
DETERMINANTS AND PERMANENTS OF MATRICESFROM FIBONACCI AND LUCAS NUMBERSZVONKO �ERINAbstrat. In this paper we shall ontinue to study from [4℄, for
k = −1 and k = 5, the in�nite sequenes of triples A = (F2n+1,
F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3,
L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that theprodut of any two di�erent omponents of them inreased by kare squares. The sequenes A and B are built from the Fibonainumbers Fn while the sequenes C and D from the Luas numbers
Ln. We show many interesting properties of various matries withrows from these sequenes and give methods how to ompute someof their generalized determinants and permanents. We also studynumerous tetrahedra with verties from these sequenes onen-trating on their volumes and entroids. Some of our theorems haveversions for the assoiated sequenes Ã = (F2n+4, F2n+3, F2n+2),
B̃ = (L2n+4, F2n+3, L2n+2), C̃ = (L2n+4, L2n+3, L2n+2) and D̃ =
(5F2n+4, L2n+3, 5F2n+2).1. IntrodutionFor integers a, b and c, let us write a

b∼ c provided a + b = c2. For thetriples A = (a, b, c), D = (d, e, f) and Ã = (ã, b̃, c̃) the notation A
D∼ Ãmeans that b c

d∼ ã, c a
e∼ b̃ and a b

f∼ c̃. When D = (k, k, k), let uswrite A
k∼ Ã for A

D∼ Ã. Hene, A is the D(k)-triple (see [1℄) if andonly if there is a triple Ã suh that A
k∼ Ã.In the paper [4℄ we onstruted in�nite sequenes α = {α(n)}∞n=0 and

β = {β(n)}∞n=0 of D(−1)-triples and γ = {γ(n)}∞n=0 and δ = {δ(n)}∞n=0of D(5)-triples. Here, α(n) = A = (F2n+1, F2n+3, F2n+5), β(n) = B =
(F2n+1, 5F2n+3, F2n+5) and γ(n) = C = (L2n+1, L2n+3, L2n+5), δ(n) =
D = (L2n+1, 5L2n+3, L2n+5), where the Fibonai and Luas sequenesof natural numbers Fn and Ln are de�ned by the reurrene rela-tions F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 2 and L0 = 2, L1 = 1,1991 Mathematis Subjet Classi�ation. Primary 11B37, 11B39, 11D09.Key words and phrases. Fibonai and Luas numbers, determinant, generalizeddeterminant, permanent, tetrahedron, volume, entroid.1



2 ZVONKO �ERIN
Ln = Ln−1 + Ln−2 for n > 2. For an integer k, let us use πk, ̺k, pk and
rk for F2n+k, L2n+k, F4n+k and L4n+k.The numbers Fk make the integer sequene A000045 from [8℄ whilethe numbers Lk make A000032.The goal of this artile is to further explore the properties of thesequenes α, β, γ and δ. Eah member of these sequenes is an Euler
D(−1)- or D(5)-triple (see [2℄ and [3℄) so that many of their propertiesfollow from the properties of the general (penils of) Euler triples. Itis therefore interesting to look for those properties in whih at leasttwo of the sequenes appear. The paper [5℄ presented several resultsof this kind giving many squares from the omponents, various sumsand produts of the sequenes α, β, γ and δ. On the other hand, thereferene [6℄ onsiders various matries with rows from these sequenesand explore many of their properties. In this artile we ontinue withthe (generalized) determinants and permanents of these matries andthe omputations of volumes of numerous tetrahedra built on thesesequenes.Some of our theorems have versions for the assoiated sequenes α̃,
β̃, γ̃ and δ̃, where α̃(n) = Ã = (π4, π3, π2), β̃(n) = B̃ = (̺4, π3, ̺2),
γ̃(n) = C̃ = (̺4, ̺3, ̺2), δ̃(n) = D̃ = (5π4, ̺3, 5π2) satisfy A

−1∼ Ã, B
−1∼

B̃, C
5∼ C̃ and D

5∼ D̃.2. The generalized determinants and permanentsFor a = (a1, a2, a3) and b = (b1, b2, b3) in Z
3, let

a·b =

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ +

∣∣∣∣
a3 a1

b3 b1

∣∣∣∣ +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ ,

a :b =

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ −
∣∣∣∣

a3 a1

b3 b1

∣∣∣∣ +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ .Note that a·b is the determinant of the retangular 2 × 3 matrix withrows a and b (see [7℄). When we replae in the above de�nition thedeterminants | | with the permanents || ||, we shall get the de�nitionof the funtionals ·· and ::.We begin with a result that lists some ases when the values of · and
: are onstant.



DETERMINANTS AND PERMANENTS 3Theorem 1. The following relations hold for the triples A,. . . , D̃:
A·C = Ã·C̃ = −Ã : C̃ = −2, A :C = 10,

B ·D = −B̃ :D̃ = 14, B̃ ·D̃ = 6, B :D = 26.Proof. Sine A = (π1, π3, π5) and C = (̺1, ̺3, ̺5), the produt A·C is
∣∣∣∣

π3 π5

̺3 ̺5

∣∣∣∣ +

∣∣∣∣
π5 π1

̺5 ̺1

∣∣∣∣ +

∣∣∣∣
π1 π3

̺1 ̺3

∣∣∣∣ = 2 − 6 + 2 = −2.

�The analogous values of ·· and :: are either zero or multiples of onlythree Fibonai numbers p7, p6 and p5.Theorem 2. The following relations hold for the triples A,. . . , D̃:
A ··C

8
=

A ::C

4
=

B ··D
32

=
B ::D

28
=

B̃ ··D̃
20

= p6,

B̃ ::D̃ = 0, Ã ··C̃ = 4 p7, Ã :: C̃ = 4 p5.Proof. Sine A = (π1, π3, π5) and C = (̺1, ̺3, ̺5), the value A· ·C is
∣∣∣∣
∣∣∣∣

π3 π5

̺3 ̺5

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π5 π1

̺5 ̺1

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π1 π3

̺1 ̺3

∣∣∣∣
∣∣∣∣ = 2(p8 + p6 + p4) = 8p6.

�The pairs (A, B) and (C, D) show similar relationships as the abovefor the pairs (A, C) and (B, D). The values of the funtionals · and
: in these pairs are multiples of p6 while those of ·· and :: involve theLuas numbers r6.Theorem 3. The following relations hold for the triples A,. . . , D:

A · B
4

=
A : B

4
=

C · D
20

=
C : D

20
= −p6,

A ··B
2 r6 + 5

=
5 A ::B

8 r6 + 11
=

C ··D
5(2 r6 − 5)

=
C ::D

8 r6 − 11
= 2.



4 ZVONKO �ERINProof. Sine A = (π1, π3, π5) and B = (π1, 5π3, π5), the value A·B is
∣∣∣∣

π3 π5

5π3 π5

∣∣∣∣ +

∣∣∣∣
π5 π1

π5 π1

∣∣∣∣ +

∣∣∣∣
π1 π3

π1 5π3

∣∣∣∣ = −4π3π5 + 0 + 4π1π3 = −4p6.

�The following interesting double identity
4 A ··B − 5 A ::B = C ::D − 4

5
C ··D = 18is an easy onsequene of the previous theorem.For the assoiated pairs (Ã, B̃) and (C̃, D̃) the values of ·, :, ·· and

:: use the produts of πi and ̺j and the Luas numbers r5.Theorem 4. The following relations hold for the triples Ã,. . . , D̃:
Ã · B̃
π1π4

=
5 Ã : B̃

r5 − 6
=

C̃ · D̃
̺1̺4

=
C̃ : D̃

r5 + 6
= −2,

Ã ··B̃
π3̺5

=
Ã ::B̃

π3̺2

=
C̃ ··D̃
5 π5̺3

=
C̃ ::D̃

5 π2̺3

= 2.Proof. Sine Ã = (π4, π3, π2) and B̃ = (̺4, π3, ̺2), the value Ã·B̃ is
π3(̺2 − π2) + π2̺4 − π4̺2 + π3(π4 − ̺4) = −2 π1π4. �The formulas C̃ · D̃ − 5 Ã · B̃ = 16 and 5 Ã : B̃ − C̃ : D̃ = 24 and thedouble identity 5 Ã ··B̃ − C̃ ··D̃ = 5 Ã ::B̃ − C̃ ::D̃ = 20 are orollaries.The values of · and : for the mixed pairs (A, C̃), (Ã, C), et. ouldbe �gured out from the following relations.Theorem 5. The following hold for the triples A,. . . , D̃:

A·C̃ + Ã·C = 4, A·C̃ − Ã·C = 4 p4, B ·D̃ + B̃ ·D = −20,

B ·D̃ − B̃ ·D = −4 r6, A : C̃ + Ã :C = 4, Ã :C − A : C̃ = −4 r7,

B :D̃ + B̃ :D = −12, B̃ :D − B :D̃ = −20 r6.Proof. Sine Ã = (π4, π3, π2) and C̃ = (̺4, ̺3, ̺2), the value A·C̃ is
∣∣∣∣

π3 π5

̺3 ̺2

∣∣∣∣ +

∣∣∣∣
π5 π1

̺2 ̺4

∣∣∣∣ +

∣∣∣∣
π1 π3

̺4 ̺3

∣∣∣∣ = 2 π1̺3



DETERMINANTS AND PERMANENTS 5and the value Ã·C is∣∣∣∣
π3 π2

̺3 ̺5

∣∣∣∣ +

∣∣∣∣
π2 π4

̺5 ̺1

∣∣∣∣ +

∣∣∣∣
π4 π3

̺1 ̺3

∣∣∣∣ = −2π3̺1.Hene, A·C̃ + Ã·C = 4 and A·C̃ − Ã·C = 4 p4.The remaining six identities are proved similarly. �Similarly, the values of ·· and :: for the mixed pairs (A, C̃), (Ã, C),et. ould also be �gured out from the following relations.Theorem 6. The following hold for the triples A,. . . , D̃:
A··C̃ + Ã··C = 12 p7, A··C̃ − Ã··C = 8, Ã ::C = A :: C̃ = 2 p4,

B ··D̃
38

=
B̃ ··D

38
=

B̃ ::D

18
=

B ::D̃

18
= p6.Proof. Sine Ã = (π4, π3, π2) and C̃ = (̺4, ̺3, ̺2), the value A··C̃ is

∣∣∣∣
∣∣∣∣

π3 π5

̺3 ̺2

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π5 π1

̺2 ̺4

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π1 π3

̺4 ̺3

∣∣∣∣
∣∣∣∣ = 6 p7 + 4and the value Ã··C is∣∣∣∣

∣∣∣∣
π3 π2

̺3 ̺5

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π2 π4

̺5 ̺1

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π4 π3

̺1 ̺3

∣∣∣∣
∣∣∣∣ = 6 p7 − 4.Hene, A··C̃ + Ã··C = 12 p7 and A··C̃ − Ã··C = 8.The remaining six identities are proved similarly. �Theorem 7. The following relations hold for the triples A,. . . , D̃:

A·Ã = 2 π2

2, 5 B ·B̃ = D·D̃ = −10 p6, C ·C̃ = 2 ̺2

2,

5 A :Ã = C : C̃ = −10 π7, 5 B :B̃ = D :D̃ = −50 p6.Proof. Sine A = (π1, π3, π5) and Ã = (π4, π3, π2), the value A·Ã is
∣∣∣∣

π3 π5

π3 π2

∣∣∣∣ +

∣∣∣∣
π5 π1

π2 π4

∣∣∣∣ +

∣∣∣∣
π1 π3

π4 π3

∣∣∣∣ = 2 π2

2.

�Notie that C ·C̃ − 5A·Ã = 8.



6 ZVONKO �ERINTheorem 8. The following relations hold for the triples A,. . . , D̃:
A··Ã = 6π3π4, 5B ··B̃ = 2(19r6 + 33), C ··C̃ = 6̺3̺4,

D··D̃ = 2(19r6 − 33), A ::Ã = 2π1π3, 5 B ::B̃ = 2(9r6 + 23),

C :: C̃ = 2̺1̺3, D ::D̃ = 2(9r6 − 23).Proof. Sine A = (π1, π3, π5) and Ã = (π4, π3, π2), the value A··Ã is
∣∣∣∣
∣∣∣∣

π3 π5

π3 π2

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π5 π1

π2 π4

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π1 π3

π4 π3

∣∣∣∣
∣∣∣∣ = 6 π3π4.

�The formulas 5B ··B̃ − D··D̃ = 132 and 5B ::B̃ − D ::D̃ = 92 andthe identities 5A··Ã − C ··C̃ = 5A ::Ã − C :: C̃ = 12 are the orollaries.3. Volumes of some tetrahedraLet T , T̃ , TA and T̃A denote the tetrahedra ABCD, ÃB̃C̃D̃, ÃBCDand AB̃C̃D̃. The tetrahedra TB, TC , TD, T̃B, T̃C and T̃D are de�nedsimilarly.The following result shows that A, B, C and D are oplanar pointsand that the tetrahedron T̃ has a nie oriented volume.Theorem 9. For every natural number n, the points A, B, C and Dare in the plane π4 x − π0 z = 3. The tetrahedron T̃ has the orientedvolume 8

3
π2 and the entroid (π6, π4, π4) .Proof. Reall that three points P (a, b, c), Q(d, e, f) and R(g, h, i) ingeneral position in the spae R

3 determine the plane
M∗

1 x + M∗
2 y + M∗

3 z = M,where M , M∗
1 , M∗

2 and M∗
3 are the determinants

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
,

∣∣∣∣∣∣

1 b c

1 e f

1 h i

∣∣∣∣∣∣
,

∣∣∣∣∣∣

a 1 c

d 1 f

g 1 i

∣∣∣∣∣∣
,

∣∣∣∣∣∣

a b 1
d e 1
g h 1

∣∣∣∣∣∣
.In our ase, for P = A, Q = B and R = C, these determinants are

M = 24π3, M∗
1 = 8π3π4, M∗

2 = 0 and M∗
3 = −8π3π0. Hene, the points

A, B and C determine the plane π4 x − π0 z = 3. The point D also



DETERMINANTS AND PERMANENTS 7lies in it. In order to prove the statement about the volume of thetetrahedron T̃ , we use the formula
|P1P2P3P4| =

1

6

∣∣∣∣∣∣∣∣

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣for the oriented volume of the tetrahedron P1P2P3P4, where the points
Pi have the oordinates (xi, yi, zi) (i = 1, 2, 3, 4). Also, the entroidof this tetrahedron is the point (P

xi

4
,
P

yi

4
,
P

zi

4

). �Let G(T ) denote the entroid of the tetrahedron T .Theorem 10. The following relations hold for the triples A,. . . , D̃:
|TA|+|TB|+|TC|+|TD| = −16

3
π0, |T̃A|+|T̃B|+|T̃C|+|T̃D| = −16

3
π1,

|G(TA)G(TB)G(TC)G(TD)| = −|G(T̃A)G(T̃B)G(T̃C)G(T̃D)| = 1

6
π1.Proof. While the volumes |T̃A| |T̃B| |T̃C | and |T̃D| are quite ompli-ated, the sums |T̃A| + |T̃C | and |T̃B| + |T̃D| are 8π2 and −8

3
π5. Hene,

|T̃A| + |T̃B| + |T̃C | + |T̃D| = −16

3
π1. The other identities in this theoremare proved similarly. �Let G(G(TA)G(TB)G(TC)G(TD)) and G(G(T̃A)G(T̃B)G(T̃C)G(T̃D))be shortened to GT and G eT .Theorem 11. The points GT and G eT divide the segment G(T )G(T̃ )in the ratios 1 : 3 and 3 : 1.Proof. Reall that G(P1P2P3P4) has P xi

4
, P yi

4
and P

zi

4
as oordinates.Hene, the entroids G(T ), G(T̃ ), GT and G eT are the triples (π2,

3π4, π6), (π6, π4, π4), (3π6−̺0

8
, 5π4

2
, 3̺6+π0

8

) and (
5π5+π0

4
, 3π4

2
, 3̺7−̺0

20

). Nowthat we know the oordinates of the four entroids it is easy to hekthe laims in this theorem. �Let TAB denote the tetrahedron ABÃB̃. The tetrahedra TAC , TCDand TBD are de�ned similarly. The (oriented) volumes of these tetra-hedra are given in the next result. Their entroids lie in the plane
10 π3(π5 + π0) x − (4 r5 + 1) y − 10 π2π4 z = 5 π4.



8 ZVONKO �ERINTheorem 12. The following relations hold for the triples A,. . . , D̃:
|TAB| = 8

15
π3(2 r5 + 3), |TCD| = 8

3
̺3(2 r5 − 3),

11 |TAC| = −|TBD| = 88

3
π2.Proof. The volume |TAB| is

1

6

∣∣∣∣∣∣∣∣

π1 π3 π5 1
π1 5π3 π5 1
π4 π3 π2 1
̺4 π3 ̺2 1

∣∣∣∣∣∣∣∣
=

2π3(2π2̺2 + 2π3̺4 + π1π2 − π4π5)

3
.The long parenthesis simpli�es to 4

5
(2 r5 + 3) that gives the above value.

�The �rst two formulas imply 5|TAB|̺3 − |TCD|π3 = 16p6.4. Tetrahedra from produts ↓ and ↑This setion uses the binary operations ↓ and ↑ de�ned by
(a, b, c) ↓ (d, e, f) = (b f − c e, c d − a f, a e − b d),

(a, b, c) ↑ (d, e, f) = (b f + c e, c d + a f, a e + b d).Note that restrited on the standard Eulidean 3-spae R
3 the produt

↓ is the familiar vetor ross-produt.Notie that the produts A ↓ C, B ↓ D, Ã ↓ C̃ and B̃ ↓ D̃ havethe onstant values (2,−6, 2), (10,−6, 10), (2,−2, 2) and (−2, 10,−2).Hene, many expressions that inlude them beome somewhat simpler.Let T↓↑ and T↑↓ denote the tetrahedra (A↓C)(A↓D)(B ↑C)(B ↑D)and (A↑C)(A↑D)(B ↓C)(B ↓D). We now show that they have equalvolumes and the entroids at nie distane.Theorem 13. |T↓↑| = |T↑↓| = 32

3
π2

1̺
2
3 p10 and |G(T↓↑)G(T↑↓)| = 4 π3̺1.Proof. Sine A ↓ C = (2,−6, 2), A ↓ D = (6 − 4p8,−6, 6 + 4p4), B ↑ C

= (6p8 + 4, 2p6, 6p4 − 4) and B ↑ D = (10p8, 2p6, 10p4), the volume |T↓↑|is
1

6

∣∣∣∣∣∣∣∣

2 −6 2 1
6 − 4p8 −6 6 + 4p4 1
6p8 + 4 2p6 6p4 − 4 1
10p8 2p6 10p4 1

∣∣∣∣∣∣∣∣



DETERMINANTS AND PERMANENTS 9that simpli�es to the above value. The alulation for the volume of
T↑↓ is similar and for the distane |G(T↓↑)G(T↑↓)| is routine sine weknow the oordinates of the verties. �Let T̃↓ and T̃↑ denote the tetrahedra (Ã↓ C̃)(Ã↓D̃)(B̃ ↓ C̃)(B̃ ↓D̃)and (Ã↑ C̃)(Ã↑D̃)(B̃ ↑ C̃)(B̃ ↑D̃). We similarly de�ne the tetrahedra
T↓ and T↑. Note that T↓ is a parallelogram in the plane y = −6 withthe entroid (6,−6, 6), the sides 4π3

√
7r6 − 4 and 4

5
̺3

√
7r6 + 4 and area

48
√

2 p6 while the entroid of T̃↓ is the point (0, 2,−2). Similarly, T↑ isa parallelogram in the plane y = 2p6 with the entroid (6p8, 2p6, 6p4),the sides 4π3

√
7r6 − 4 and 4

5
̺3

√
7r6 + 4 and area 48

√
2 p6 while theentroid of T̃↑ is the point 2(p6, p8, p8).Theorem 14. |T̃↓| = −32

3
p6 and |T̃↑| = −32

3
p6 p4.Proof. Sine Ã ↓ C̃ = (2,−2,−2), Ã ↓ D̃ = (2p4, 0,−2π4̺2), B̃ ↓ C̃ =

(−2p4, 0, 2π2̺4) and B̃ ↓ D̃ = (−2, 10,−2), the volume |T̃↓| is
1

6

∣∣∣∣∣∣∣∣

2 −2 −2 1
2p4 0 −2π4̺2 1
−2p4 0 2π2̺4 1
−2 10 −2 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The alulation for the volume of
T̃↑ is a bit more ompliated. �5. Tetrahedra from produts ⊙, ⊲ and ⊳Let us introdue three binary operations ⊙, ⊲ and ⊳ on the set Z

3of triples of integers by the rules (a, b, c) ⊙ (u, v, w) = (a u, b v, c w),
(a, b, c) ⊲ (u, v, w) = (a v, b w, c u), and

(a, b, c) ⊳ (u, v, w) = (a w, b u, c v).Notie that |A ⊙ C, A ⊙ D| = 4 p6, B ⊙ C = A ⊙ D, and the point
B ⊙ D divides the segment (A ⊙ C)(A ⊙ D) in the ratio −6 : 5. Thethird oordinates of the points A ⊲ C, A ⊲ D, B ⊲ C and B ⊲ D are π5̺1.Similarly, the �rst oordinates of the points A ⊳ C, A ⊳ D, B ⊳ C and
B ⊳ D are π1̺5. Finally, the seond oordinates of the points Ã ⊙ C̃,
Ã ⊙ D̃, B̃ ⊙ C̃ and B̃ ⊙ D̃ are p6.



10 ZVONKO �ERINLet T̃⊲ denote the tetrahedron with the verties Ã ⊲ C̃, Ã ⊲ D̃, B̃ ⊲ C̃and B̃ ⊲ D̃. The tetrahedron T̃⊳ is de�ned similarly.Theorem 15. |T̃⊲| = −|T̃⊳| = 8

3
p2

6 p2 and |G(T̃⊲), G(T̃⊳)| =
√

2 π3 ̺4.Proof. Sine Ã ⊲ C̃ = (π4̺3, π3̺2, π2̺4), Ã ⊲ D̃ = (π4̺3, 5π2π3, 5π2π4),
B̃ ⊲ C̃ = (̺3̺4, π3̺2, ̺2̺4) and B̃ ⊲ D̃ = (̺3̺4, 5π2π3, 5π4̺2), the volume
|T̃⊲| is

1

6

∣∣∣∣∣∣∣∣

π4̺3 π3̺2 π2̺4 1
π4̺3 5π2π3 5π2π4 1
̺3̺4 π3̺2 ̺2̺4 1
̺3̺4 5π2π3 5π4̺2 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The alulation for the volume of
T̃⊳ is analogous. �Let T⊙⊲ denote the tetrahedron with the verties A ⊙ C, A ⊙ D,
B ⊲ C and B ⊲ D. The tetrahedra T⊲⊙, T⊙⊳, T⊳⊙, T⊲⊳ and T⊳⊲ are de�nedsimilarly.Theorem 16. 5 |T⊙⊲| = |T⊲⊙| = 5 |T⊙⊳| = |T⊳⊙| = 200

3
p2

6 π5 π1,
|G(T⊙⊲), G(T⊲⊙)| = 2 π3 ̺1, |G(T⊙⊳), G(T⊳⊙)| = 2 π3 ̺5,

|T⊲⊳| = 8 p6π5π1̺3̺0, |T⊳⊲| = 8 p6π5π1̺3̺6, |G(T⊲⊳), G(T⊳⊲)| = 10 π2

3.Proof. Sine A ⊙ C = (p2, p6, p10), A ⊙ D = (p2, 5p6, p10), B ⊲ C = (π1

̺3, 5π3̺5, π5̺1) and B ⊲ D = (5π1̺3, 5π3̺5, π5̺1), the volume |T⊙⊲| is
1

6

∣∣∣∣∣∣∣∣

p2 p6 p10 1
p2 5p6 p10 1
̺3 5π3̺5 π5̺1 1

5π1̺3 5π3̺5 π5̺1 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The alulation for the other volumesis similar. �Let T1 = TA,B,C denote the tetrahedron with the verties A, B, C and
A ⊙ B ⊙ C. The tetrahedra T2 = TA,B,D, T3 = TC,D,A and T4 = TC,D,Bare de�ned similarly.
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|T1| = |T2| = 4 π0π3π4r7, |G(T1), G(T2)| = ̺2̺3̺4,

|T3| = |T4| = −20 π0π3π4p7, |G(T3), G(T4)| = π3(5r6 − 9).Proof. Sine A ⊙ B ⊙ C = (π1 p2, 5π3 p6, π5 p10), the volume |T1| is
1

6

∣∣∣∣∣∣∣∣

π1 π3 π5 1
π1 5π3 π5 1
̺1 ̺3 ̺5 1

π1 p2 5π3 p6 π5 p10 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The alulation for the other volumesis similar. �Let T⊲↓ denote the tetrahedron with the verties A ⊲ C, A ⊲ D, B ↓ Cand B ↓ D. The tetrahedra T↓⊲, T⊲↑, T↑⊲, T⊳↓, T↓⊳, T⊳↑ and T↑⊳, arede�ned similarly.Theorem 18.
|T⊲↓| = 8

3
π2

1̺
2
3(p8 + 7), |T↓⊲| = 8

3
π2

1̺
2
3(5p8 + 11), |T⊲↑| = 8

3
π2

1̺2̺3p6,

|T↑⊲| = 8

3
π2

1 ̺3 ̺8 p6, |T⊳↓| = 8

3
π2

5 ̺2
3(p4 + 5), |T↓⊳| = 8

3
π3 π2

5 ̺2
3 ̺4,

|T⊳↑| = 8

3
π2

5̺
2
3(5p4 + 1), |T↑⊳| = 8

3
π3 π2

5 ̺2
3 ̺−2,

|G(T⊲↓)G(T↓⊲)| = |G(T⊲↑)G(T↑⊲)| =
√

6π3

√
r9 + 5r6 − 4,

|G(T⊳↓)G(T↓⊳)| = |G(T⊳↑)G(T↑⊳)| =
√

3π3

√
5p9 + r0 − 8.Proof. Sine A ⊲ C = (π1̺3, π3̺5, π5̺1), A ⊲ D = (5π1̺3, π3̺5, π5̺1), B

↓ C = (2(3 + 2p8),−6, 2(3 − 2p4)) and B ↓ D = (10,−6, 10), the vo-lume |T⊲↓| is
1

6

∣∣∣∣∣∣∣∣

π1̺3 π3̺5 π5̺1 1
5π1̺3 π3̺5 π5̺1 1

2(3 + 2p8) −6 2(3 − 2p4) 1
10 −6 10 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The alulations for the other volu-mes and distanes are similar. �



12 ZVONKO �ERINLet T· be the tetrahedron with verties (A·B, A·C, A·D), (B ·C, B ·D,

B ·A), (C ·D, C ·A, C ·B) and (D·A, D·B, D·C). The tetrahedra T:, T̃·and T̃: are de�ned similarly.Theorem 19.
|T·| = 128

3
p8(9 − 16p6), |T:| = 128

3
p8(81 − 16p6),

|T̃·| = 64

15
π2π5(19 − 4r5), |T̃:| = 64

75
(r7 + 6)(8r5 + 87),The tetrahedra T· and T: have the point (−4p4, 0, 4p4) as a ommonentroid. The entroids 2π0π3(−1, 0, 1) and 2

5
(r3 + 6)(−1, 0, 1) of thetetrahedra T̃· and T̃: have the onstant distane 4
√

2.Proof. Sine −A·B = B ·A = 4p6, −A·C = C ·A = 2, −A·D = D·A =
2(2r6 − 3), B ·C = −C ·B = 2(2r6 + 3), B ·D = −D·B = 14 and−C ·D
= D·C = 20p6, the volume |T·| is

1

6

∣∣∣∣∣∣∣∣

−4p6 −2 −2(2r6 − 3) 1
2(2r6 + 3) 14 4p6 1
−20p6 2 −2(2r6 + 3) 1

2(2r6 − 3) −14 20p6 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The alulations for the other volu-mes and distanes are similar. �Referenes[1℄ E. Brown, Sets in whih x y + k is always a square, Mathematis of Computa-tion, 45 (1985), 613-620.[2℄ Z. �erin, On penils of Euler triples, I, (preprint).[3℄ Z. �erin, On penils of Euler triples, II, (preprint).[4℄ Z. �erin, On Diophantine triples from Fibonai and Luas numbers,(preprint).[5℄ Z. �erin, Squares in Euler triples from Fibonai and Luas numbers,(preprint).[6℄ Z. �erin, Matries with rows in Euler triples from Fibonai and Luas num-bers, (preprint).[7℄ M. Radi¢, A de�nition of determinant of retangular matrix, Glasnik Mat. 1(21) (1966), 17-22.[8℄ N. Sloane, On-Line Enylopedia of Integer Sequenes,http://www.researh. att.om/∼njas/sequenes/.
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