the ones above.

Teorem 12. The following relations hold:

$$
\begin{align*}
& \frac{y_{S}^{2}}{r_{a}}+\frac{y_{U}^{2}}{r_{b}}+\frac{y_{X}^{2}}{r_{c}}=\frac{y_{P}^{2}}{r}+\frac{4 K R}{k^{4}} \tag{44}\\
& \frac{y_{T}^{2}}{r_{a}}+\frac{y_{V}^{2}}{r_{b}}+\frac{y_{Y}^{2}}{r_{c}}=\frac{y_{Q}^{2}}{r}+4 k^{2} K R \tag{45}\\
& \frac{y_{S}^{2}}{j_{b}}+\frac{y_{P}^{2}}{j_{c}}+\frac{y_{X}^{2}}{j_{e}}=\frac{y_{U}^{2}}{j}+\frac{4 K R}{k^{4}}, \tag{46}\\
& \frac{y_{Q}^{2}}{j_{b}}+\frac{y_{T}^{2}}{j_{c}}+\frac{y_{V}^{2}}{j_{e}}=\frac{y_{Y}^{2}}{j}+4 k^{2} K R \tag{47}\\
& \frac{y_{U}^{2}}{\mathfrak{r}_{a}}+\frac{y_{S}^{2}}{\mathfrak{r}_{b}}+\frac{y_{P}^{2}}{\mathfrak{r}_{e}}=\frac{y_{X}^{2}}{\mathfrak{r}}+\frac{4 K R}{k^{4}} \tag{48}\\
& \frac{y_{T}^{2}}{\mathfrak{r}_{a}}+\frac{y_{V}^{2}}{\mathfrak{r}_{b}}+\frac{y_{Q}^{2}}{\mathfrak{r}_{c}}=\frac{y_{Y}^{2}}{\mathfrak{r}}+4 k^{2} K R \tag{49}\\
& \frac{y_{S}^{2}}{\mathfrak{j}_{a}}+\frac{y_{X}^{2}}{\mathfrak{j}_{c}}+\frac{y_{P}^{2}}{\mathfrak{j}_{e}}=\frac{y_{U}^{2}}{\mathfrak{j}}+\frac{4 K R}{k^{4}} \tag{50}\\
& \frac{y_{Y}^{2}}{\mathfrak{j}_{a}}+\frac{y_{T}^{2}}{\mathfrak{j}_{c}}+\frac{y_{V}^{2}}{\mathfrak{j}_{e}}=\frac{y_{Q}^{2}}{\mathfrak{j}}+4 k^{2} K R . \tag{51}
\end{align*}
$$

Remark 2. For the abscises in the identities (44)-(51), the last terms are $\frac{4 K R}{k^{2}}$ and $4 K R$, respectively.

In the next group of formulae we prove that the products of squares of the Thébault's radii divided by fourth powers of the appropriate inradius or exradius also show considerable regularity.

Teorem 13. The radii of Thébault's circles satisfy the identities:

$$
\begin{array}{ll}
\frac{r_{1}^{2} r_{2}^{2}}{r^{4}}+\frac{r_{7}^{2} r_{8}^{2}}{r_{c}^{4}}=\frac{r_{3}^{2} r_{4}^{2}}{r_{a}^{4}}+\frac{r_{5}^{2} r_{6}^{2}}{r_{b}^{4}}, & \frac{r_{1}^{2} r_{2}^{2}}{r^{4}}+\frac{r_{5}^{2} r_{6}^{2}}{r_{b}^{4}}=\frac{r_{3}^{2} r_{4}^{2}}{r_{a}^{4}}+\frac{r_{7}^{2} r_{8}^{2}}{r_{c}^{4}}, \\
\frac{r_{5}^{2} r_{8}^{2}}{j^{4}}+\frac{r_{2}^{2} r_{3}^{2}}{j_{b}^{4}}=\frac{r_{1}^{2} r_{4}^{2}}{j_{c}^{4}}+\frac{r_{6}^{2} r_{7}^{2}}{j_{e}^{4}}, & \frac{r_{5}^{2} r_{8}^{2}}{j^{4}}+\frac{r_{1}^{2} r_{4}^{2}}{j_{c}^{4}}=\frac{r_{2}^{2} r_{3}^{2}}{j_{b}^{4}}+\frac{r_{6}^{2} r_{7}^{2}}{j_{e}^{4}}, \\
\frac{r_{1}^{2} r_{8}^{2}}{\mathfrak{r}^{4}}+\frac{r_{2}^{2} r_{7}^{2}}{\mathfrak{r}_{e}^{4}}=\frac{r_{4}^{2} r_{5}^{2}}{\mathfrak{r}_{a}^{4}}+\frac{r_{3}^{2} r_{6}^{2}}{\mathfrak{r}_{b}^{4}}, & \frac{r_{1}^{2} r_{8}^{2}}{\mathfrak{r}^{4}}+\frac{r_{4}^{2} r_{5}^{2}}{\mathfrak{r}_{a}^{4}}=\frac{r_{2}^{2} r_{7}^{2}}{\mathfrak{r}_{e}^{4}}+\frac{r_{3}^{2} r_{6}^{2}}{\mathfrak{r}_{b}^{4}}, \\
\frac{r_{2}^{2} r_{5}^{2}}{\mathfrak{j}^{4}}+\frac{r_{1}^{2} r_{6}^{2}}{\mathfrak{j}_{e}^{4}}=\frac{r_{3}^{2} r_{8}^{2}}{\mathfrak{j}_{a}^{4}}+\frac{r_{4}^{2} r_{7}^{2}}{\mathfrak{j}_{c}^{4}}, & \frac{r_{2}^{2} r_{5}^{2}}{\mathfrak{j}^{4}}+\frac{r_{3}^{2} r_{8}^{2}}{\mathfrak{j}_{a}^{4}}=\frac{r_{1}^{2} r_{6}^{2}}{\mathfrak{j}_{e}^{4}}+\frac{r_{4}^{2} r_{7}^{2}}{\mathfrak{j}_{c}^{4}} .
\end{array}
$$

Proof. Let $f^{2+}=f^{4}+1$ and $g^{2+}=g^{4}+1$. One can easily check that both sides in the first relation have the value

$$
\frac{f_{+}^{2} g_{-}^{2} \varphi_{-}^{2} \psi_{+}^{2}\left(f^{2+} g^{2+}-4 \zeta f^{-} g^{-}+12 \zeta^{2}\right)}{(h k z)^{4}} .
$$

The other identities in this group have analogous proofs.
In the next result we show that a certain relationship among the radii of Thébault's circles can hold only when either the point D or the triangle $A B C$ are rather special.

Teorem 14. (i) The radii of the Thébault's circles satisfy the identity

$$
\frac{r_{1}^{2} r_{2}^{2}}{r^{4}}+\frac{r_{3}^{2} r_{4}^{2}}{r_{a}^{4}}=\frac{r_{5}^{2} r_{6}^{2}}{r_{b}^{4}}+\frac{r_{7}^{2} r_{8}^{2}}{r_{c}^{4}}
$$

if and only if either $D=B, D=C$ or the angle A is right.
(ii) The radii of the Thébault's circles satisfy the identity

$$
\frac{r_{5}^{2} r_{8}^{2}}{j^{4}}+\frac{r_{6}^{2} r_{7}^{2}}{j_{e}^{4}}=\frac{r_{2}^{2} r_{3}^{2}}{j_{b}^{4}}+\frac{r_{1}^{2} r_{4}^{2}}{j_{c}^{4}}
$$

if and only if the angle A is right.
(iii) If the lines $A D$ and $A O$ are not perpendicular (see Theorems 7 and 8), then the radii of the Thébault's circles satisfy the identity

$$
\frac{r_{1}^{2} r_{8}^{2}}{\mathfrak{r}^{4}}+\frac{r_{3}^{2} r_{6}^{2}}{\mathfrak{r}_{b}^{4}}=\frac{r_{2}^{2} r_{7}^{2}}{\mathfrak{r}_{e}^{4}}+\frac{r_{4}^{2} r_{5}^{2}}{\mathfrak{r}_{a}^{4}}
$$

if and only if either $D=C$ or the point D is on the line $A O$.
Similarly, they satisfy the identity

$$
\frac{r_{2}^{2} r_{5}^{2}}{\mathfrak{j}^{4}}+\frac{r_{4}^{2} r_{7}^{2}}{\mathfrak{j}_{c}^{4}}=\frac{r_{1}^{2} r_{6}^{2}}{\mathfrak{j}_{e}^{4}}+\frac{r_{3}^{2} r_{8}^{2}}{\mathfrak{j}_{a}^{4}}
$$

if and only if either $D=B$ or the point D is on the line $A O$.
Proof. (i) This follows immediately from the identity

$$
\left(\frac{r_{5}^{2} r_{6}^{2}}{r_{b}^{4}}+\frac{r_{7}^{2} r_{8}^{2}}{r_{c}^{4}}\right)-\left(\frac{r_{1}^{2} r_{2}^{2}}{r^{4}}+\frac{r_{3}^{2} r_{4}^{2}}{r_{a}^{4}}\right)=\frac{2 f^{+} g^{+} f_{+}^{2} g_{-}^{2} \varphi_{-}^{2} \psi_{+}^{2}\left(h^{2}-z^{2}\right)}{(h k z)^{4}}
$$

The other cases have similar proofs.
Here is an interesting inequality.
Teorem 15. The ordinates of the centers of Thébault's circles satisfy the inequality:

$$
\begin{equation*}
\frac{\left(y_{S}+y_{T}\right)^{2}}{r_{a}}+\frac{\left(y_{U}+y_{V}\right)^{2}}{r_{b}}+\frac{\left(y_{X}+y_{Y}\right)^{2}}{r_{c}} \geq 16 R+\frac{\left(y_{P}+y_{Q}\right)^{2}}{r} . \tag{52}
\end{equation*}
$$

The equality holds if and only if the line $A D$ is perpendicular to the line BC. The same holds also for the abscises in place of the ordinates.

Proof. Since $\frac{\left(y_{S}+y_{T}\right)^{2}}{r_{a}}+\frac{\left(y_{U}+y_{V}\right)^{2}}{r_{b}}+\frac{\left(y_{X}+y_{Y}\right)^{2}}{r_{c}}-\frac{\left(y_{P}+y_{Q}\right)^{2}}{r}=\frac{4 R K^{2}\left(k^{2} L+1\right)}{k^{4}}$ and the function $k \mapsto \frac{K^{2}\left(k^{2} L+1\right)}{k^{4}}$ has the minimum 16 for $k=1$, we conclude that the inequality (52) holds.

It remains to note that the line $A D$ is perpendicular to the line $B C$ if and only if $k=1$.

Of course, there are three similar inequalities involving the inradii and the exradii of the triangles $B C E, A B E$ and $A C E$. Also, these inequalities have the usual interpretations in terms of the radii of the Thébault's circles leading to the three versions depending on the position of the point D on the line $B C$.

6. EQUAL RADII r_{1} AND r_{2}

In this section we shall explore when the pair r_{1} and r_{2} of the radii of the first and the second Thébault's circles are equal. In fact, the problem is to describe the positions of the point D on the line $B C$ when $r_{1}=r_{2}$ holds. It turns out that the equality happens for three values of the parameter k. The simpler value corresponds to the case when $r_{1}=r_{2}=r$ (see Theorem 16) and the two more complicated values to the case $r_{1}=r_{2}$ and either $r_{1} \neq r$ or $r_{2} \neq r$ (see Theorem 17). In each situation many other geometric consequences hold. Some are characteristic for the equality of r_{1} and r_{2} (with r).

Let $k_{I_{a}^{\prime}}=\frac{\sqrt{d^{2}+4}-d}{2}$ be the positive root of the polynomial $p_{I_{a}^{\prime}}=L+d k$.
Let the perpendicular bisector of the segment $B C$ intersect the circumcircle o in the points Z_{1} and Z_{2} such that Z_{1} is above and Z_{2} is below the line $B C$. Note that Z_{1} is the midpoint of $I_{b} I_{c}$ and the circle $k_{I_{b} I_{c}}$ goes through B, C and J_{a}. Similarly, Z_{2} is the midpoint of $J_{b} J_{c}$ and the circle $k_{J_{b} J_{c}}$ goes through B, C and I_{a}.

Teorem 16. The following statements are equivalent: (i) the point D is the orthogonal projection I_{a}^{\prime} of the excenter I_{a} onto the line $B C$, (ii) the parameter k is $k_{I_{a}^{\prime}}$, (iii) the lines $P Q$ and $B C$ are parallel, (iv) the lines $P_{o} Q_{o}$ and $B C$ are parallel, (v) the line $A D$ bisects the segment $P Q$, (vi) the segments $P Q$ and $P^{\prime \prime} Q^{\prime \prime}$ share the midpoints, (vii) the line joining the incenter I and the midpoint of the segment $B C$ is parallel to the line $A D$, (viii) the line joining the circumcenter O and the midpoint of either the segment $P^{\prime} Q^{\prime}$ or $P^{\prime \prime} Q^{\prime \prime}$ is perpendicular to the line $P Q$, (ix) the midpoint of the segment $B C$ has the same power with respect to the circles k_{1} and k_{2}, (x) the points P_{o} and Q_{o} are equidistant from the point Z_{1} and/or Z_{2} and (xi) the equalities $r_{1}=r$ and $r_{2}=r$ hold.

Proof. Since the point I_{a}^{\prime} has the coordinates $(\mathrm{rg}, 0)$, we get that $\left|D I_{a}^{\prime}\right|$ is equal $\frac{r \zeta\left|p_{I_{a}^{\prime}}\right|}{h k}$. Hence, (i) and (ii) are equivalent.

The lines $P Q$ and $B C$ are parallel if and only if the points P and Q have equal ordinates. Since $y_{P}-y_{Q}=\frac{r K p_{I_{a}^{\prime}}}{h k^{2}}$, we see that (ii) and (iii) are equivalent.

Similarly, since $y_{P_{o}}-y_{Q_{o}}=\frac{2 r h K f^{+} g^{+} p_{I_{a}^{\prime}}}{P_{1} Q_{1}}$, it follows that (ii) and (iv) are equivalent.

The midpoint of the segment $P Q$ has the coordinates $\frac{r}{2 k}(L+2 f k$, $-\frac{p_{4}}{h k}$), where p_{4} is defined bellow. It is on the line $A D$ whose equation is $2 k x+L y=\frac{2 r g f_{+} \varphi_{-}}{h}$ if and only if $\frac{r^{2} \zeta K^{2} p_{I_{a}^{\prime}}}{2 h^{2} k^{3}}=0$. Hence, (ii) and (v) are equivalent.

The orthogonal projections $P^{\prime \prime}$ and $Q^{\prime \prime}$ of P and Q onto the line $A D$ have $\frac{r \varphi_{-}}{h k K}\left(h k^{2}+2 g k+\bar{h}, 2 \psi_{+} k\right)$ and $\frac{r f_{+}}{h K}\left(\bar{h} k^{2}-2 g k+h,-2 g_{-}\right)$as coordinates. It follows that the midpoints of the segments $P Q$ and $P^{\prime \prime} Q^{\prime \prime}$ are $\frac{r K\left|p_{I_{a}^{\prime}}\right|}{2 h k^{2}}$ apart. Therefore, (ii) and (vi) are equivalent.

The line joining the incenter I and the midpoint of the segment $B C$ has the equation $2 x-d y=r z$. It will be parallel to the line $A D$ if and only if $\frac{r^{2} \zeta p_{I_{a}^{\prime}}}{h k}=0$. This shows the equivalence of (ii) and (vii).

The line $P Q$ has the equation $p_{I_{a}^{\prime}} x+h k y=r f_{+} \varphi_{-}$. The line joining the circumcenter O and the midpoint of the segment $P^{\prime} Q^{\prime}$ has the equation $2\left(h^{2}-z^{2}\right) k y-4 h p_{I_{a}^{\prime}} y=r(L+2 f k)\left(h^{2}-z^{2}\right)$. They will be perpendicular if and only if $\frac{r^{2} K f^{+} g^{+} p_{I_{a}^{\prime}}}{4 h^{2} k^{2}}=0$. The line joining O and the midpoint of the segment $P^{\prime \prime} Q^{\prime \prime}$ is more complicated but it will be perpendicular to the line $P Q$ if and only if the same condition holds. This shows the equivalence of (ii) and (viii).

The power $w\left(A_{g}, k_{2}\right)$ of the midpoint A_{g} of the segment $B C$ with respect to the circle k_{2} is $\left|A_{g} Q\right|^{2}-r_{2}^{2}$ or $\frac{r^{2}(d+2 k)^{2}}{4}$. Similarly, $w\left(A_{g}, k_{1}\right)$ is $\frac{r^{2}(d k-2)^{2}}{4 k^{2}}$. Their difference is $\frac{r^{2} K p_{p_{a}^{\prime}}}{k^{2}}$. Hence, (ix) and (ii) are equivalent.

The differences of squares $\left|Q Z_{1}\right|^{2}-\left|P Z_{1}\right|^{2}$ and $\left|P Z_{2}\right|^{2}-\left|Q Z_{2}\right|^{2}$ of distances are equal $\frac{r^{2} K\left(f^{+}\right)^{2}\left(g^{+}\right)^{2} p_{I_{a}^{\prime}}}{\left[\left(h^{2}+d^{2}\right) k^{2}-4 d k+4\right]\left(4 k^{2}+4 d k+h^{2}+d^{2}\right)}$. It follows that (x) and (ii) are equivalent.

Finally, since $r_{1}^{2}-r^{2}=\frac{r^{2} M p_{I_{\alpha}^{\prime}}}{h^{2} k^{4}}$ and $r_{2}^{2}-r^{2}=\frac{r^{2} N p_{I_{\alpha}^{\prime}}}{h^{2}}$ and the factors $M=(2 \zeta-1) k^{2}+d k-1$ and $N=k^{2}+d k-2 \zeta+1$ are not both zero at any real number k, we conclude that (ii) and (xi) are equivalent.

Let $k_{ \pm}=\frac{\sqrt{2 N_{ \pm}} \pm M-d}{4}$ be the positive roots of the quartic polynomial $p_{4}=L(L+d k)-2 h k^{2}$, where $M=\sqrt{d^{2}+8 h}$ and $N_{ \pm}=d^{2} \mp d M+4 \bar{h}$.

Teorem 17. The following are equivalent: (i) the parameter k is either k_{+}or k_{-}, (ii) the lines $P Q$ and $A D$ are parallel, (iii) the line $P_{o} Q_{o}$ bisects the segment $P^{\prime} Q^{\prime}$, (iv) the line $P Q$ bisects the segment $P^{\prime} Q^{\prime}$, (v) the segments $P Q$ and $P^{\prime} Q^{\prime}$ share the midpoints and (vi) the lines $A D$ and $D I_{a}$ are perpendicular.

Proof. Since $p_{I_{a}^{\prime}} x+h k y=r f_{+} \varphi_{-}$and $2 k x+L y=\frac{2 r g f_{+} \varphi_{-}}{h}$ are the equations of the lines $P Q$ and $A D$, they will be parallel if and only if $p_{4}=0$. This shows that (i) and (ii) are equivalent.

The orthogonal projections P^{\prime} and Q^{\prime} of the centers P and Q onto the line $B C$ (the x-axis) have the abscises $\frac{r \varphi_{-}}{k}$ and $r f_{+}$. It follows that the midpoint of the segment $P^{\prime} Q^{\prime}$ lies on the line $P_{o} Q_{o}$ (i. e., on the line $\left.2 h p_{I_{a}^{\prime}} x-\left[2 d L+\left(z^{2}-\bar{h}^{2}-4\right) k\right] y=2 r h f_{+} \varphi_{-}\right)$, provided

$$
p_{I_{a}^{\prime}}\left(\frac{r L}{2 k}+r f\right)-r f_{+} \varphi_{-}=\frac{r p_{4}}{2 k}=0 .
$$

Hence, (i) and (iii) are equivalent.
This same calculation applies also in the proof that (i) and (iv) are equivalent because the line $P Q$ has the equation $p_{I_{a}^{\prime}} x+h k y=r f_{+} \varphi_{-}$.

The midpoints of $P Q$ and $P^{\prime} Q^{\prime}$ are $\frac{r\left|p_{4}\right|}{2 h k^{2}}$ apart. We easily conclude that (i) and (v) are equivalent.

Finally, since $h k x-p_{I_{a}^{\prime}} y=r f_{+} g \varphi_{-}$is the equation of the line $D I_{a}$, we get that this line is perpendicular with the line $A D$ if and only if $2 h k^{2}-p_{I_{a}^{\prime}} L=-p_{4}=0$. Hence, the first and the last statements are equivalent.

Note that the condition (ii) in Theorem 17 implies $r_{1}=r_{2}$. Hence, the correct version of Theorem 4 in [27] is the following result.

Corollary 6. The following are equivalent: (i) the equality $r_{1}=r_{2}$ holds, (ii) the parameter k is either $k_{I_{a}^{\prime}}$, k_{+}or k_{-}, (iii) the points P and Q are at equal distance from the midpoint of $P^{\prime} Q^{\prime}$ and/or $P^{\prime \prime} Q^{\prime \prime}$.

Proof. Since $r_{1}=\left|y_{P}\right|$ and $r_{2}=\left|y_{Q}\right|$, it follows that $r_{1}=r_{2}$ if and only if $y_{P}^{2}-y_{Q}^{2}=\frac{r^{2} K p_{p^{\prime}} p_{4}}{h^{2} k^{4}}=0$. Let M^{\prime} and $M^{\prime \prime}$ be the midpoints of $P^{\prime} Q^{\prime}$ and $P^{\prime \prime} Q^{\prime \prime}$. Then $\left|Q M^{\prime}\right|^{2}-\left|P M^{\prime}\right|^{2}=\left|Q M^{\prime \prime}\right|^{2}-\left|P M^{\prime \prime}\right|^{2}=\frac{r^{2} K p_{I_{I}^{\prime}} p_{4}}{h^{2} k^{4}}$. Hence, our claim follows from Theorems 16 and 17 because the parameter k is a positive real number.

7. EQUAL RADII r_{3} AND r_{4}

In the next six theorems we state the companion results with the previous two theorems for the remaining three pairs $(S, T),(U, V)$ and (X, Y) of related centers of Thébault's circles. The situation for these three pairs is a little bit different because the two more complicated values of the parameter k exist only when the angles B and C satisfy certain conditions.

In this section we consider the pair r_{3} and r_{4} of the radii of the third and the fourth Thébault's circles. We will omit the proofs because they are very similar to the corresponding proofs of the previous two theorems.

Let $k_{I^{\prime}}=\frac{\sqrt{d^{2}+4 \zeta^{2}}-d}{2 \zeta}$ be the positive root of the quadratic polynomial $p_{I^{\prime}}=\zeta L+d k$.

Teorem 18. The following statements are equivalent: (i) the point D is the orthogonal projection I^{\prime} of the incenter I onto the line BC, (ii) the parameter k is $k_{I^{\prime}}$, (iii) the lines $S T$ and $B C$ are parallel, (iv) the lines $S_{o} T_{o}$ and $B C$ are parallel, (v) the line $A D$ bisects the segment $S T$, (vi) the segments $S T$ and $S^{\prime \prime} T^{\prime \prime}$ share the midpoints, (vii) the line joining the excenter I_{a} and the midpoint of the segment $B C$ is parallel to the line $A D$ and (viii) the equalities $r_{3}=r_{a}$ and $r_{4}=r_{a}$ are both true.
Let $d^{2}-8 h \zeta \geq 0$. Let $m_{ \pm}=\frac{\sqrt{2 N_{ \pm}} \pm M-d}{4 \zeta}$ be the positive roots of the quartic polynomial $q_{4}=L(\zeta L+d k)$, where M and $N_{ \pm}$are the expressions $\sqrt{d^{2}-8 h \zeta}$ and $d^{2} \mp d M+4 \zeta^{2}$.

Teorem 19. For a triangle $A B C$ whose angles satisfy the inequality $\cos (B-C)+4(\cos (B+C)+\cos B+\cos C) \leq-3$, the following are equivalent: (i) the parameter k is either m_{+}or m_{-}, (ii) the lines $S T$ and $A D$ are parallel, (iii) the line $S_{o} T_{o}$ bisects the segment $S^{\prime} T^{\prime}$, (iv) the segments $S T$ and $S^{\prime} T^{\prime}$ share the midpoints and (v) the lines $A D$ and DI are perpendicular.

Note that the condition (ii) in Theorem 19 implies $r_{3}=r_{4}$. Also, when both angles B and C are acute, then the polynomial q_{4} is always positive because it is the sum $\frac{(2 \zeta L+d k)^{2}}{4 \zeta}+\frac{\left(8 h \zeta-d^{2}\right) k^{2}}{4 \zeta}$ with the second term positive. Indeed, the replacement of f and g in $8 h \zeta-d^{2}$ with $1+\varphi$ and $1+\psi$ for $\varphi, \psi>0$ gives a positive polynomial

$$
8 \varphi^{2} \psi^{2}+16 \varphi^{2} \psi+16 \varphi \psi^{2}+7 \varphi^{2}+26 \varphi \psi+7 \psi^{2}+8 \varphi+8 \psi
$$

8. EQUAL RADII r_{5} AND r_{6}

In this section we consider similarly the pair r_{5} and r_{6} of the radii of the fifth and the sixth Thébault's circles.
Let $k_{I_{c}^{\prime}}=\frac{\sqrt{\bar{h}^{2}+4 g^{2}}-\bar{h}}{2 g}$ be the positive root of the quadratic polynomial $p_{I_{c}^{\prime}}=g L+\bar{h} k$.

Teorem 20. The following statements are equivalent: (i) the point D is the orthogonal projection I_{c}^{\prime} of the excenter I_{c} onto the line $B C$, (ii) the parameter k is $k_{I_{c}^{\prime}}$, (iii) the lines $U V$ and $B C$ are parallel, (iv) the lines $U_{o} V_{o}$ and $B C$ are parallel, (v) the midpoint of the segment $U V$ is on the perpendicular bisector of the segment $B C$, (vi) the segments $U V$ and $U^{\prime \prime} V^{\prime \prime}$ share the midpoints, (vii) the line joining the excenter I_{b} and the midpoint of the segment $B C$ is parallel to the line $A D$ and (viii) the equalities $r_{5}=r_{b}$ and $r_{6}=r_{b}$ are both true.

Let $\bar{h}^{2}-8 g z \geq 0$. Let $n_{ \pm}=\frac{\sqrt{2 N_{\mp}} \pm M-\bar{h}}{4 g}$ be the positive roots of the quartic polynomial $s_{4}=L(g L+\bar{h} k+2 z)+2 z$, where M and $N_{ \pm}$are $\sqrt{\bar{h}^{2}-8 g z}$ and $h^{2}+4 g^{2} \pm \bar{h} M$.

Teorem 21. If in a triangle $A B C$ its angles satisfy the inequality

$$
\cos (B-C)+4(\cos (B+C)+\cos B-\cos C) \geq 3,
$$

then the following are equivalent: (i) the parameter k is either n_{+}or n_{-}, (ii) the lines $U V$ and $A D$ are parallel, (iii) the line $U_{o} V_{o}$ bisects the segment $U^{\prime} V^{\prime}$, (iv) the segments $U V$ and $U^{\prime} V^{\prime}$ share the midpoints and (v) the lines $A D$ and $D I_{c}$ are perpendicular.

Note that the condition (ii) in Theorem 20 implies $r_{5}=r_{6}$.

9. EQUAL RADII r_{7} AND r_{8}

In this section we consider similarly the pair r_{7} and r_{8} of the radii of the seventh and the last eighth Thébault's circles.

Let $k_{I_{b}^{\prime}}=\frac{\bar{h}+\sqrt{\overline{\bar{h}}^{2}+4 f^{2}}}{2 f}$ be the positive root of the quadratic polynomial $p_{I_{b}^{\prime}}=f L-\bar{h} k$.

Teorem 22. The following statements are equivalent: (i) the point D is the orthogonal projection I_{b}^{\prime} of the excenter I_{b} onto the line $B C$, (ii) the parameter k is $k_{I_{b}^{\prime}}$, (iii) the lines $X Y$ and $B C$ are parallel, (iv) the lines $X_{o} Y_{o}$ and $B C$ are parallel, (v) the midpoint of the segment $X Y$ is on the perpendicular bisector of the segment $B C$, (vi) the segments $X Y$ and $X^{\prime \prime} Y^{\prime \prime}$ share the midpoints, (vii) the line joining the excenter I_{c} and the midpoint of the segment $B C$ is parallel to the line $A D$ and (viii) the equalities $r_{7}=r_{c}$ and $r_{8}=r_{c}$ are both true.

Let $\bar{h}^{2}-8 f z \geq 0$. Let $p_{ \pm}=\frac{\sqrt{2 N_{ \pm}} \pm M+\bar{h}}{4 f}$ be the positive roots of the quartic polynomial $t_{4}=L(f L-\bar{h} k+2 z)+2 z$, where M and $N_{ \pm}$are $\sqrt{\overline{h^{2}}-8 f z}$ and $h^{2}+4 f^{2} \pm \bar{h} M$.
Teorem 23. If in a triangle $A B C$ its angles satisfy the inequality

$$
\cos (B-C)+4(\cos (B+C)-\cos B+\cos C) \geq 3,
$$

then the following are equivalent: (i) the parameter k is either p_{+}or p_{-}, (ii) the lines $X Y$ and $A D$ are parallel, (iii) the line $X_{o} Y_{o}$ bisects the segment $X^{\prime} Y^{\prime}$, (iv) the segments $X Y$ and $X^{\prime} Y^{\prime}$ share the midpoints and (v) the lines $A D$ and $D I_{b}$ are perpendicular.

Note that the condition (ii) in the above Theorem 23 implies $r_{7}=r_{8}$. Of course, we can also study the possibilities for equalities of r_{i} and r_{j} for other choices of i and j in the set $\{1, \ldots, 8\}$. Let us mention only that the equalities $r_{1}=r_{7}$ and $r_{2}=r_{8}$ are impossible and that $r_{3}=r_{6}$ if and only if $D=C$ and that $r_{4}=r_{8}$ if and only if $D=B$.

10. When Thébault's circles touch?

The following two theorems explore when will some Thébault's circles touch each other. We shall prove only the first theorem and omit the proof of the second theorem because it is analogous.

Let k_{0} be the positive root $\left(\sqrt{d^{2}+\bar{h}^{2}}-d\right) / \bar{h}$ of the polynomial $p_{2}=$ $\bar{h} L+2 d k$. Let \mathfrak{w} denote the perpendicular bisector of the side $B C$ in the triangle $A B C$.
Teorem 24. For the circles k_{1}, k_{2}, k_{3} and k_{4} the following statements are equivalent: (i) $I \in k_{1}$, (ii) $I \in k_{2}$, (iii) $k_{1} \cap k_{2}=I$, (iv) $I_{a} \in k_{3}$, (v) $I_{a} \in k_{4}$, (vi) $k_{3} \cap k_{4}=I_{a}$, (vii) $r_{2}=k^{2} r_{1}$, (viii) $r_{4}=k^{2} r_{3}$, (ix) $\left|J_{a} J_{b}\right|=\left|J_{a} J_{c}\right|,(x)\left|O J_{b}\right|=\left|O J_{c}\right|$, (xi) $J \in \mathfrak{w}$, (xii) $J_{a} \in \mathfrak{w}$, (xiii) the lines $B C$ and $J_{b} J_{c}$ are parallel, (xiv) the lines $P Q$ and $S T$ are parallel, (xv) the lines $P Q$ and $A D$ are perpendicular, (xvi) the lines $S T$ and $A D$ are perpendicular, (xvii) the triangles $P T D$ and $S Q D$ have the same area, (xviii) either the point D, the point I or the point I_{a} has the same power with respect to the circles k_{1} and k_{2}, (xix) either the point D, the point I or the point I_{a} has the same power with respect to the circles k_{3} and k_{4}, (xx) the point D is the intersection of the lines $A I$ and $B C$, (xxi) $D\left(\mathfrak{I}, \mathfrak{I}_{e}, \mathfrak{I}_{a}, \mathfrak{I}_{b}, \mathfrak{J}_{a}, \mathfrak{J}_{e}, \mathfrak{J}, \mathfrak{J}_{c}\right)=0$, (xxii) the lines $\mathfrak{I}_{a} \mathfrak{J}_{a}$ and $I_{a} J_{e}$ are perpendicular, (xxiii) $\left|P^{\prime} P^{\prime \prime} Q^{\prime} Q^{\prime \prime}\right|=0$, (xxiv) $\left|S^{\prime} S^{\prime \prime} T^{\prime} T^{\prime \prime}\right|=0$, (xxv) the point D is in the segment $B C$ and the sum of radii of the incircles and the excircles of the triangles $A B C, A B E$, $B C E$ and $A C E$ is the largest possible and (xxvi) the parameter k is equal k_{0}.
Proof. We shall argue that each statement (i)-(xxv) is equivalent to (xxvi).

Since $I \in k_{1}$ is equivalent with $|P I|=\left|y_{P}\right|$ and $y_{P}^{2}-|P I|^{2}=\frac{r^{2} p_{2}}{h k^{2}}$, we see that (i) is equivalent to (xxvi). Similarly, from $|Q I|^{2}-y_{Q}^{2}=\frac{r^{2} p_{2}}{h}$, $\left|S I_{a}\right|^{2}-y_{S}^{2}=\frac{r^{2} \zeta^{2} p_{2}}{h k^{2}}$ and $y_{T}^{2}-\left|T I_{a}\right|^{2}=\frac{r^{2} \zeta^{2} p_{2}}{h}$ it follows that (ii), (iv) and (v) are equivalent with (xxvi). It is obvious now that the same is true for (iii) and (vi).

The identities $k^{4} y_{P}^{2}-y_{Q}^{2}=\frac{r^{2} K p_{2}}{h}$ and $y_{T}^{2}-k^{4} y_{S}^{2}=\frac{r^{2} \zeta^{2} K p_{2}}{h}$ imply this for (vii) and (viii).

Since $\left|J_{a} J_{b}\right|^{2}-\left|J_{a} J_{c}\right|^{2}=\frac{r^{2} f^{+} g^{+} p_{2}}{h K}$ and $\left|O J_{b}\right|^{2}-\left|O J_{c}\right|^{2}=\frac{r^{2} f^{+} g^{+} p_{2}}{2 h K}$, the same conclusion holds also for (ix) and (x).

The perpendicular bisector of the segment $B C$ has the equation $2 x=r z$. Since $r z-2 x_{J_{a}}=2 x_{J}-r z=\frac{r z p_{2}}{h K}$, we included (xi) and (xii) too.

The line $J_{b} J_{c}$ is parallel to the x-axis $B C$ if and only if the centers J_{b} and J_{c} have equal ordinates. Since $y_{J_{c}}-y_{J_{b}}=\frac{r p_{2}}{K}$, it follows that (xiii) and (xxvi) are equivalent.

Since $(L+d k) x+h k y=r f_{+} \varphi_{-}$and $(\zeta L+d k) x-h k y=r g^{2} f_{+} \varphi_{-}$ are the equations of the lines $P Q$ and $S T$, they are parallel provided
$(\zeta L+d k)+(L+d k)=\bar{h} L+2 d k=p_{2}=0$. In other words, (xiv) and (xxvi) are equivalent.

Similarly, since $2 k x+h k y=\frac{2 r g f_{+} \varphi_{-}}{h}$ is the equation of the line $A D$, it follows that $-\frac{L+d k}{h k}=-\frac{1}{-\frac{2 k}{L}}$ is the condition for the lines $P Q$ and $A D$ to be perpendicular. However, this identity reduces to $p_{2}=0$. Hence, (xv) and (xxvi) are equivalent. The proof for the statement (xvi) is analogous.

Using the well-known formula

$$
|A B C|=\left|\begin{array}{lll}
x_{A} & y_{A} & 1 \tag{53}\\
x_{B} & y_{B} & 1 \\
x_{C} & y_{C} & 1
\end{array}\right|
$$

for the (oriented) area of any triangle $A B C$, we get that $|P T D|-|S Q D|$ is $\frac{r^{2} K^{2} \zeta p_{2}}{2 h k^{3}}$. Therefore, (xvii) and (xxi) are equivalent. Notice that $|P T A|=|S Q A|$ if and only if $|A B|=|A C|$.

Since $w\left(D, k_{1}\right)-w\left(D, k_{2}\right)=\frac{r^{2} K p_{2}}{h k^{2}}$, we conclude that (xviii) and (xxvi) are equivalent for the point D. Similar arguments holds for the points I and I_{a} and also for the three parts of the statement (xix).

Observe that the difference of the abscises of the point D_{k} and the intersection $\left(\frac{r f^{+} g}{\zeta+1}, 0\right)$ of the lines $A I$ and $B C$ is $\frac{r \zeta p_{2}}{\left(\zeta^{2}-1\right) k}$. Hence, (xx) and (xxvi) are equivalent.

Since $D\left(\mathfrak{I}, \mathfrak{I}_{e}, \mathfrak{I}_{a}, \mathfrak{I}_{b}, \mathfrak{J}_{a}, \mathfrak{J}_{e}, \mathfrak{J}, \mathfrak{J}_{c}\right)=\frac{r^{4}\left(f^{+}\right)^{3} g^{+} g^{2} p_{2}}{h^{3} K}$, we infer that (xxi) is equivalent with (xxvi).

The lines $\mathfrak{I}_{a} \mathfrak{J}_{a}$ and $I_{a} J_{e}$ have the equations $h(M x+N y)=r g \varphi_{-} F$ and $M_{0} x+N_{0} y=r g f_{+} z(\bar{h}-d k)$, where $N_{0}=f g^{+} k^{2}+d z k-g f^{+}$, $M_{0}=g^{2} f^{+} k^{2}+\bar{h} z k+f^{2} g^{+}, M=f^{2} g^{+} k^{2}+d h k-g^{2} f^{+}, N=g f^{+}$ $k^{2}-\left(2 \zeta^{2}+f^{2}+g^{2}\right) k+f g^{+}$and $F=\left[z^{3}+g\left(h^{2}-z^{2}\right)\right] k+h^{3}+h^{2}-z^{2}$. These lines are perpendicular if and only if $M M_{0}+N N_{0}=0$. Since $M M_{0}+N N_{0}=f^{+} g^{+} \zeta K p_{2}$, we conclude that (xxii) and (xxvi) are equivalent.

Since $\left|P^{\prime} P^{\prime \prime} Q^{\prime} Q^{\prime \prime}\right|=-\frac{r^{2} p_{2}}{h k}$ and $\left|S^{\prime} S^{\prime \prime} T^{\prime} T^{\prime \prime}\right|=\frac{r^{2} \zeta^{2} p_{2}}{h k}$, we see that the parts (xxiii) and (xxiv) are equivalent with (xxvi).

Finally, when $D \in B C$ then it is possible to get the radii of the incircles and the excircles of the triangles $A B C, A B E, B C E$ and $A C E$ and check that their sum is a function of k that has the maximal value precisely when $k=k_{0}$. Hence, (xxv) and (xxvi) are also equivalent.

Let $A B C$ be a triangle such that $|A B| \neq|A C|$. Then $d \neq 0$. Let m_{0} be the positive root $\left(\bar{h}+\operatorname{sgn}(d) \sqrt{d^{2}+h^{2}}\right) / d$ of the polynomial $s_{2}=$ $d L-2 \bar{h} k$.

Teorem 25. For the circles k_{5}, k_{6}, k_{7} and k_{8} in a triangle $A B C$ with $|A B| \neq|A C|$, the following statements are equivalent: (i) $I_{b} \in k_{5}$, (ii) $I_{b} \in k_{6}$, (iii) $k_{5} \cap k_{6}=I_{b}$, (iv) $I_{c} \in k_{7}$, (v) $I_{c} \in k_{8}$, (iv) $k_{7} \cap k_{8}=I_{c}$,
(vii) $r_{6}=k^{2} r_{5}$, (viii) $r_{8}=k^{2} r_{7}$, (ix) the lines $U V$ and AI are parallel, (x) the lines $X Y$ and AI are parallel, (xi) the lines $U V$ and $X Y$ are parallel, (xii) the lines $U V$ and $A D$ are perpendicular, (xiii) the lines $X Y$ and $A D$ are perpendicular, (xvi) the triangles $U Y D$ and XVD have the same area, (xv) either the point D, the point I_{b} or the point I_{c} has the same power with respect to the circles k_{5} and k_{6}, (xvi) either the point D, the point I_{b} or the point I_{c} has the same power with respect to the circles k_{7} and k_{8}, (xvii) $J_{b} \in \mathfrak{w}$, (xviii) $J_{c} \in \mathfrak{w}$, (xix) the point D is the intersection of the lines $I_{b} I_{c}$ and $B C,(x x) D\left(\mathfrak{I}, \mathfrak{I}_{e}, \mathfrak{I}_{a}, \mathfrak{J}_{b}, \mathfrak{J}_{e}, \mathfrak{J}_{a}, \mathfrak{J}_{c}, \mathfrak{J}\right)=0$, (xxi) $\left|U^{\prime} U^{\prime \prime} V^{\prime} V^{\prime \prime}\right|=0$, (xxii) $\left|X^{\prime} X^{\prime \prime} Y^{\prime} Y^{\prime \prime}\right|=0$ and (xxiii) the parameter k is m_{0}.

The following theorem explains the conditions for other pairs of Thébault's circles to touch. We give a table that uses short notation for some statements about the form of the triangle and about the position of the point D. The proofs are omitted because they are similar to the proof of Theorem 24 . For example, k_{1} and k_{3} will touch if and only if $|P S|^{2}=\left(y_{P} \pm y_{S}\right)^{2}$. When we factor the difference of the left and the right sides of these identities we get the three possibilities from the table.

Let A_{r}, B_{r} and C_{r} denote the reflections of the vertices A, B and C in the sidelines $B C, C A$ and $A B$. The triangle $A_{r} B_{r} C_{r}$ is called the three-images triangle.

Let q_{1} and q_{3} denote the following polynomials in k :

$$
\begin{aligned}
& \left(d^{2} h^{2}-4 \zeta^{2}\right) k^{4}-2 d \bar{h}\left(\zeta^{2}+1\right) k^{3}+M k^{2}+4 d \bar{h} \zeta k-4 \zeta^{2} \\
& \left(z^{2} \bar{h}^{2}-4 \zeta^{2}\right) k^{4}+2 d \bar{h}\left(f^{2}+g^{2}\right) k^{3}+N k^{2}+4 d \bar{h} \zeta k-4 \zeta^{2}
\end{aligned}
$$

where $M=\zeta^{4}+6 \zeta^{2}+4 f^{-} g^{-} \zeta+1$ and $N=f^{4}+g^{4}+6 \zeta^{2}+4 f^{-} g^{-} \zeta$. Let $q_{2}=k^{4} q_{1}\left(-\frac{1}{k}\right)$ and $q_{4}=k^{4} q_{3}\left(-\frac{1}{k}\right)$. Note that q_{1} and q_{2} have at most three positive real roots while q_{3} and q_{4} have at most one positive real root.

Let $b, b_{+}, b_{-}, B_{+}, B_{-}, C_{+}, C_{-}, D_{B}, D_{C}, t_{A}, t_{B}, t_{C}, r_{B}, r_{C}, q_{1}, q_{2}$, q_{3} and q_{4} be the following statements " $B=C$ ", " $B>C$ ", " $B<C$ ", $" B>90^{\circ} ", ~ " B<90^{\circ} ", ~ " C>90^{\circ} ", ~ " C<90^{\circ} ", ~ " D=B ", " D=C "$, "the lines $A D$ and $A O$ are perpendicular", "the lines $A D$ and $B O$ are perpendicular", "the lines $A D$ and $C O$ are perpendicular", "the lines $A D$ and $C B_{r}$ are parallel", "the lines $A D$ and $B C_{r}$ are parallel" and " k is the positive real root of the polynomial q_{j} " (for $j=1,2,3,4$).

The pairs $\left(k_{1}, k_{2}\right),\left(k_{3}, k_{4}\right)$ and $\left(k_{5}, k_{6}\right),\left(k_{7}, k_{8}\right)$ have been covered by Theorems 24 and 25 , respectively.

Teorem 26. The Table 1 lists the necessary and sufficient conditions for pairs among the circles k_{1}, \ldots, k_{8} to touch each other. For example, k_{1} and k_{3} touch if and only if either $D=C$ or $B<C$ and the lines $A D$ and $A O$ are perpendicular or the parameter k has additional at most three different values (the positive real roots of the polynomial q_{1}).

	k_{2}	k_{3}	k_{4}	k_{5}	k_{6}	k_{7}	k_{8}
k_{1}	$T h$ 24	D_{C} $b_{-} t_{A}$ q_{1}	D_{B}	D_{B} $C_{+} r_{B}$	$b_{-} t_{A}$	$B_{-} r_{C}$	D_{B} $b_{-} t_{A}$ t_{C}
k_{2}		D_{C}	$b_{+} t_{A}$ q_{2}	$b_{+} t_{A}$ t_{B}	$C_{-} r_{B}$	$b_{+} t_{A}$	$b_{+} r_{C}$
k_{3}			$T h$ 24	D_{C} $B_{-} r_{C}$	$b_{-} t_{A}$ t_{C}	$C_{+} r_{B}$	D_{C} $b_{-} t_{A}$
k_{4}				D_{B} $b_{+} t_{A}$	$B_{+} r_{C}$	$b_{+} t_{A}$ t_{B}	D_{B} $C_{-} r_{B}$
k_{5}					$T h$ 25	$b_{+} t_{A}$ q_{3}	b D_{B} D_{C}
k_{6}						b	$b_{-} t_{A}$ q_{4}
k_{7}							$T h$ 25

Table 1. Conditions for Thébault's circles to touch

It would be interesting to get a purely geometric description of the positions of the point D which correspond to the positive real roots of the polynomials q_{1}, \ldots, q_{4}.

11. Thébault's centers on lines

The following theorem explains when the centers of Thébault's circles lie on the perpendicular bisector \mathfrak{w} of the segment $B C$.

Teorem 27. (i) The center P is on the line \mathfrak{w} if and only if the angle C is larger than the angle B, the relation $3 b \neq a+c$ among the lengths of sides holds and D is the $\frac{a+b-3 c}{3 b-a-c}-$ point of the segment $B C$.
(ii) The center Q is on \mathfrak{w} if and only if $B>C$, the relation $3 b \neq a+c$ holds and D is the $\frac{a+b-3 c}{3 b-a-c}$-point of $B C$.
(iii) The center S is on \mathfrak{w} if and only if $B>C$ and D is the $\frac{b-a-3 c}{a-c+3 b}$ point of $B C$.
(iv) The center T is on \mathfrak{w} if and only if $C>B$ and D is the $\frac{b-a-3 c}{a-c+3 b}$ point of $B C$.
(v) The center U is on \mathfrak{w} if and only if D is the $\frac{b-a+3 c}{a+c+3 b}$-point of $B C$.
(vi) The center Y is on \mathfrak{w} if and only if D is the $\frac{a+b+3 c}{c-a+3 b}$-point of $B C$.
(vii) The centers V and X can never be on \mathfrak{w}.

Proof. (i) The point P is on the line \mathfrak{w} if and only if

$$
|P B|^{2}-|P C|^{2}=\frac{r^{2} z[d k-2]}{k}=0
$$

The unique positive real value of k when this can hold is $\frac{2}{d}$ for $f>g$. The corresponding point D is the $\frac{a+b-3 c}{3 b-a-c}$-point of the segment $B C$, where $a=r z, b=\frac{r f g^{+}}{h}$ and $c=\frac{r g f^{+}}{h}$.

The other parts have similar proofs.
We can make a similar analysis when will the points P, \ldots, Y lie on the line $A O$. Let us state only a simpler result for the centers P and Q. Moreover, we omit the discussion of the values when the denominators are zero. For example, when $B=C$, then P is never on the line $A O$.
Teorem 28. (i) The point P is on the line $A O$ if and only if either $k=\frac{\bar{h}}{d}>0$ (see Theorem 7) or $k=\frac{2 d}{\zeta^{2}+d^{2}-1}>0$.
(ii) The point Q is on the line $A O$ if and only if either $k=-\frac{d}{\zeta+1}>0$ (see Theorem 8) or $k=\frac{1-\zeta^{2}-d^{2}}{2 d}>0$.
Proof. (i) The line $A O$ has the equation

$$
h\left[\left(\bar{h}^{2}-d^{2}\right) x-2 d \bar{h} y\right]-r g g^{-}\left(f^{+}\right)^{2}=0 .
$$

Substituting the coordinates of the point P for x and y, we get

$$
\frac{r[d k-\bar{h}]\left[\left(\zeta^{2}+d^{2}-1\right) k-2 d\right]}{k^{2}}=0 .
$$

Hence, the point P is on the line $A O$ if and only if k is either $\frac{\bar{h}}{d}$ or $\frac{2 d}{\zeta^{2}+d^{2}-1}$.

The part (ii) has a similar proof.
The following analogous result for the line joining the circumcenter O with the Nagel point \mathfrak{N} is also stated in a similar partial form to avoid listing many subcases. Note that $O=\mathfrak{N}$ iff $B=C=30^{\circ}$.

We define $u_{P}=\frac{\zeta-3}{d(\zeta-2)}, v_{P}=\frac{2 d}{z^{2}-\zeta^{2}-3}, u_{S}=\frac{\zeta(3-\zeta)}{d}, v_{S}=\frac{2 d \zeta}{(h-1)^{2}+z^{2}-1}$, $u_{U}=\frac{d g}{f h-2 g}, v_{U}=\frac{2 g(\zeta-3)}{h^{2}-d z-4}, u_{X}=\frac{d f}{g h-2 f}$ and $v_{X}=\frac{2 f(\zeta-3)}{4+d z-h^{2}}$.
Teorem 29. (i) The point P is on the line $O \mathfrak{N}$ if and only if either $k=u_{P}>0$ or $k=v_{P}>0$.
(ii) The point Q is on the line $O \mathfrak{N}$ if and only if either $k=-\frac{1}{u_{P}}>0$ or $k=-\frac{1}{v_{P}}>0$.
Proof. (i) The line $O \mathfrak{N}$ has the equation

$$
\left.h\left[(\zeta-3)^{2}-d^{2}\right)\right](x+y)=r(f L-2 g)\left(h^{2}+d^{2}-2 g^{-}\right)
$$

Substituting the coordinates of the point P for x and y, we get

$$
\frac{r^{2}[d(\zeta-2) k-\zeta+3]\left[\left(\zeta^{2}-z^{2}+3\right) k+2 d\right]}{4 h^{2} k^{2}}=0 .
$$

Hence, the point P is on the line $O \mathfrak{N}$ if and only if k is either u_{P} or v_{P}.

The part (ii) has a similar proof.
The identical theorems hold for the pairs $(S, T),(U, V)$ and (X, Y).

12. Central points as Thébault's centers

Since every Thébault's circle is touching the circumcircle and the lines $B C$ and $A D$, it is now obvious that the circumcenter O is never the center of any Thébault's circles. The following result shows that the Nagel point \mathfrak{N} of the triangle $A B C$ is also rarely the center of Thébault's circles.

Teorem 30. The point \mathfrak{N} is never equal to any of the points P, Q, U, V, X or Y. The equality $\mathfrak{N}=S$ holds if and only if $f>\sqrt{2}, g=\frac{2}{f}$ and $k=\frac{2 f}{f^{2}-2}$. The equality $\mathfrak{N}=T$ holds if and only if $f<\sqrt{2}, g=\frac{2}{f}$ and $k=\frac{2-f^{2}}{2 f}$.

Proof. Since the coordinates of \mathfrak{N} are $\frac{r}{h}\left(f g^{+}-2 g, 2\right)$, we can easily find that $|P \mathfrak{N}|^{2}=\frac{r^{2} M N}{h^{2} k^{4}}$, where $M=(d k-1)^{2}+k^{2}$ and $N=(k \zeta-2 k)^{2}+1$ are always positive. Hence, the center P is never the Nagel point. The arguments for the centers Q, U, V, X and Y are similar.

Analogously, $|S \mathfrak{N}|^{2}=\frac{r^{2} M N}{h^{2} k^{4}}$, where $M=\zeta^{2}+k^{2}$ is always positive and $N=\left[d^{2}+(\zeta-2)^{2}\right] k^{2}-2 d \zeta k+\zeta^{2}$ has the positive leading coefficient $d^{2}+(\zeta-2)^{2}$ and the discriminant $-4 \zeta^{2}(\zeta-2)^{2}$. Hence, when $g=\frac{2}{f}$, then $|S \mathfrak{N}|^{2}=\frac{r^{2}\left(k^{2}+4\right)\left[k\left(f^{2}-2\right)-2 f\right]^{2}}{f^{2} k^{4}}$. We infer that S will be \mathfrak{N} for $k=\frac{2 f}{f^{2}-2}$ and conclude, in addition, that $f>\sqrt{2}$ because k is always positive.

The argument for the center T is similar.

13. Special Relations

This section begins with two results that illustrate how some special relations among radii of Thébault's circles can hold only when the point D has some particular position.

Teorem 31. (i) The relation $r^{2}\left(r_{3}^{2}+r_{4}^{2}\right)=r_{a}^{2}\left(r_{1}^{2}+r_{2}^{2}\right)$ holds if and only if either the lines $A D$ and $B C$ are perpendicular or the line $A D$ goes through the incenter I.
(ii) The relation $r_{b}^{2}\left(r_{7}^{2}+r_{8}^{2}\right)=r_{c}^{2}\left(r_{5}^{2}+r_{6}^{2}\right)$ holds if and only if either the lines $A D$ and $B C$ are perpendicular or the line $A D$ goes through the excenters I_{b} and I_{c}.
Proof. We get this from relations $r^{2}\left(r_{3}^{2}+r_{4}^{2}\right)-r_{a}^{2}\left(r_{1}^{2}+r_{2}^{2}\right)=\frac{r^{4} \zeta^{2} L K^{2} p_{2}}{h k^{4}}$ and $r_{c}^{2}\left(r_{5}^{2}+r_{6}^{2}\right)-r_{b}^{2}\left(r_{7}^{2}+r_{8}^{2}\right)=\frac{r^{4} \zeta^{2} z^{3} L K^{2} s_{2}}{(h k)^{4}}$ and the fact that for $k=1$ the point D_{k} is the orthogonal projection of the vertex A onto the sideline $B C$.

Teorem 32. If the product of the tangents of the angles B and C in the triangle $A B C$ is 2, then $r^{2} r_{3}^{2} r_{4}^{2}+r_{a}^{2} r_{1}^{2} r_{2}^{2}=r_{b}^{2} r_{7}^{2} r_{8}^{2}+r_{c}^{2} r_{5}^{2} r_{6}^{2}$.

Proof. Since $r^{2} r_{3}^{2} r_{4}^{2}+r_{a}^{2} r_{1}^{2} r_{2}^{2}-r_{b}^{2} r_{7}^{2} r_{8}^{2}-r_{c}^{2} r_{5}^{2} r_{6}^{2}$ contains as a factor $\zeta^{2}-z^{2}+1=\frac{2(1+\cos (B))(1+\cos (C))(2 \cos (B) \cos (C)-\sin (B) \sin (C))}{(\sin (B))^{2}(\sin (C))^{2}}$, it is clear that $\tan (B) \tan (C)=2$ implies the above equality.

In the next result we use again the coordinates of the centers of Thébault's circles. For $e, f \in\{x, y\}$, let $E(e, f)$ denote the identity $e_{P}+e_{S}-e_{U}-e_{X}=f_{Q}+f_{T}-f_{V}-f_{Y}$.

Teorem 33. (i) The identities $E(x, y)$ and $E(x, x)$ are never true.
(ii) The identities $E(y, y)$ and $E(y, x)$ hold if and only if the lines $A D$ and $B C$ are perpendicular.

Proof. (i) The difference of the left and the right sides of the identities $E(x, y)$ and $E(x, x)$ are $\frac{r f^{+} g^{+}(k+1)\left(k^{2}-k+1\right)}{h k}$ and $\frac{r f^{+} g^{+} K}{h k}$. Since there is no positive value k for which these quotients vanish, it follows that they are never true.
(ii) The difference of the left and the right sides of the identities $E(y, x)$ and $E(y, y)$ are $\frac{r f^{+} g^{+}(k-1)\left(k^{2}+k+1\right)}{h k^{2}}$ and $\frac{r f^{+} g^{+} K L}{h k^{2}}$. Since 1 is a unique positive value of k for which these quotients vanish, it follows that they hold if and only if the lines $A D$ and $B C$ are perpendicular.

14. Lines Containing many incenters and Excenters

For any point M in the plane, let M^{\prime} and $M^{\prime \prime}$ be the orthogonal projections of M onto the lines $B C$ and $A D$.

We prove now that the lines $P^{\prime} P^{\prime \prime}, Q^{\prime} Q^{\prime \prime}, S^{\prime} S^{\prime \prime}, T^{\prime} T^{\prime \prime}, U^{\prime} U^{\prime \prime}, V^{\prime} V^{\prime \prime}$, $X^{\prime} X^{\prime \prime}$ and $Y^{\prime} Y^{\prime \prime}$ each contains four among incenters and/or excenters of the triangles $A B C, B C E, A B E$ and $A C E$. In partial form this was observed in [23].

Teorem 34. The following table gives the incidence relations of lines $P^{\prime} P^{\prime \prime}, \ldots, Y^{\prime} Y^{\prime \prime}$ and the points $I, I_{a}, \ldots, \mathfrak{J}_{c}, \mathfrak{J}_{e}$.

$P^{\prime} P^{\prime \prime}$	I	J_{c}	\mathfrak{I}	\mathfrak{J}_{e}
$Q^{\prime} Q^{\prime \prime}$	I	J_{b}	\mathfrak{I}_{e}	\mathfrak{J}
$S^{\prime} S^{\prime \prime}$	I_{a}	J_{b}	\mathfrak{I}_{b}	\mathfrak{J}_{a}
$T^{\prime} T^{\prime \prime}$	I_{a}	J_{c}	\mathfrak{I}_{a}	\mathfrak{J}_{c}
$U^{\prime} U^{\prime \prime}$	I_{b}	J	\mathfrak{I}_{a}	\mathfrak{J}
$V^{\prime} V^{\prime \prime}$	I_{b}	J_{a}	\mathfrak{I}_{b}	\mathfrak{J}_{e}
$X^{\prime} X^{\prime \prime}$	I_{c}	J_{a}	\mathfrak{I}_{e}	\mathfrak{J}_{c}
$Y^{\prime} Y^{\prime \prime}$	I_{c}	J	\mathfrak{I}	\mathfrak{J}_{a}

Proof. Since the coordinates of P^{\prime} and $P^{\prime \prime}$ are $\frac{r}{k}\left(\varphi_{-}, 0\right)$ and $\frac{r \varphi_{-}}{h k K}\left(h k^{2}+\right.$ $2 g k+\bar{h}, 2 \psi_{+} k$), the line $P^{\prime} P^{\prime \prime}$ has the equation $k x-y=r \varphi_{-}$. It is now easy to check that the coordinates of the points I, J_{c}, \mathfrak{I} and \mathfrak{J}_{e} satisfy this equation. The proofs for the other lines are analogous.

From the above table it is possible to identify sixteen pairs of perpendicular lines among $P^{\prime} P^{\prime \prime}, \ldots, Y^{\prime} Y^{\prime \prime}$ that intersect in the sixteen centers $I, \ldots, \mathfrak{J}_{e}$. All other pairs of lines among $P^{\prime} P^{\prime \prime}, \ldots, Y^{\prime} Y^{\prime \prime}$ are pairs of parallel lines.

For example, from the first two rows we conclude that the lines $P^{\prime} P^{\prime \prime}$ and $Q^{\prime} Q^{\prime \prime}$ intersect in I while from the first and the fourth row it follows that the lines $P^{\prime} P^{\prime \prime}$ and $T^{\prime} T^{\prime \prime}$ intersect in J_{c}. On the other hand, the line $P^{\prime} P^{\prime \prime}$ is parallel to the lines $S^{\prime} S^{\prime \prime}, U^{\prime} U^{\prime \prime}$ and $X^{\prime} X^{\prime \prime}$.

15. Circles with diameters on lines $B C$ and $A D$

Let $k_{M N}$ and $s_{M N}$ denote the circle with the segment $M N$ as a diameter and its center. In other words, $s_{M N}$ is the midpoint of the segment $M N$.

Teorem 35. (i) The line $A D$ is parallel with the lines $s_{P^{\prime} Q^{\prime}} I, s_{S^{\prime} T^{\prime}} I_{a}$, $s_{U^{\prime} V^{\prime}} I_{b}$ and $s_{X^{\prime} Y^{\prime}} I_{c}$.
(ii) The lines $s_{P^{\prime \prime} Q^{\prime \prime}} I, s_{S^{\prime \prime} T^{\prime \prime}} I_{a}, s_{U^{\prime \prime} V^{\prime \prime}} I_{b}$ and $s_{X^{\prime \prime} Y^{\prime \prime}} I_{c}$ are parallel with the line $B C$.
(iii) The intersection of the circles $k_{P^{\prime} Q^{\prime}}$ and $k_{P^{\prime \prime} Q^{\prime \prime}}$ is the incenter I and another point \mathfrak{K} on the line $P Q$.
(iv) The circles $k_{S^{\prime} T^{\prime}}$ and $k_{S^{\prime \prime} T^{\prime \prime}}$ intersect in the point I_{a} and in another point K_{a} on the line $S T$.
(v) The intersection of the circles $k_{U^{\prime} V^{\prime}}$ and $k_{U^{\prime \prime} V^{\prime \prime}}$ is the excenter I_{b} and another point K_{b} on the line $P Q$.
(vi) The circles $k_{X^{\prime} Y^{\prime}}$ and $k_{X^{\prime \prime} Y^{\prime \prime}}$ intersect in the point I_{c} and in another point K_{c} on the line $X Y$.

The following relation holds:

$$
\begin{equation*}
|P \mathfrak{K}| \cdot\left|S K_{a}\right| \cdot\left|V K_{b}\right| \cdot\left|Y K_{c}\right|=|Q \mathfrak{K}| \cdot\left|T K_{a}\right| \cdot\left|U K_{b}\right| \cdot\left|X K_{c}\right| . \tag{54}
\end{equation*}
$$

$$
\frac{|P \Re|^{2}}{r^{2}}+\frac{\left|S K_{a}\right|^{2}}{r_{a}^{2}}+\frac{\left|V K_{b}\right|^{2}}{r_{b}^{2}}+\frac{\left|Y K_{c}\right|^{2}}{r_{c}^{2}}=\frac{|Q \Re|^{2}}{r^{2}}+\frac{\left|T K_{a}\right|^{2}}{r_{a}^{2}}+\frac{\left|U K_{b}\right|^{2}}{r_{b}^{2}}+\frac{\left|X K_{c}\right|^{2}}{r_{c}^{2}} \quad \text { is }
$$ true if and only if either $D=B, D=C$ or the lines $A D$ and $B C$ are perpendicular.

Proof. (i) The midpoint M of the segment $P^{\prime} Q^{\prime}$ has the abscissa $\frac{r(L+2 f k)}{2 k}$ and the ordinate 0 . Hence, the line $I M$ is parallel to the line $A D$ as their equations are $2 k x+L y=r(L+2 f k)$ and $2 k x+L y=2 r g f_{+} \varphi_{-}$. The remaining three claims have similar proofs.
(ii) The midpoint M of the segment $P^{\prime \prime} Q^{\prime \prime}$ has the abscissa $\frac{r\left(\bar{h} L+2 g f^{-} k\right)}{2 h k}$ and the ordinate r. Hence, the line $I M$ is parallel to the line $B C$ because the incenter also has the ordinate r. The remaining three claims have similar proofs.
(iii) Since $P^{\prime}, Q^{\prime}, P^{\prime \prime}$ and $Q^{\prime \prime}$ have the coordinates $\left(x_{P}, 0\right),\left(x_{Q}, 0\right)$, $\frac{r \varphi-}{h k K}\left(h K+2 \psi_{+}, 2 k \psi_{+}\right)$and $\frac{r f_{+}}{h K}\left(\bar{h} K-2 \psi_{+},-2 g_{-}\right)$, the second intersection of the circles $k_{P^{\prime} Q^{\prime}}$ and $k_{P^{\prime \prime} Q^{\prime \prime}}$ (besides the incenter I) is the point \mathfrak{K} with the coordinates $\frac{r f_{+} \varphi_{-}}{M}\left(N,-g_{-} \psi_{+}\right)$, where M and N are
$(L+d k)^{2}+(h k)^{2}$ and $L+\left(f g^{+}-2 g\right) k$. Its coordinates satisfy the equation of the line $P Q$ (see the proof of Theorem 24).

The proofs of (iv), (v) and (vi) are similar.
The easiest way to check the identity (54) is to show that the squares of its left and right sides are equal.

Finally, the difference of the left and the right hand sides of the last identity is the quotient $\frac{2 f^{+} g^{+} L K f_{+} \varphi_{-} g_{-} \psi_{+}}{h^{2} k^{4} z^{2}}$. Since the point D is B and C for k equal $\frac{1}{f}$ and g, we conclude that the last claim is true.

Of course, the above theorem has three additional versions for the triangles $B C E, A B E$ and $A C E$. For example, the lines $s_{P^{\prime} Y^{\prime}} \mathfrak{I}, s_{S^{\prime} V^{\prime}} \mathfrak{I}_{b}$, $s_{T^{\prime} U^{\prime}} \mathfrak{I}_{a}$ and $s_{Q^{\prime} X^{\prime}} \mathfrak{I}_{e}$ are parallels of $A D$ while the lines $s_{P^{\prime \prime} Y^{\prime \prime}} \mathfrak{I}, s_{S^{\prime \prime} V^{\prime \prime}} \Im_{b}$, $s_{T^{\prime \prime} U^{\prime \prime}} \Im_{a}$ and $s_{Q^{\prime \prime} X^{\prime \prime}} \Im_{e}$ are parallels of $B C$.

16. Three (of twelve) associated triangles

Let $\mathcal{I}, \mathcal{A}, \mathcal{B}$ and \mathcal{C} be the midpoints of the segments $s_{P^{\prime} Q^{\prime}} I, s_{S^{\prime} T^{\prime}} I_{a}$, $s_{U^{\prime} V^{\prime}} I_{b}$ and $s_{X^{\prime} Y^{\prime}} I_{c}$. Similarly, let $\mathbf{I}, \mathbf{A}, \mathbf{B}$ and \mathbf{C} be the midpoints of the segments $s_{P^{\prime \prime} Q^{\prime \prime}} I, s_{S^{\prime \prime} T^{\prime \prime}} I_{a}, s_{U^{\prime \prime} V^{\prime \prime}} I_{b}$ and $s_{X^{\prime \prime} Y^{\prime \prime}} I_{c}$. Finally, let \mathbb{I}, \mathbb{A}, \mathbb{B} and \mathbb{C} be the midpoints of the segments $\mathcal{I I}, \mathcal{A} \mathbf{A}, \mathcal{B B}$ and $\mathcal{C} \mathbf{C}$.

The few basic relationships among these points are described in the following result. Let s_{a}, s_{b} and s_{c} denote $\frac{b+c-a}{2}, \frac{c+a-b}{2}$ and $\frac{a+b-c}{2}$.

Teorem 36. (i) The point \mathcal{I} is the $\frac{S_{b}}{b}$-point of the segment $B \mathcal{B}$ and the $\frac{s_{c}}{c}$-point of the segment $C \mathcal{C}$.
(ii) The point \mathbf{I} is the $\frac{s_{a}}{a}$-point of the segment $A \mathbf{A}$.
(iii) The vertex A is the $\frac{s_{c}}{s_{b}}$-point of the segment $\mathbf{B C}$.
(iv) The vertex B is the $\frac{s_{a}}{s_{c}}$-point of the segment $\mathbf{C A}$.
(v) The vertex C is the $\frac{s_{b}}{s_{a}}$-point of the segment $\mathbf{A B}$.
(vi) The points $\mathbb{I}, \mathbb{A}, \mathbb{B}$ and \mathbb{C} are the 3 -points of the segments $D I$, $D I_{a}, D I_{b}$ and $D I_{c}$.
Proof. The points \mathcal{A}, \mathcal{B} and \mathcal{C} have coordinates $-\frac{r g}{4 k}(f L-4 k, 2 f k)$, $\frac{r g z}{4 h k}(L+4 f k, 2 k)$ and $\frac{r z}{4 h k}(f L-4 k, 2 f k)$. Similarly, the vertices A, B and \mathbf{C} have as coordinates the pairs $\frac{r g}{4 h k}\left(f \bar{h} L+2\left(h+f^{-}\right) k,-4 f k\right)$, $\frac{r g}{4 h k}\left(d L+2\left(h+2 f^{2}\right) k, 4 k z\right)$ and $\frac{r}{4 h k}(2(f h-2 g) k-d f L, 4 f k z)$. Also, the points \mathbf{I} and \mathcal{I} have the coordinates $\frac{r}{4 h k}(\bar{h} L+2(2 f \zeta-z) k, 4 h k)$ and $\frac{r}{4 k}(L+4 f k, 2 k)$. Since $\frac{s_{b}}{b}$ is equal to $\frac{h}{g^{+}}$, it follows that the $\frac{s_{b}-}{b}$ point of the segment $B \mathcal{B}$ is the point \mathcal{I}. This proves the first claim in the part (i). All other claims in this theorem have similar routine verification.

Teorem 37. The areas of the triangles satisfy the following relations:

$$
|\mathcal{A B C}|=|\mathbf{A B C}|=\frac{1}{2}\left|I_{a} I_{b} I_{c}\right|, \quad|\mathbb{A B C}|=\frac{9}{16}\left|I_{a} I_{b} I_{c}\right|
$$

Proof. Using the formula (53), we find that $|\mathcal{A B C}|=|\mathbf{A B C}|=\frac{r^{2} f^{+} g^{+} \zeta z}{4 h^{2}}$ $=\frac{1}{2}\left|I_{a} I_{b} I_{c}\right|$.

On the other hand, since the points \mathbb{A}, \mathbb{B} and \mathbb{C} have the coordinates $\frac{r g}{4 h k}\left(f L+\left(f^{-}+3 h\right) k,-3 f k\right), \frac{r g}{4 h k}\left(f L+\left(4 f^{-}+3 \bar{h}\right) k, 3 k z\right)$ and $\frac{r}{4 h k}(\zeta L+(f \bar{h}-4 z) k, 3 f k z)$, we similarly find that $|\mathbb{A} \mathbb{B} \mathbb{C}|=\frac{9 r^{2} f^{+} g^{+} \zeta z}{32 h^{2}}$.

17. Some orthologic triangles

For any real number $u \neq-1$, let Q_{u}, T_{u}, V_{u} and Y_{u} denote the u points of the segments $Q P, T S, V U$ and $Y X$. Let U_{u}, X_{u}, S_{u} and P_{u} denote the u-points of the segments $Y U, V X, Q S$ and $T P$. Recall that the pedal triangle of the point M (with respect to the triangle $A B C$) has the orthogonal projections of M onto the lines $B C, C A$ and $A B$ as vertices. Let Ψ and Ξ denote the pedal triangle of the incenters I and J with respect to the triangles $A B C$ and $E B C$.

Triangles $A B C$ and $D E F$ are orthologic provided the perpendiculars at the vertices of $A B C$ onto the sides $E F, F D$ and $D E$ of $D E F$ are concurrent. The point of concurrence of these perpendiculars is denoted by $o_{A B C}^{D E F}$. It is well-known that this relation is reflexive and symmetric. Hence, the perpendiculars from vertices of $D E F$ onto the sides $B C$, $C A$, and $A B$ are concurrent at the point $o_{D E F}^{A B C}$. These points are called the first and the second orthology centers of the (orthologic) triangles $A B C$ and $D E F$. Replacing perpendiculars with parallels we get the analogous notion of paralogic triangles and centers $p_{A B C}^{D E F}$ and $p_{D E F}^{A B C}$.

The quadruple $\{A, B, C, D\}$ of points in the plane is orthocentric provided every point is the orthocenter of the triangle on the remaining three points.

Let $\Delta_{u}=T_{u} V_{u} Y_{u}, \Gamma_{u}=X_{u} S_{u} P_{u}, \Phi=I_{a} I_{b} I_{c}$ and $\Theta=J_{a} J_{b} J_{c}$. Let us notice that the orthocentric quadruples $\left\{I, I_{a}, I_{b}, I_{c}\right\}$ and $\left\{J, J_{a}, J_{b}, J_{c}\right\}$ are associated in the sense that the following holds:

Teorem 38. For every point N in the plane,

$$
|N I|^{2}+\left|N I_{a}\right|^{2}+\left|N I_{b}\right|^{2}+\left|N I_{c}\right|^{2}=|N J|^{2}+\left|N J_{a}\right|^{2}+\left|N J_{b}\right|^{2}+\left|N J_{c}\right|^{2} .
$$

Proof. Let N has the coordinates (p, q). Both sides of the above identity have the value $4\left(p^{2}+q^{2}-r z p\right)+\frac{2 r\left(h^{2}-z^{2}\right)}{h} q+\left(\frac{r f^{+} g^{+}}{h}\right)^{2}$.

In a similar way one can show that the orthocentric quadruples $\left\{\mathfrak{I}, \mathfrak{I}_{a}, \mathfrak{I}_{b}, \mathfrak{I}_{e}\right\}$ and $\left\{\mathfrak{J}, \mathfrak{J}_{a}, \mathfrak{J}_{c}, \mathfrak{J}_{e}\right\}$ are also associated to $\left\{I, I_{a}, I_{b}, I_{c}\right\}$.

Teorem 39. The triangle Δ_{u} is orthologic with the triangle Φ. The triangle Γ_{u} is orthologic with the triangle Θ. Their areas satisfy

$$
\frac{\left|\Delta_{u}\right|}{|\Phi|}=\frac{\left|\Gamma_{u}\right|}{|\Theta|}=\frac{K^{2} u}{k^{2}(u+1)^{2}}
$$

Proof. Recall that the triangles $A B C$ and $X Y Z$ are orthologic provided

$$
\left|\begin{array}{lll}
x_{A} & x_{X} & 1 \tag{55}\\
x_{B} & x_{Y} & 1 \\
x_{C} & x_{Z} & 1
\end{array}\right|+\left|\begin{array}{lll}
y_{A} & y_{X} & 1 \\
y_{B} & y_{Y} & 1 \\
y_{C} & y_{Z} & 1
\end{array}\right|=0 .
$$

We can easily find the coordinates of the vertices of the triangles Δ_{u} and Φ, substitute them into the the above determinants and make simplifications to conclude that the condition (55) holds for this pair of triangles. The same is true also for the pair $\left(\Gamma_{u}, \Theta\right)$.

Finally, using the formula (53), we get $\left|\Delta_{u}\right|=\frac{r^{2} \zeta K^{2} f+g^{+} z u}{2(h k)^{2}(u+1)^{2}}$. Since $|\Phi|=\frac{r^{2} \zeta f^{+} g^{+} z}{2 h^{2}}$, the quotient $\frac{\left|\Delta_{u}\right|}{|\Phi|}$ is $\frac{K^{2} u}{k^{2}(u+1)^{2}}$. For the pair $\left(\Gamma_{u}, \Theta\right)$ we get the same value.

Let $k^{2} \neq 1$. Let Q_{v}, T_{v}, V_{v} and Y_{v} be the $\left(-k^{2}\right)$-points of the segments $Q P, T S, V U$ and $Y X$ and let U_{v}, X_{v}, S_{v} and P_{v} be the $\left(-k^{2}\right)$-points of the segments $Y U, V X, Q S$ and $T P$. Let $\Delta=T_{v} V_{v} Y_{v}, \Gamma=X_{v} S_{v} P_{v}$.

Teorem 40. The quadruples $\left\{Q_{v}, T_{v}, V_{v}, Y_{v}\right\}$ and $\left\{U_{v}, X_{v}, S_{v}, P_{v}\right\}$ are orthocentric and for every point N in the plane the sums

$$
\left|N Q_{v}\right|^{2}+\left|N T_{v}\right|^{2}+\left|N V_{v}\right|^{2}+\left|N Y_{v}\right|^{2}
$$

and $\left|N U_{v}\right|^{2}+\left|N X_{v}\right|^{2}+\left|N S_{v}\right|^{2}+\left|N P_{v}\right|^{2}$ are equal. The triangles Δ and Γ have identical nine-point circles and are reversely similar to the extriangles Φ and Θ, respectively.

Proof. The points Q_{v}, T_{v}, V_{v} and Y_{v} have the pairs $\frac{r}{h L}(h(f L-2 k)$, $\bar{h} L+2 d k), \frac{r g}{h L}(h(L+2 f k), f(\bar{h} L+2 d k)), \frac{r g}{h L}(z(f L-2 k), d L-\bar{h} k)$ and $\frac{r}{h L}(-z(L+2 f k), f(2 \bar{h} k-d L))$ as the coordinates. The perpendicular through the point T_{v} onto the line $V_{v} Y_{v}$ has the equation

$$
\begin{equation*}
(\bar{h} L+2 d k) x+(d L-2 \bar{h} k) y=\frac{r g(\bar{h} L+2 d k)\left(f^{-} L-4 f k\right)}{h L} \tag{56}
\end{equation*}
$$

and the perpendicular through the point V_{v} onto the line $T_{v} Y_{v}$ has the equation

$$
\begin{equation*}
(L+2 f k) x+(f L-2 k) y=\frac{2 r g(f L-2 k) f_{+} \varphi_{-}}{h L} . \tag{57}
\end{equation*}
$$

These perpendiculars intersect in the point Q_{v}. In other words, the linear system of the equations (56) and (57) has the coordinates of the point Q_{v} as a unique solution. It follows that $\left\{Q_{v}, T_{v}, V_{v}, Y_{v}\right\}$ is an orthocentric quadruple. We can similarly show that the quadruple $\left\{U_{v}, X_{v}, S_{v}, P_{v}\right\}$ is also orthocentric.

Let $N=(p, q)$. The both sums have the value $4\left[(p-\mathfrak{a})^{2}+(q-\mathfrak{b})^{2}\right]+$ $\frac{3 r^{2} K^{2}\left(f^{+}\right)^{2}\left(g^{+}\right)^{2}}{4 h^{2} L^{2}}$, where $\mathfrak{a}=\frac{r(k z+h)(h k-z)}{2 h L}$ and $\mathfrak{b}=\frac{r\left[(\bar{h}-d)^{2} k^{2}-(\bar{h}+d)^{2}\right]}{4 h L}$.

Since Q_{v} and U_{v} are the orthocenters of the triangles Δ and Γ, the easiest way to see that they have the same center of the nine-point circles is to find their centroids G_{Δ} and G_{Γ} and verify that the 3-points of $Q_{v} G_{\Delta}$ and $U_{v} G_{\Gamma}$ coincide. Their radii are also equal (check that this 3 -point is equidistant from the midpoints of $T_{v} V_{v}$ and $X_{v} S_{v}$).

The triangles Δ and Φ are orthologic by Theorem 39. Hence, in order to see that they are reversely similar, by [2], it suffices to check that they are paralogic. Recall that the triangles $A B C$ and $X Y Z$ are paralogic provided

$$
\left|\begin{array}{lll}
x_{A} & y_{X} & 1 \tag{58}\\
x_{B} & y_{Y} & 1 \\
x_{C} & y_{Z} & 1
\end{array}\right|+\left|\begin{array}{lll}
x_{X} & y_{A} & 1 \\
x_{Y} & y_{B} & 1 \\
x_{Z} & x_{C} & 1
\end{array}\right|=0
$$

Now we substitute the coordinates of the vertices of the triangles Δ and Φ into the above determinants and make simplifications to conclude that the condition (58) holds for this pair of triangles. The same is true also for the pair (Γ, Θ).

Recall that the Bevan point X_{40} of the triangle $A B C[10]$ is $o_{I_{a} I_{b_{J}}}^{A B C}$ (the orthology center of the triangles $I_{a} I_{b} I_{c}$ and $A B C$) and also the circumcenter of $I_{a} I_{b} I_{c}$. Its coordinates are $\frac{r}{2 h}\left(2 g h, z^{2}-h \bar{h}\right)$.
Corollary 7. The following are distances among the orthology and paralogy centers of the triangles $\Delta, \Gamma, \Phi, \Psi, \Theta$ and Ξ.

$$
\begin{gathered}
\left|o_{\Delta}^{\Phi} p_{\Delta}^{\Phi}\right|=\left|o_{\Gamma}^{\Theta} p_{\Gamma}^{\Theta}\right|=\frac{4 K R}{|L|}, \\
\left|o_{\Phi}^{\Delta} p_{\Phi}^{\Delta}\right|=\left|o_{\Theta}^{\Gamma} p_{\Theta}^{\Gamma}\right|=4 R, \quad\left|o_{\Psi}^{\Delta} p_{\Psi}^{\Delta}\right|=2 r, \quad\left|o_{\Xi}^{\Gamma} p_{\Xi}^{\Gamma}\right|=2 \varrho .
\end{gathered}
$$

More precisely, o_{Φ}^{Δ} and p_{Φ}^{Δ} are the antipodal points on the circle of radius $2 R$ with the center at the Bevan point of the triangle $A B C$. Similarly, o_{Θ}^{Γ} and p_{Θ}^{Γ} are the antipodal points on the circle of radius $2 R$ with the center at the Bevan point of the triangle EBC. Also, o o_{Ψ}^{Δ} and p_{Ψ}^{\triangle} are the antipodal points on the incircle of $A B C$ and o_{Ξ}^{Γ} and p_{Ξ}^{Γ} are the antipodal points on the incircle of $E B C$. The locus of midpoints of $o_{\Delta}^{\Phi} p_{\Delta}^{\Phi}$ is a line and the locus of midpoints of $o_{\Gamma}^{\Theta} p_{\Gamma}^{\Theta}$ is a hyperbola.
Proof. We prove only the claims about o_{Ψ}^{Δ} and p_{Ψ}^{Δ} because for other centers the proofs are similar.

We find that the coordinates of these centers are $\frac{r}{f^{+} q^{+} K^{2}}\left(N_{+}, 2 p_{2}^{2}\right)$ and $\frac{r}{f^{+} g^{+} K^{2}}\left(N_{-}, 2 s_{2}^{2}\right)$, where $N_{ \pm}=f^{3} g^{+} K^{2} \pm 2 f^{-} F+f G_{ \pm}, F=(g L+2 k)$ $(2 g k-L), G_{+}=(3 L+2)(L-2) g^{2}+16 g k L-(K-4 k)(K+4 k)$ and $G_{-}=(4 k-K)(K+4 k) g^{2}-16 g k L+(3 L+2)(L-2)$. Now it is easy to check that $\left|o_{\Psi}^{\Delta} I\right|=r$ and that p_{Ψ}^{Δ} is the (-2)-point of the segment $o_{\Psi}^{\Delta} I$. Notice that from the ordinates of the points o_{Ψ}^{Δ} and p_{Ψ}^{Δ} we see that the statement $o_{\Psi}^{\triangle} \in B C$ could be added in Theorem 24 and $p_{\Psi}^{\triangle} \in B C$ in Theorem 25.
18. Lines connecting the touching points P_{o}, \ldots, Y_{o}

The points where the eight Thébault's circles touch the circumcircle have many properties. Some are revelled in the next result.

Let M_{1}, \ldots, M_{24} denote the intersections of the lines $P_{o} T_{o}, P_{o} V_{o}$, $P_{o} Q_{o}, S_{o} T_{o}, Q_{o} U_{o}, Q_{o} S_{o}, Q_{o} S_{o}, Q_{o} X_{o}, P_{o} Q_{o}, S_{o} T_{o}, P_{o} Y_{o}, P_{o} T_{o}, P_{o} T_{o}$,
$P_{o} V_{o}, P_{o} Y_{o}, S_{o} V_{o}, S_{o} Y_{o}, U_{o} Y_{o}, Q_{o} U_{o}, P_{o} Y_{o}, U_{o} V_{o}, P_{o} Q_{o}, Q_{o} X_{o}$ and $P_{o} V_{o}$ with the lines $U_{o} Y_{o}, S_{o} Y_{o}, X_{o} Y_{o}, U_{o} V_{o}, T_{o} X_{o}, V_{o} X_{o}, U_{o} Y_{o}, T_{o} U_{o}, U_{o} V_{o}$, $X_{o} Y_{o}, S_{o} V_{o}, V_{o} X_{o}, Q_{o} S_{o}, Q_{o} U_{o}, Q_{o} X_{o}, T_{o} U_{o}, T_{o} X_{o}, V_{o} X_{o}, S_{o} Y_{o}, T_{o} U_{o}$, $X_{o} Y_{o}, S_{o} T_{o}, S_{o} V_{o}$ and $T_{o} X_{o}$, respectively.

Figure 3. The points M_{13}, M_{18}, M_{22} and M_{21}.

Teorem 41. The point D lies on the following lines: $P_{o} S_{o}, Q_{o} T_{o}, U_{o} X_{o}$ and $V_{o} Y_{o}$. The intersections M_{1}, \ldots, M_{24} are on the lines $\mathfrak{I I}_{a}, \mathfrak{I I}_{b}, \mathfrak{I I}_{e}$, $\mathfrak{I}_{a} \mathfrak{I}_{b}, \mathfrak{I}_{a} \mathfrak{I}_{e}, \mathfrak{I}_{b} \mathfrak{I}_{e}, \mathfrak{J}_{a}, \ldots, I I_{a}, \ldots, J_{c} J_{e}$, respectively. The points M_{2}, $M_{5}, M_{8}, M_{11}, M_{13}, M_{18}, M_{21}$ and M_{22} are on the line perpendicular to the line $D O$. The point D is collinear with the points $M_{1}, M_{6}, M_{9}, M_{10}$, M_{14}, M_{17}, M_{20} and M_{23} as well as with the points $M_{3}, M_{4}, M_{7}, M_{12}$, M_{15}, M_{16}, M_{19} and M_{24}. The point A is on the circles $k_{M_{1} M_{6}}, k_{M_{7} M_{12}}$ and $k_{M_{13} M_{18}}$, the point B is on the circles $k_{M_{2} M_{5}}, k_{M_{14} M_{17}}$ and $k_{M_{19} M_{24}}$, the point C is on the circles $k_{M_{8} M_{11}}, k_{M_{15} M_{16}}$ and $k_{M_{20} M_{23}}$ and the point E is on the circles $k_{M_{3} M_{4}}, k_{M_{9} M_{10}}$ and $k_{M_{21} M_{22}}$. Moreover, there are 32 triples of collinear points beginning with $\left\{M_{4}, M_{2}, M_{1}\right\}$ and ending with $\left\{M_{24}, M_{23}, M_{22}\right\}$ (one from each of the above three groups of eight points).

Proof. When $\bar{h} \neq d k$, then the line $P_{o} S_{o}$ has the equation

$$
2 h^{2} k x+\left[\left(h^{2}+d^{2}\right) k^{2}-2 d \bar{h} k+4 \zeta\right] y=2 r g h f_{+} \varphi_{-} .
$$

The coordinates of the point D satisfy this equation. We prove similarly that D also lies on the lines $Q_{o} T_{o}, U_{o} X_{o}$ and $V_{o} Y_{o}$.

The intersection M_{13} has the coordinates $\frac{r g}{M}\left(N,-2 f h s_{2}\right)$, where $M=$ $4 d \zeta L+\bar{h} k\left(d^{2}+h^{2}-4 \zeta\right)$ and $N=2 d f z L+k\left[\left(f^{-}\right)^{2} g^{+}-4 \zeta f^{+}\right]$. It lies on the line $I I_{a}$ with the equation $\bar{h} x-d y=r g f^{+}$.

Similarly, the point M_{18} has the coordinates $\frac{r g z}{h M}\left(N, 2 f z p_{2}\right)$, where $M=4 \bar{h} \zeta L+d k\left(d^{2}+h^{2}+4 \zeta\right)$ and $N=2 f h \bar{h} L+k\left[\left(f^{-}\right)^{2} g^{+}+4 \zeta f^{+}\right]$. It lies on the line $I_{b} I_{c}$ with the equation $d x+\bar{h} y=\frac{r g z f^{+}}{h}$. The line $M_{13} M_{18}$ is perpendicular to the line $D O$ with the equation

$$
k\left(h^{2}-d^{2}\right) x-(4 \zeta L+2 d \bar{h} k) y=\frac{\left(h^{2}-d^{2}\right) r g f_{+} \varphi_{-}}{h} .
$$

Moreover, the midpoint of $M_{13} M_{18}$ is equidistant from M_{13} and A.
The intersections M_{22} and M_{21} are treated similarly. Of course, they both lie on the line $M_{13} M_{18}$.

19. Some homologic triangles

The triangles $A B C$ and $X Y Z$ are homologic provided the lines $A X$, $B Y$ and $C Z$ are concurrent. Their common intersection $h_{A B C}^{X Y Z}$ is called the center (of the homology). In terms of the coordinates the condition for homology is

$$
\left|\begin{array}{ccc}
x_{A}-x_{X} & x_{B}-x_{Y} & x_{C}-x_{Z} \tag{59}\\
y_{X}-y_{A} & y_{Y}-y_{B} & y_{Z}-y_{C} \\
x_{A} y_{X}-y_{A} x_{X} & x_{B} y_{Y}-y_{B} x_{Y} & x_{C} y_{Z}-y_{C} x_{Z}
\end{array}\right|=0 .
$$

Let $\varphi=S_{o} U_{o} X_{o}$ and $\psi=T_{o} V_{o} Y_{o}$.
Teorem 42. The triangle Φ is homologic to the triangles φ and ψ. The homology centers h_{Φ}^{φ} and h_{Φ}^{ψ} are the antipodal points on the circumcircle o. The lines $h_{\Phi}^{\varphi} h_{\Phi}^{\psi}$ and $A D$ are perpendicular if and only if either $I \in A D$ or $I_{b} \in A D$.

Proof. One can either show directly that the condition (59) holds for the pairs (Φ, φ) and (Φ, ψ) or check that the intersections $I_{a} S_{o} \cap I_{b} U_{o}$ and $I_{a} T_{o} \cap I_{b} V_{o}$ have the coordinates $\frac{r\left(g^{-} k+2 g\right)}{2 h K}\left(f^{-}+2 f k, 2 f-f^{-} k\right)$ and $\frac{r\left(2 g k-g^{-}\right)}{2 h K}\left(f^{-} k-2 f, 2 f k+f^{-}\right)$and that they lie on the lines $I_{c} X_{o}$ and $I_{c} Y_{o}$, respectively. The distance $\left|h_{\Phi}^{\varphi} h_{\Phi}^{\psi}\right|$ is $2 R$ and the midpoint of the segment $h_{\Phi}^{\varphi} h_{\Phi}^{\psi}$ is the circumcenter O.

The lines $h_{\Phi}^{\varphi} h_{\Phi}^{\psi}$ and $A D$ are perpendicular if and only if $\frac{r^{2} \zeta p_{2} s_{2}}{h^{2} k K}=0$. By Theorems 24 and 25 , this happens if and only if either $I \in A D$ or $I_{b} \in A D$.

Let $\tau=A B C$. Recall that the tangential triangle $\tau_{t}=A_{t} B_{t} C_{t}$ has the intersections of the tangents to the circumcircle o at the vertices of τ as vertices.

Teorem 43. The tangential triangle τ_{t} is homologic to the triangles φ and ψ.

Proof. Let $\tau_{t}=A_{t} B_{t} C_{t}$. These vertices have the coordinates $\frac{r z}{2\left(h^{2}-z^{2}\right)}\left(h^{2}\right.$ $\left.-z^{2}, 2 h z\right), \frac{r}{2 f^{-h}}\left(f f^{-} g^{-}+2\left(f^{4}+1\right) g, 2 f h z\right)$ and $\frac{r g}{2 g^{-h}}\left(h^{2}-z^{2}, 2 h z\right)$. One can now easily check that the condition (59) holds for the pairs $\left(\tau_{t}, \varphi\right)$ and $\left(\tau_{t}, \psi\right)$.

The above two theorems have more extensive versions that use the symmetry of the configuration. More precisely, the orthocentric quadrangle $I I_{a} I_{b} I_{c}$ is homologic to the quadrangles $P_{0} S_{0} U_{0} X_{0}$ and $Q_{0} T_{0} V_{0} Y_{0}$. Similarly, $J J_{a} J_{b} J_{e}$ is homologic to the quadrangles $U_{0} S_{0} P_{0} X_{0}$ and $Y_{0} Q_{0}$ $T_{0} V_{0}, \mathfrak{I}_{a} \mathfrak{I}_{b} \mathfrak{J}_{e}$ is homologic to the quadrangles $P_{0} U_{0} S_{0} X_{0}$ and $Y_{0} T_{0} V_{0} Q_{0}$ and $\mathfrak{J} \mathfrak{J}_{a} \mathfrak{J}_{c} \mathfrak{J}_{e}$ is homologic to the quadrangles $U_{0} S_{0} X_{0} P_{0}$ and $Q_{0} Y_{0} T_{0} V_{0}$. The centers of these homologies are antipodal points on the circumcircle and are at the distance $\frac{2 R k}{\sqrt{K}}$ and $\frac{2 R}{\sqrt{K}}$ from the vertices A, B, E and C, respectively.

On the other hand, the triangles $U_{o} X_{o} P_{o}$ and $V_{o} Y_{o} Q_{o}$ are homologic to the tangential triangle of $B C E$, the triangles $S_{o} U_{o} P_{o}$ and $T_{o} V_{o} Q_{o}$ are homologic to the tangential triangle of $A B E$ and the triangles $S_{o} X_{o} P_{o}$ and $T_{o} Y_{o} Q_{o}$ are homologic to the tangential triangle of $A C E$.

20. More on triangles $\mathcal{A B C}, \mathrm{ABC}$ and $\mathbb{A} \mathbb{B} \mathbb{C}$

In this section we explore additional properties of the triangles $\mathcal{A B C}$, ABC and $\mathbb{A} \mathbb{B C}$ that have been introduces in section 15.

Teorem 44. The triangles $\mathcal{A B C}$ and ABC are homologic if and only if either $D=I^{\prime}$ or $D=A I \cap B C$. They are orthologic if and only if the lines $A D$ and $B C$ are perpendicular. They can never be paralogic.

Proof. The condition (59) for the triangles $\mathcal{A B C}$ and ABC is

$$
\frac{3 r^{4} f^{+} g^{+} \zeta^{2} p_{I^{\prime}} s_{2} z}{32 h^{4} k^{2}}=0
$$

Now it suffices to apply Theorems 18 and 25 .
Similarly, the conditions (55) and (58) for these triangles are

$$
\frac{3 r^{2} f^{+} g^{+} \zeta L z}{8 h^{2} k}=0, \quad-\frac{5 r^{2} f^{+} g^{+} \zeta z}{4 h^{2}}=0
$$

The first holds if and only if $k=1$, i. e., if and only if $D=A^{\prime}$. The second does not depend on k and is never true so that the triangles $\mathcal{A B C}$ and ABC are not paralogic.

Teorem 45. The triangles $A B C$ and $\mathcal{A B C}$ are homologic if and only if $D=A I \cap B C$.

Proof. The condition (59) for the triangles $\mathcal{A B C}$ and $A B C$ is

$$
-\frac{r^{4} \zeta^{2} p_{2} z^{3}}{4 h^{3} k}=0
$$

The claim of the theorem now follows from Theorem 24.

Teorem 46. The triangles $\mathcal{A B C}$ and ABC are orthologic to Φ (the extriangle $I_{a} I_{b} I_{c}$) and/or Ψ (the pedal triangle $A_{q} B_{q} C_{q}$ of the incenter I) if and only if the lines $A D$ and $B C$ are perpendicular. These pairs of triangles are never paralogic.

Proof. The conditions (55) and (58) for the pair $(\mathcal{A B C}, \Phi)$ are

$$
\frac{r^{2} f^{+} g^{+} \zeta L z}{4 h^{2} k}=0, \quad-\frac{3 r^{2} f^{+} g^{+} \zeta z}{2 h^{2}}=0 .
$$

The first holds if and only if $k=1$, i. e., if and only if the lines $A D$ and $B C$ are perpendicular. The second does not depend on k and is never true so that the triangles $\mathcal{A B C}$ and Φ are not paralogic. The similar argument holds for the pairs $(\mathcal{A B C}, \Psi),(\mathbf{A B C}, \Phi)$ and $(\mathbf{A B C}, \Psi)$.

It follows from the part (vi) of Theorem 35 that the points $\mathbb{I}, \mathbb{A}, \mathbb{B}$ and \mathbb{C} are the images of the points I, I_{a}, I_{b} and I_{c} under the homothety $h\left(D, \frac{3}{4}\right)$. Since I is the orthocenter of the extriangle $I_{a} I_{b} I_{c}$, we infer that the quadruple $\{\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{I}\}$ is orthocentric.

The variable triangle $\mathbb{A} \mathbb{B} \mathbb{C}$ has many additional nice properties that we now describe. They are all the consequence of the fact that it is homothetic with the extriangle for all positions of the point D.
(1) The triangles $\mathbb{A B C}$ and Φ are homologic and their homology center is the point D.
(2) The triangles $\mathbb{A B C}$ and Ψ are homologic and their homology center is the $-\frac{3\left(\zeta^{2}+d^{2}+3\right)}{2 h}$-point of the segment joining the point D with the central point X_{57}, the isogonal conjugate of the Mittenpunkt X_{9}.
(3) The triangles $\mathbb{A B C}$ and $A B C$ are orthologic. Moreover, $o_{A B C}^{\mathbb{A B C}}=$ I and $o_{\mathbb{A} \mathbb{B} C}^{A B C}$ is the 3-point of the segment joining the point D with the Bevan point X_{40}.
The triangle $\mathbb{A B C}$ is also orthologic with other triangles associated with the triangle $A B C$. For example, with the anticomplementary triangle $A_{a} B_{a} C_{a}$ (on the reflections of the vertices in the midpoints of opposite sides), the Euler triangle $A_{e} B_{e} C_{e}$ (on the midpoints of the segments joining the vertices with the orthocenter), the complementary triangle $A_{g} B_{g} C_{g}$ (on the midpoints of the sides), the extriangle Φ, the cevian triangle $A_{i} B_{i} C_{i}$ of the incenter, the triangle $A_{j} B_{j} C_{j}$ (on the touching points of the excircles with the sides), the triangle $A_{m} B_{m} C_{m}$ (on the outer Gergonne points) and the pedal triangle Ψ of the incenter.

Some of the orthology centers for these pairs are interesting central points of the triangle $A B C$. For example, $o_{A_{i} B_{i} C_{i}}^{\mathbb{A B C}}=o_{\Phi}^{\mathbb{A B C}}=X_{1}=I$ (the incenter), $o_{A_{a} B_{a} C_{a}}^{\mathbb{A B C}}=o_{A_{m} B_{m} C_{m}}^{\mathbb{A B C}}=X_{8}=\mathfrak{N}$ (the Nagel point), $o_{A_{g} B_{g} C_{g}}^{\mathbb{A} \mathbb{B C}}$ is the Spieker point X_{10} (the incenter of the complementary triangle), $o_{A_{e} B_{e} C_{e}}^{\mathbb{A} \mathbb{A B C}}$ is the intersection of the central lines $X_{1} X_{4}$ and $X_{2} X_{40}, o_{A_{j} B_{j} C_{j}}^{\mathbb{A B B C}}$ $=X_{72}$ and $o_{\Psi}^{\mathbb{A B C}}=X_{65}$.

On the other hand, $o_{\mathrm{A} B C}^{A B C}=o_{\mathrm{ABC}}^{A_{a} B_{a} C_{a}}=o_{\mathrm{A} B C}^{A_{e} B_{e} C_{e}}=o_{\mathrm{ABC}}^{A_{g} B_{g} C_{g}}$. Moreover, $o_{\mathbb{A B C}}^{\Phi}=o_{\mathbb{A} B \mathbb{C}}^{A_{m} B_{m} C_{m}}=o_{\mathbb{A} \mathbb{B C}}^{A_{q} B_{q} C_{q}}$ and $o_{\mathbb{A B C}}^{\Phi}$ is the 3-point of the segment joining the point D with the incenter I and $o_{\mathbb{A} \mathbb{B C}}^{A_{i} B_{i} C_{i}}$ is the 3 -point of the segment joining the point D with the circumcenter O.

21. Properties of quadrangles q_{1}, q_{2}, q_{3} And q_{4}

Let us call the quadrangle tame provided it has equal sums of squares of opposite sides.

We shall now show that $q_{1}=P Q S T, q_{2}=P V S Y, q_{3}=U V X Y$ and $q_{4}=Q U T X$ are tame quadrangles. There are many more such tame quadrangles from the Thébault's centers. Moreover, the quadrangles $P_{o} Q_{o} S_{o} T_{o}$ and $U_{o} V_{o} X_{o} Y_{o}$ have equal symmetric products of four sides.

Teorem 47. The quadrangles q_{1}, q_{2}, q_{3} and q_{4} are tame and

$$
\left|P_{o} Q_{o}\right| \cdot\left|S_{o} T_{o}\right| \cdot\left|U_{o} Y_{o}\right| \cdot\left|V_{o} X_{o}\right|=\left|P_{o} T_{o}\right| \cdot\left|Q_{o} S_{o}\right| \cdot\left|U_{o} V_{o}\right| \cdot\left|X_{o} Y_{o}\right| .
$$

Proof. The formula $|M N|^{2}=\left(x_{M}-x_{N}\right)^{2}+\left(y_{M}-y_{N}\right)^{2}$ gives us easily $|S T|^{2}=\frac{r^{2} K^{2} \zeta^{2}\left[\zeta^{2} K^{+}+2 \zeta k L+\left(d^{2}+h^{2}-2 \zeta^{2}\right) k^{2}\right]}{h^{2} k^{4}},|P T|^{2}=\frac{r^{2} K \varphi-\psi_{+}\left(k^{2} \zeta^{2}+1\right)}{h^{2} k^{4}},|Q S|^{2}$ $=\frac{r^{2} K f_{+}^{2} g_{-}^{2}\left(k^{2}+\zeta^{2}\right)}{h^{2} k^{4}}$ and $|P Q|^{2}=\frac{r^{2} K^{2}\left[K^{+}+2 d k L+\left(d^{2}+h^{2}-2\right) k^{2}\right]}{h^{2} k^{4}}$. From this one can derive the algebraic identity $|P Q|^{2}+|S T|^{2}=|P T|^{2}+|Q S|^{2}$ which proves that q_{1} is a tame quadrangle. For the other quadrangles q_{2}, q_{3} and q_{4} the proof is similar. For the long identity, we actually prove that both sides have equal squares.

Next, we find a situation when the quadrangles q_{1}, q_{2}, q_{3} and q_{4} are cyclic.

Teorem 48. If the line $A D$ and the sideline $B C$ are perpendicular, then the quadrangles q_{1}, q_{2}, q_{3} and q_{4} are cyclic. Their circumcenters $O_{q_{1}}, O_{q_{2}}, O_{q_{3}}$ and $O_{q_{4}}$ are vertices of a square with the side $2 \sqrt{2} R$ such that $O_{q_{2}} O_{q_{4}}$ is parallel to the sideline $B C$.

Proof. Let us recall that $k=1$ if and only if the lines $A D$ and $B C$ are perpendicular. Hence, the circumcenter of the triangle $P Q S$ has the coordinates $\frac{r}{h}\left(f g^{-},-h^{2}\right)$ and is equidistant from the points P and T. It follows that q_{1} is a cyclic quadrangle. Similarly, the circumcenter of the triangle $U V X$ has the coordinates $\frac{r}{h}\left(f g^{-}, z^{2}\right)$ and is equidistant from the points U and Y so that the quadrangle q_{3} is also cyclic. In fact, this argument shows that these quadrangles are non-degenerate and cyclic if and only if $k=1$ (see [3, Remark 6] for $P Q S T$). For the quadrangles q_{2} and q_{4} these equivalences do not hold but for $k=1$ they are also cyclic. The remaining claims have easy proofs by direct computation of coordinates and use of the distance formula.

The centroids $G_{q_{1}}, G_{q_{2}}, G_{q_{3}}$ and $G_{q_{4}}$ of the quadrangles q_{1}, q_{2}, q_{3} and q_{4} are vertices of an interesting rectangle whose diagonals are never shorter than the diameter of the circumcircle of the triangle $A B C$.

Teorem 49. The quadrangle $G_{q_{1}} G_{q_{2}} G_{q_{3}} G_{q_{4}}$ is a rectangle with sides $\left|G_{q_{1}} G_{q_{2}}\right|=R k \sqrt{K}$ and $\left|G_{q_{2}} G_{q_{3}}\right|=\frac{R \sqrt{K}}{k^{2}}$ and the diagonals $\frac{R K \sqrt{k^{2} L+1}}{k^{2}}$. Hence, $\left|G_{q_{1}} G_{q_{3}}\right| \geq 2 R$.

Proof. The centroids $G_{q_{1}}$ and $G_{q_{1}}$ have the coordinates

$$
-\frac{r}{4 h k^{2}}\left(h k(h L-2 z k), \zeta^{+} L^{2}+\left(2 h^{2}+d \bar{h} k\right) L+2 h^{2}\right)
$$

and

$$
\frac{r}{4 h k^{2}}\left(z k(z L+2 h k),\left(f^{2}+g^{2}\right) L^{2}+\left(2 z^{2}-d \bar{h} k\right) L+2 z^{2}\right) .
$$

The coordinates of $G_{q_{2}}$ and $G_{q_{4}}$ are similar. It is now routine to check that $G_{q_{1}} G_{q_{2}} G_{q_{3}} G_{q_{4}}$ is a rectangle and to compute the lengths of its sides and diagonals and prove the above inequality.

The following results explores when the diagonals of the quadrangle $G_{q_{1}} G_{q_{2}} G_{q_{3}} G_{q_{4}}$ have their minimal value $2 R$.

Teorem 50. The following are equivalent: (i) $\left|G_{q_{1}} G_{q_{3}}\right|=2 R$, (ii) the line $G_{q_{1}} G_{q_{3}}$ is perpendicular to the line $B C$, (iii) the line $G_{q_{1}} G_{q_{3}}$ is parallel to the line $A D$ and (iv) the line $A D$ is perpendicular to the line $B C$.
Proof. The only singular value for the function $k \mapsto \frac{K^{2}\left(k^{2} L+1\right)}{k^{4}}$ is $k=1$. This shows that (i) and (iv) are equivalent.

The line $G_{q_{1}} G_{q_{3}}$ is perpendicular to the line $B C$ if and only if $G_{q_{1}}$ and $G_{q_{3}}$ have equal abscises. However, $x_{G_{q_{3}}}-x_{G_{q_{1}}}=\frac{r f^{+} g^{+} L}{4 h k}$. Hence, again $k=1$ and we conclude that (ii) and (iv) are equivalent.

Finally, the line $G_{q_{1}} G_{q_{3}}$ is parallel to the line $A D$ if and only if they have equal slopes, i. e., if and only if $k=1$. Therefore, (iii) and (iv) are also equivalent.

The following three theorems consider the Newton lines of the quadrangles q_{1} and q_{3}. Recall that the Newton line joins the midpoints of the diagonals of a quadrangle and its centroid.

Let $\zeta^{+}=\zeta^{2}+1$.
Teorem 51. The following are equivalent: (i) the Newton lines of the quadrangles q_{1} and q_{3} are parallel, (ii) the point D lies on the line joining the centroids $G_{q_{1}}$ and $G_{q_{3}}$ of the quadrangles q_{1} and q_{3} and (iii) the point D is the midpoint of the segment $B C$.

Proof. The equations of the Newton lines of $P Q S T$ and $U V X Y$ are

$$
2\left[\zeta^{+} L+d \bar{h} k\right] x-2 h^{2} k y=r\left[z \zeta^{+} L+\left(h^{3}+d \bar{h} z\right) k\right]
$$

and

$$
2 h\left[\left(f^{2}+g^{2}\right) L-d \bar{h} k\right] x-2 h k z^{2} y=r z\left[h\left(f^{2}+g^{2}\right) L-\left(z^{3}+d h \bar{h}\right) k\right] .
$$

The condition for these lines to be parallel is $4 f^{+} g^{+} h(2 \zeta L+d \bar{h} k)=0$. In order to prove the equivalence of (i) and (iii), it remains to notice
that the distance between the point D and the midpoint of the segment $B C$ is $\frac{r|2 \zeta L+d \bar{h} k|}{2 h k}$.

Let $K^{+} \stackrel{ }{=} k^{4}+1$. The line $G_{q_{1}} G_{q_{3}}$ has the equation

$$
4 h k\left(K^{+} x-k L y\right)=r\left[2 \zeta L^{3}+(d \bar{h}+2 h z) k L^{2}+4 h k^{3} z\right] .
$$

When we substitute $x=x_{D}$ and $y=y_{D}=0$ and move the free term to the left, we get $r K^{2}(2 \zeta L+d \bar{h} k)$. This shows that (ii) and (iii) are equivalent.

Teorem 52. The Newton lines of the quadrangles q_{1}, q_{3}, q_{2} and q_{4} go through the points Z_{2}, Z_{1}, R_{1} and R_{2}, respectively.

Proof. The coordinates of the point Z_{2} are $\frac{r}{2}(z,-h)$. The equation of the Newton line of $P Q S T$ is

$$
2\left[\zeta^{+} L+d \bar{h} k\right] x-2 h^{2} k y=r\left[z \zeta^{+} L+\left(h^{3}+d \bar{h} z\right) k\right] .
$$

It is now easy to check that Z_{2} is on it. The other claims in this theorem have similar proofs.

Recall that the central point X_{69} is the symmedian point of the anticomplementary triangle. It is also the isotomic conjugate of the orthocenter.

Teorem 53. The locus of intersections of Newton lines of the quadrangles q_{1} and q_{3} is the perpendicular to the line $A X_{69}$ from the intersection of the line $B C$ with the perpendicular in the vertex A to the line $A O$.

Proof. The coordinates of the intersection M of the Newton lines of the quadrangles q_{1} and q_{3} are (see the proof of Theorem 50)

$$
\frac{r}{2 h(2 \zeta L+d h k)}\left(2 g h z f_{+} \varphi_{-},\left(4 \zeta^{2}+\left(\zeta^{2}+1\right)\left(f^{2}+g^{2}\right)\right) L-d\left(h^{2}-z^{2}\right) \bar{h} k\right)
$$

By eliminating the variable k from the equations $x=x_{M}$ and $y=y_{M}$, we get the equation $d h \bar{h} x+2 \zeta h y=r g^{2}\left(f^{+}\right)^{2}$ of the locus. Since the central point X_{69} has the coordinates

$$
\frac{r f^{2}}{h\left(\left(f^{2}+g^{2}\right)\left(\zeta^{2}+1\right)+\zeta f^{-} g^{-}\right)}\left(2 f^{-} g\left(g^{4}+1\right)+f\left(g^{-}\right)^{2},-2 g^{2}\left(h^{2}-z^{2}\right)\right),
$$

it is now easy to check that the locus is the line described in the statement of the theorem.

Teorem 54. The diagonals of the van Aubel pseudo-squares of the quadrangles $P Q S T, U V X Y, P Q U Y$ and $S T X V$ are on angle bisectors of the line $A D$ and the perpendicular at the point D onto the line $B C$.

Proof. The angle bisectors of the line $A D$ and the perpendicular at the point D onto the line $B C$ have the equations

$$
\begin{equation*}
(k-1) x-(k+1) y=(k-1) x_{D} \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
(k+1) x+(k-1) y=(k+1) x_{D} \tag{61}
\end{equation*}
$$

The coordinates of the centers M and N of the negative squares on the segments $Q S$ and $T P$ are $\frac{r f_{+}}{2 h k^{2}}\left(u_{M}, v_{M}\right)$ and $\frac{r \varphi_{-}}{2 h k^{2}}\left(u_{N}, v_{N}\right)$, where $u_{M}=(k-1)\left(k^{2}+g \zeta\right)+k(k+1)(\zeta-g), v_{M}=(k+1) g_{-}(\zeta-k), u_{N}$ $=(k-1)\left(k^{2} g \zeta-1\right)+k(k+1)(\zeta+g)$ and $v_{N}=(k+1) \psi_{+}(1-\zeta k)$. It is now easy to check that these coordinates of both M and N satisfy the equation (60). The similar argument applies to the centers of the other negative and positive squares on sides of the quadrangles $P Q S T$, $U V X Y, P Q U Y$ and $S T X V$.

Many other quadrangles from Thébault's centers P, \ldots, Y share the above properties with the quadrangles q_{1}, q_{2}, q_{3} and q_{4}.
22. Lines concurrent in the points R_{1}, R_{2}, Z_{1} and Z_{2}

Teorem 55. The lines $P_{o} P^{\prime}, Q_{o} Q^{\prime}, S_{o} S^{\prime}$ and $T_{o} T^{\prime}$ concur in the point Z_{2}. The lines $U_{o} U^{\prime}, V_{o} V^{\prime}, X_{o} X^{\prime}$ and $Y_{o} Y^{\prime}$ concur in the point Z_{1}.

Proof. The line $P_{o} P^{\prime}$ has the equation $h k x+(2-d k) y=r h \varphi_{-}$. It is now easy to check that Z_{2} is on the line $P_{o} P^{\prime}$. The other claims in this theorem have similar proofs.

Let the perpendicular bisector of the segment $A D$ intersect the circumcircle o in the points R_{1} and R_{2} such that R_{1} is closer to A than to B while R_{2} is closer to B than to A. Hence,

$$
\left|A R_{1}\right|^{2}-\left|B R_{1}\right|^{2}=\left|B R_{2}\right|^{2}-\left|A R_{2}\right|^{2}=\frac{4 a R k}{K}
$$

Note that R_{1} is the midpoint of $\mathfrak{J}_{a} \mathfrak{J}_{e}$ and R_{2} is the midpoint of $\mathfrak{I}_{a} \mathfrak{I}_{e}$.
Teorem 56. The lines $P_{o} P^{\prime \prime}, S_{o} S^{\prime \prime}, V_{o} V^{\prime \prime}$ and $Y_{o} Y^{\prime \prime}$ concur in the point R_{1}. The lines $Q_{o} Q^{\prime \prime}, T_{o} T^{\prime \prime}, U_{o} U^{\prime \prime}$ and $X_{o} X^{\prime \prime}$ concur in the point R_{2}.

Proof. The coordinates of the point R_{1} are $\frac{r(k z+h)}{2 h K}(h k+z, k z-h)$. The line $P_{o} P^{\prime \prime}$ has the equation

$$
(d k+h-2) k x+\left(h k^{2}-d k+2\right) y=r \varphi_{-}(k z+h) .
$$

It is now easy to check that R_{1} is on the line $P_{o} P^{\prime \prime}$. The other claims in this theorem have similar proofs.

23. The points that envelop $P_{o} Q_{o}, S_{o} T_{o}, U_{o} V_{o}$ and $X_{o} Y_{o}$

In this section we show that the lines $P_{o} Q_{o}, S_{o} T_{o}, U_{o} V_{o}$ and $X_{o} Y_{o}$ pass through the fixed points of the triangle $A B C$. The following is the part (a) of Proposition 9 in [3].

Teorem 57. The central point X_{56} of the triangle $A B C$ (i. e., the isogonal conjugate of the Nagel point X_{8}) lies on the line $P_{o} Q_{o}$.

Proof. The coordinates of the point X_{56} are

$$
\frac{r}{d^{2}+h^{2}+4}\left(f^{-} g(h-1)+f\left(f^{2}+3\right), h^{2}\right) .
$$

The line $P_{o} Q_{o}$ has the equation

$$
2(d k+L) h x+\left[\left(\bar{h}^{2}-z^{2}+4\right) k-2 d L\right] y=2 h r f_{+} \varphi_{-} .
$$

It is now easy to check that X_{56} is on the line $P_{o} Q_{o}$.
Of course, there are three related results where the central points X_{56} of the triangles $B C E, A B E$ and $A C E$ appear. Since the point E varies, these points are not fixed. They lie on the lines $U_{o} Y_{o}, P_{o} Y_{o}$ and $Q_{o} U_{o}$, respectively.

Let N_{a}^{*}, N_{b}^{*} and N_{c}^{*} be the points on the lines $A X_{55}, B X_{55}$ and $C X_{55}$ with the coordinates $\frac{r g}{d^{2}+5 \zeta^{2}-2 \zeta+1}\left(g^{2}\left(3 f^{+}-2\right)+f^{-}(2 \zeta-1),-2 f h^{2}\right)$, $\frac{r g z}{h\left(z^{2}+h^{2}+4 g^{2}\right)}\left(f\left(g^{+} f^{2}+3 g^{-}+2\right)+2 f^{-} g, 2 z^{2}\right)$ and $\frac{r z}{h\left(z^{2}+h^{2}+4 f^{2}\right)}\left(f^{-}\left(g^{2}+\right.\right.$ $\left.2 \zeta)-3 f^{+}+2,2 f z^{2}\right)$. Notice that N_{a}^{*}, N_{b}^{*} and N_{c}^{*} are isogonal conjugates of the associated Nagel points N_{a}, N_{b} and N_{c} with coordinates $-\frac{r}{h}\left(f g^{+}+2 g, 2 g^{2}\right), \frac{r f}{h}\left(g^{+}+2 \zeta,-2 f\right)$ and $\frac{r f}{h}\left(2 \zeta-g^{+}, 2 g \zeta\right)$.
Teorem 58. The lines $S_{o} T_{o}, U_{o} V_{o}$ and $X_{o} Y_{o}$ pass through the points N_{a}^{*}, N_{b}^{*} and N_{c}^{*}, respectively.
Proof. The line $S_{o} T_{o}$ has the equation

$$
2(d k+\zeta L) h x+\left[2 d \zeta L-\left(5 \zeta^{2}-f^{2}-g^{2}+1\right) k\right] y=2 g^{2} h r f_{+} \varphi_{-} .
$$

It is now easy to check that N_{a}^{*} is on the line $S_{o} T_{o}$. This is the part (b) of Proposition 9 in [3]. The remaining two claims are proved similarly.

24. Perpendiculars passing through the point D

The point D is very important for the Thébault's configuration. This is supported by four similar results in this section about D being on some interesting perpendiculars to sides of the four orthocentric quadrangles from the incenters and the excenters.
Teorem 59. If $k \neq k_{0}$, then the point D lies on the perpendicular from the intersection of the lines $P Q$ and $S T$ onto the line $I I_{a}$. If $k \neq m_{0}$, then the point D lies on the perpendicular from the intersection of the lines $U V$ and $X Y$ onto the line $I_{b} I_{c}$. These perpendiculars are perpendicular.
Proof. Let $k \neq k_{0}$. The intersection M of the lines $P Q$ and $S T$ has the coordinates $\frac{r f_{+} \varphi_{-}}{h k p_{2}}\left(g^{+} h k, d g_{-} \psi_{+}\right)$. Hence, the perpendicular from M onto the line $I I_{a}$ has the equation $h k(d x+\bar{h} y)=r d g f_{+} \varphi_{-}$. It is now obvious that this perpendicular goes through the point D.

Let $k \neq m_{0}$. The intersection N of the lines $U V$ and $X Y$ has the coordinates $-\frac{r f_{+} \varphi_{-}}{h k s_{2}}\left(g^{+} z k, \bar{h} g_{-} \psi_{+}\right)$. Hence, the perpendicular from N onto the line $I_{b} I_{c}$ has the equation $h k(\bar{h} x-d y)=r g \bar{h} f_{+} \varphi_{-}$. It is now clear that this perpendicular goes through the point D.

Teorem 60. Let $D \neq B, C$. The point D lies on the perpendicular from the intersection of the lines $P T$ and $Q S$ onto the line $J_{b} J_{c}$. If, in addition, $|A B| \neq|A C|$, then the point D lies on the perpendicular from the intersection of the lines $U Y$ and $V X$ onto the line $J J_{a}$. These perpendiculars are perpendicular.

Proof. The intersection M of the lines $P T$ and $Q S$ has the coordinates $\frac{r g}{h h k}\left(f^{+} h k,-f s_{2}\right)$. Hence, the perpendicular from M onto the line $J_{b} J_{c}$ has the equation $h k\left(s_{2} x-p_{2} y\right)=r g s_{2} f_{+} \varphi_{-}$. It is now obvious that this perpendicular goes through the point D.

Let $|A B| \neq|A C|$ (i. e., let $d \neq 0$). The intersection N of the lines $U Y$ and $V X$ has the coordinates $\frac{r g}{d h k}\left(f^{+} z k, f p_{2}\right)$. Hence, the perpendicular from N onto the line $J J_{a}$ has the equation $h k\left(p_{2} x+s_{2} y\right)=r g p_{2} f_{+} \varphi_{-}$. It is now clear that this perpendicular goes through the point D.

Teorem 61. Let $D \neq B, C$. The point D lies on the perpendicular from the intersection of the lines $P Y$ and $Q X$ onto the line $\mathfrak{I}_{a} \Im_{b}$. The point D lies on the perpendicular from the intersection of the lines $U T$ and $S V$ onto the line $\mathfrak{I I}_{e}$. These perpendiculars are perpendicular.

Proof. The intersection M of the lines $P Y$ and $Q X$ has the coordinates $\frac{r}{h k}\left(\left(g f^{-}-2 f\right) k, f(2 g k-L)\right)$. Hence, the perpendicular from M onto the line $\mathfrak{I}_{a} \mathfrak{I}_{b}$ has the equation

$$
h k[(2 g k-L) x+(g L+2 k) y]=r g(2 g k-L) f_{+} \varphi_{-} .
$$

It is now obvious that this perpendicular goes through the point D.
The intersection N of the lines $U T$ and $S V$ has the coordinates $\frac{r g}{h k}\left(\left(f^{-}+2 \zeta\right) k, f(g L+2 k)\right)$. Hence, the perpendicular from N onto the line $\mathfrak{I I}_{e}$ has the equation

$$
h k[(g L+2 k) x-(2 g k-L) y]=r g(g L+2 k) f_{+} \varphi_{-} .
$$

It is now clear that the point D lies on this perpendicular.
Teorem 62. The point D, different from the vertex C, lies on the perpendicular from the intersection of the lines SY and QU onto the line $\mathfrak{J}_{c} \mathfrak{J}_{e}$. The point D lies on the perpendicular from the intersection of the lines $P V$ and $T X$ onto the line \mathfrak{J}_{a}. These perpendiculars are perpendicular.

Proof. The intersection M of the lines $S Y$ and $Q U$ has the coordinates $\frac{r f_{+} \varphi_{-}}{h k K}\left(g^{+} k, k^{2}-g^{2}\right)$. Hence, the perpendicular from M onto the line $\mathfrak{J}_{c} \mathfrak{J}_{e}$ has the equation $h k\left(g_{+} x+\psi_{-} y\right)=r g f_{+} \varphi_{-} g_{+}$. It is now obvious that this perpendicular goes through the point D.

The intersection N of the lines $P V$ and $T X$ has the coordinates $-\frac{r f_{+} \varphi_{-}}{h k K}\left(g^{+} k, \psi_{-} \psi_{+}\right)$. Hence, the perpendicular from N onto the line $\mathfrak{J} \mathfrak{J}_{a}$ has the equation $h k\left(\psi_{-} x-g_{+} y\right)=r g f_{+} \varphi_{-} \psi_{-}$. It is now clear that the point D lies on this perpendicular.
25. Certain pairs of perpendicular Lines

Teorem 63. The lines $D I, D I_{a}, D I_{b}$ and $D I_{c}$ are perpendicular to the lines $S T, P Q, X Y$ and $U V$, respectively.
Proof. The lines $D I$ and $S T$ have the equations $h k x+p_{I^{\prime}} y=r g f_{+} \varphi_{-}$ and $p_{I^{\prime}} x-h k y=r g^{2} f_{+} \varphi_{-}$. It follows that they are perpendicular. The proofs for the remaining three pairs of lines are similar.
Teorem 64. The lines $D J, D J_{a}, D J_{b}$ and $D J_{c}$ are perpendicular to the lines $V X, U Y, Q S$ and $P T$, respectively.

Proof. The lines $D J$ and $V X$ are perpendicular because they have the equations $k z x+(g L-d) y=r g z f_{+} \varphi_{-}$and $(g L-d) x-k z y=-r g z f_{+}^{2}$. The proofs for the remaining three pairs of lines are analogous.

In a similar way it is possible to prove the following:
Teorem 65. (i) The lines $D \mathfrak{I}, D \mathfrak{I}_{a}, D \Im_{b}$ and $D \mathfrak{I}_{e}$ are perpendicular to the lines $S V, X Q, P Y$ and $U T$, respectively.
(ii) The lines $D \mathfrak{J}, D \mathfrak{J}_{a}, D \mathfrak{J}_{c}$ and $D \mathfrak{J}_{e}$ are perpendicular to the lines $X T, P V, U Q$ and $S Y$, respectively.

26. Special relations for products of sides and diagonals

In this section, we consider some consequences of equalities among the products of lengths of sides and diagonals of some quadrangles from the eight centers of Thébault's circles.
Teorem 66. If neither the angle B nor the angle C is right, then $|P Q||S T|=|U V||X Y|$ holds if and only if the line $A D$ is perpendicular either to the line $A B$ or to the line $A C$.

The equality $|P S||Q T|=|U X||V Y|$ holds if and only if either the angle A is right or $|A B| \neq|A C|$ and the line $A D$ is perpendicular to the line $A O$.

The equality $|P T||Q S|=|U Y||V X|$ holds if and only if either $D=B$, $D=C, B=90^{\circ}$ or $C=90^{\circ}$.

The equality $|P U||Q V|=|S X||T Y|$ holds if and only if either $D=B$ or the angle B is right.

The equality $|P X||Q Y|=|S U||T V|$ holds if and only if either $D=C$ or the angle C is right.
Proof. The difference $|P Q|^{2}|S T|^{2}-|U V|^{2}|X Y|^{2}$ factors as the quotient $\frac{(r K)^{4} \zeta^{2} f^{+} g^{+}\left(f^{-} L+4 f k\right)\left(g^{-} L+4 g k\right)}{h^{4} k^{6}}$. When the angle B is not right, then the factor $f^{-} L+4 f k$ vanishes if and only if the line $A D$ is perpendicular to the line $A B$. Similarly, when the angle C is not right, then the factor $g^{-} L+4 g k$ vanishes if and only if the line $A D$ is perpendicular to the line $A C$.

The difference $|P S|^{2}|Q T|^{2}-|U X|^{2}|V Y|^{2}$ simplifies to the quotient $\frac{r^{4} K^{2} f^{+} g^{+}(\bar{h}-d k)^{2}(\bar{h} k+d)^{2}\left(h^{2}-z^{2}\right)}{(h k)^{4}}$. The factor $h^{2}-z^{2}$ vanishes if and only if
the angle A is right. When $|A B| \neq|A C|$, the factor $(\bar{h}-d k)^{2}(\bar{h} k+d)^{2}$ vanishes if and only if the line $A D$ is perpendicular to the line $A O$.

The difference $|P T|^{2}|Q S|^{2}-|U Y|^{2}|V X|^{2}$ is $\frac{r^{4} f^{+} f^{-} g^{+} g^{-}\left(K f_{+} g_{+} \varphi_{-} \psi_{+}\right)^{2}}{h^{4} k^{6}}$. Its numerator vanishes only for $k=\frac{1}{f}$ (when $D=B$), $k=g$ (when $D=C), f=1\left(\right.$ when $\left.B=90^{\circ}\right)$ and $g=1$ (when $C=90^{\circ}$).

The last two claims have similar (somewhat simpler) proofs.

27. Diagonal points

The diagonal points in quadrangles are two intersections of pairs of opposite sidelines and the intersection of diagonals. In this section we consider these points for some quadrangles from the eight centers of Thébault's circles.

The only assumption in the following result is that $|A B| \neq|A C|$.
Teorem 67. The intersections M_{0} and N_{0} of the lines $P T$ and $Q S$ and of the lines $U Y$ and $V X$ lie on the perpendicular to the line $A D$ in the point A. The point D is on the circle $k_{M_{0} N_{0}}$. When the lines $A O$ and $B C$ are not parallel, then its center lies on the line $B C$ if and only if the circumcenter O is on the line $A D$.
Proof. The coordinates of the points M_{0} and N_{0} are $\frac{r g}{h h k}\left(f^{+} h k,-f s_{2}\right)$ and $\frac{r g}{d h k}\left(f^{+} k z, f p_{2}\right)$. It is now easy to check that they satisfy the equation $h(L x-2 k y)=r g\left(\varphi_{-}^{2}-f_{+}^{2}\right)$ of the perpendicular to the line $A D$ in the point A.

The coordinates of the midpoint M of the segment $M_{0} N_{0}$ are

$$
\frac{r g}{2 d h h k}\left(2\left(f^{+}\right)^{2} g k, f[(\bar{h}+d) k-\bar{h}+d][(\bar{h}-d) k+\bar{h}+d]\right) .
$$

Hence, $|M D|^{2}=\left|M M_{0}\right|^{2}$. This implies that the point D is on the circle $k_{M_{0} N_{0}}$.

Finally, when the lines $A O$ and $B C$ are not parallel, then the intersection N of these lines has the coordinates $\left(\frac{r g g^{-}\left(f^{+}\right)^{2}}{h\left(h^{2}-d^{2}\right)}, 0\right)$. It remains to observe that $|N D|=\frac{r \zeta|(\bar{h}+d) k-\bar{h}+d \||(\bar{h}-d) k+\bar{h}+d|}{h k\left|h^{2}-d^{2}\right|}$.

In the following result we assume that $|A B| \neq|A C|$ and that the line $P Q$ is not parallel to the line $S T$ and that the line $U V$ is not parallel to the line $X Y$. In other words, the point D can not be the intersections of the line $B C$ with the lines $A I$ and $I_{b} I_{c}$.

Teorem 68. The intersections M and N of the lines $P Q$ and $S T$ and of the lines $U V$ and $X Y$ lie on the perpendicular to the line $A D$ in the point E. The point D is on the circle $k_{M N}$. The following are equivalent: (i) the midpoint of the segment $M N$ lies on the line $B C$, (ii) the lines $M N_{0}$ and $N M_{0}$ are perpendicular, (iii) the point D is on the line $M N_{0}$, (iv) the point D is on the line $N M_{0}$, (v) the relation $|M N|^{2}+\left|M_{0} N_{0}\right|^{2}=\left|M M_{0}\right|^{2}+\left|N N_{0}\right|^{2}$ holds and (vi) either $D=B$, $D=C$ or the circumcenter O is on the line $A D$.

Proof. The coordinates of the points M and N are $\frac{r f_{+} \varphi_{-}}{h k p_{2}}\left(g^{+} h k, d g_{-} \psi_{+}\right)$ and $-\frac{r f_{+} \varphi_{-}}{h k s_{2}}\left(g^{+} z k, \bar{h} g_{-} \psi_{+}\right)$. It is now easy to check that they satisfy the equation $h(L x-2 k y)=r f_{+} \varphi_{-} g^{-}$of the perpendicular to the line $A D$ in the point E.

The coordinates of the midpoint m of the segment $M N$ are

$$
\frac{r f_{+} \varphi_{-}}{2 h k p_{2} s_{2}}\left(2 f_{+} \varphi_{-}\left(g^{+}\right)^{2} k, g_{-} \psi_{+}[(\bar{h}+d) k-\bar{h}+d][(\bar{h}-d) k+\bar{h}+d]\right) .
$$

Hence, $|m D|^{2}=|m M|^{2}$. This implies that the point D is on the circle $k_{M N}$.

Finally, in order to prove the equivalence of the six statements, it suffices to notice that each condition described analytically involves as factors $\varphi_{-}, g_{-},(\bar{h}+d) k-\bar{h}+d$ and $(\bar{h}-d) k+\bar{h}+d$. For example, the sum $|M N|^{2}+\left|M_{0} N_{0}\right|^{2}-\left|M M_{0}\right|^{2}-\left|N N_{0}\right|^{2}$ is equal

$$
\frac{2 r^{2} \zeta f_{+} \varphi_{-} g_{-} \psi_{+}[(\bar{h}+d) k-\bar{h}+d]^{2}[(\bar{h}-d) k+\bar{h}+d]^{2}}{d \bar{h} h^{2} k^{2} p_{2} s_{2}} .
$$

Teorem 69. Let $k \neq \frac{h}{z}$. The intersections \mathfrak{M}_{0} and \mathfrak{N}_{0} of the lines $P Y$ and $S V$ and of the lines $T U$ and $Q X$ lie on the perpendicular to the line $B C$ in the point C. The point D is on the circle $k_{\mathfrak{M}_{0} \mathfrak{N}_{0}}$.

Proof. The points \mathfrak{M}_{0} and \mathfrak{N}_{0} have the abscises $r z$ (the same as that of the point C) and the ordinates $\frac{r f g_{-} \psi_{+}(h k+z)}{h k(z k-h)}$ and $\frac{r f g_{-} \psi_{+}(h-z k)}{h k(h k+z)}$.

The ordinate of the midpoint \mathfrak{M} of the segment $\mathfrak{M}_{0} \mathfrak{N}_{0}$ is

$$
\frac{r f g_{-} \psi_{+}[(h+z) k+z-h][(h-z) k+z+h]}{2 h k(h k+z)(z k-h)} .
$$

Hence, $|\mathfrak{M} D|^{2}=\left|\mathfrak{M} \mathfrak{M}_{0}\right|^{2}$. This implies that the point D is on the circle $k_{\mathfrak{M}_{0} \mathfrak{N}_{0}}$.

Teorem 70. Let $k \neq \frac{z}{h}$. The intersections \mathcal{M}_{0} and \mathcal{N}_{0} of the lines $P V$ and $S Y$ and of the lines $Q U$ and $T X$ lie on the perpendicular to the line $B C$ in the point B. The point D is on the circle $k_{\mathcal{M}_{0} \mathcal{N}_{0}}$.

Proof. The points \mathcal{M}_{0} and \mathcal{N}_{0} have the abscises 0 (the same as that of the point B) and the ordinates $\frac{r g f_{+} \varphi_{-}(z-h k)}{h k(z k+h)}$ and $\frac{r g f_{+} \varphi_{-}(z k+h)}{h k(h k-z)}$.

The ordinate of the midpoint \mathcal{M} of the segment $\mathcal{M} \mathcal{N}_{0}$ is

$$
\frac{r g f_{+} \varphi_{-}[(h+z) k+h-z][(z-h) k+z+h]}{2 h k(h k-z)(z k+h)}
$$

Hence, $|\mathcal{M} D|^{2}=\left|\mathcal{M} \mathcal{M}_{0}\right|^{2}$. This implies that the point D is on the circle $k_{\mathcal{M}_{0} \mathcal{N}_{0}}$.

28. The ROLE OF X_{40} AND X_{20}

Two results in this section use the Longchamps point X_{20} and the Bevan point X_{40}. They give some consequences of certain positions of these central points with respect to the centers of Thébault circles.

Teorem 71. (i) The relation $\cos A=\cos B+\cos C$ for the angles of the triangle $A B C$ holds if and only if the reflection of the Bevan point X_{40} in the line $B C$ lies on the line $S T$.
(ii) The relation $\cos B+\cos C=1$ holds if and only if the reflection of the Bevan point X_{40} in the perpendicular bisector of the segment $B C$ lies on the line $P Q$.
(iii) The Bevan point X_{40} never lies on the line $S T$.

Proof. The Bevan point X_{40} has the coordinates $\frac{r}{2 h}\left(2 h g, 1+z^{2}-\zeta^{2}\right)$. Its reflection in the line $B C$ (the x-axis!!) will be on the line $S T$ with the equation $(\zeta L+d k) x-h k y=r f_{+} \varphi_{-} g^{2}$ if and only if

$$
3 \zeta^{2}-2 \zeta-z^{2}-1=0
$$

When we substitute $f=\cot \frac{B}{2}$ and $g=\cot \frac{C}{2}$, this condition is seen equivalent with the identity $\cos A=\cos B+\cos C$. This proves the part (i). The proof of (ii) is similar. Finally, in order to prove (iii), when we substitute the coordinates of X_{40} into the above equation of the line $S T$ and move all terms to the left side, we obtain $-\frac{r f^{+} g^{+} k}{2}=0$ that is never true.

Teorem 72. (i) Let $p_{2} \neq 0$. The angle A in the triangle $A B C$ is right if and only if the Longchamps point X_{20} is on the perpendicular to the line $A D$ through the intersection M of the lines $P Q$ and $S T$.
(ii) Let $s_{2} \neq 0$. The angle A in the triangle $A B C$ is right if and only if the Longchamps point X_{20} is on the perpendicular to the line $A D$ through the intersection N of the lines $U V$ and $X Y$.

Proof. (ii) When we substitute the coordinates $\frac{r}{h}\left(f g^{-}, z^{2}-\zeta^{2}-1\right)$ of X_{20} into the equation $h(L x-2 k y)=r f_{+} \varphi_{-} g^{-}$of the perpendicular to the line $A D$ through the intersection N and move all terms to the left side, we obtain $r k\left(h^{2}-z^{2}\right)=0$ that is equivalent with the condition that the angle A is right.

References

[1] J. -L. Ayme, Sawayama and Thébault's theorem, Forum Geometricorum, 3 (2003), 225-229.
[2] Z. Čerin, On propellers from triangles, Beitrage zur Algebra and Geometrie, 42 (2001), No. 2, 575-582.
[3] H. Demir and C. Tezer, Reflections on a problem of V. Thébault, Geometriae Dedicata, 39 (1991), 79-92.
[4] S. Dutta, Thébault's problem via euclidean geometry, Samayā, 7 (2001), 2-7.
[5] B. J. English, Solution of Problem 3887. It's a long story, Amer. Math. Monthly, 110 (2003), 156-158.
[6] H. Fukagawa, Problem 1260, Crux Math., 13 (1987), 156-158.
[7] Editor's comment, Crux Math., 14 (1988), 237-240.
[8] S. Gueron, Two applications of the generalized Ptolemy theorem, Amer. Math. Monthly, 109 (2002), 362-370.
[9] R. A. Johnson, Advanced Euclidean Geometry, Dover Publications, New York, 1960.
[10] Clark Kimberling, Encyclopedia of Triangle Centers, 2000, http://cedar.evansville.edu/ ${ }^{\text {che }} 6 /$ encyclopedia/.
[11] D. Kodokostas, A really elementary proof of Thébault's theorem, Worcester Polytechnic Insitute, USA. http://users.wpi.edu/~goulet/mme518_2004/.
[12] E. D. Kulanin and O. Faynshteyn, Victor Michel Jean-Marie Thébault zum 125. Geburtstag am 6.März 2007, Elem. Math., 62 (2007), 45-58.
[13] C. S. Ogilvy, Mathematische Leckerbissen, Vieveg Paperback, Braunschweig 1969.
[14] A. Ostermann and G. Wanner, A dynamic proof of Thébault's theorem, Elem. Math., 65 (2010), 12-16.
[15] W. Pompe, Solution of Problem 8, Crux Math., 21 (1995), 86-87.
[16] W. Reyes, An Application of Thébault's Theorem, Forum Geomericorum, 2 (2002), 183-185.
[17] J. F. Rigby, Tritangent circles, Pascal's theorem and Thébault's problem, J. Geom., 54 (1995), 134-147.
[18] N. Roman, Aspura unor problema data la O. I. M., Gazete Math. (Bucuresti), 105 (2000), 99-102.
[19] Y. Sawayama, A new geometrical proposition, Amer. Math. Monthly, 12 (1905), 222-224.
[20] T. Seimiya, Solution of Problem 1260, Crux Math., 17 (1991), 48.
[21] R. Shail, A Proof of Thébault's theorem, Amer. Math. Monthly, 108 (2001), 319-325.
[22] S. Shirali, On the generalized Ptolemy theorem, Crux Math., 22 (1996), 49-53.
[23] R. Stärk, Eine weitere Lösung der Thébault'schen Aufgabe, Elem. Math., 44 (1989), 130-133.
[24] K. B. Taylor, Solution of Problem 3887, Amer. Math. Monthly, 90 (1983), 487.
[25] V. Thébault, Problem 3887. Three circles with collinear centers, Amer.Math. Monthly, 45 (1938), 482-483.
[26] G. Turnwald, Über eine Vermutung von Thébault, Elem. Math., 41 (1986), 11-13.
[27] D. Veljan and V. Volenec, Thébault's theorem, Elem. Math., 63 (2008), 6-13.
[28] G. R. Veldkamp, Een vraagstuk van Thébault uit 1938, Nieuw. Tijdskr. Wiskunde, 61 (1973), 86-89.
[29] G. R. Veldkamp, Comment, Crux Math., 15 (1989), 51-53.
Kopernikova 7, 10020 Zagreb, Hrvatska, Europa
E-mail address: cerin@math.hr

