
DETERMINANTS AND PERMANENTS OF MATRICESFROM FIBONACCI AND LUCAS NUMBERSZVONKO �ERINAbstra
t. In this paper we shall 
ontinue to study from [4℄, for
k = −1 and k = 5, the in�nite sequen
es of triples A = (F2n+1,
F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5), C = (L2n+1, L2n+3,
L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that theprodu
t of any two di�erent 
omponents of them in
reased by kare squares. The sequen
es A and B are built from the Fibona

inumbers Fn while the sequen
es C and D from the Lu
as numbers
Ln. We show many interesting properties of various matri
es withrows from these sequen
es and give methods how to 
ompute someof their generalized determinants and permanents. We also studynumerous tetrahedra with verti
es from these sequen
es 
on
en-trating on their volumes and 
entroids. Some of our theorems haveversions for the asso
iated sequen
es Ã = (F2n+4, F2n+3, F2n+2),
B̃ = (L2n+4, F2n+3, L2n+2), C̃ = (L2n+4, L2n+3, L2n+2) and D̃ =
(5F2n+4, L2n+3, 5F2n+2).1. Introdu
tionFor integers a, b and c, let us write a

b∼ c provided a + b = c2. For thetriples A = (a, b, c), D = (d, e, f) and Ã = (ã, b̃, c̃) the notation A
D∼ Ãmeans that b c

d∼ ã, c a
e∼ b̃ and a b

f∼ c̃. When D = (k, k, k), let uswrite A
k∼ Ã for A

D∼ Ã. Hen
e, A is the D(k)-triple (see [1℄) if andonly if there is a triple Ã su
h that A
k∼ Ã.In the paper [4℄ we 
onstru
ted in�nite sequen
es α = {α(n)}∞n=0 and

β = {β(n)}∞n=0 of D(−1)-triples and γ = {γ(n)}∞n=0 and δ = {δ(n)}∞n=0of D(5)-triples. Here, α(n) = A = (F2n+1, F2n+3, F2n+5), β(n) = B =
(F2n+1, 5F2n+3, F2n+5) and γ(n) = C = (L2n+1, L2n+3, L2n+5), δ(n) =
D = (L2n+1, 5L2n+3, L2n+5), where the Fibona

i and Lu
as sequen
esof natural numbers Fn and Ln are de�ned by the re
urren
e rela-tions F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 2 and L0 = 2, L1 = 1,1991 Mathemati
s Subje
t Classi�
ation. Primary 11B37, 11B39, 11D09.Key words and phrases. Fibona

i and Lu
as numbers, determinant, generalizeddeterminant, permanent, tetrahedron, volume, 
entroid.1



2 ZVONKO �ERIN
Ln = Ln−1 + Ln−2 for n > 2. For an integer k, let us use πk, ̺k, pk and
rk for F2n+k, L2n+k, F4n+k and L4n+k.The numbers Fk make the integer sequen
e A000045 from [8℄ whilethe numbers Lk make A000032.The goal of this arti
le is to further explore the properties of thesequen
es α, β, γ and δ. Ea
h member of these sequen
es is an Euler
D(−1)- or D(5)-triple (see [2℄ and [3℄) so that many of their propertiesfollow from the properties of the general (pen
ils of) Euler triples. Itis therefore interesting to look for those properties in whi
h at leasttwo of the sequen
es appear. The paper [5℄ presented several resultsof this kind giving many squares from the 
omponents, various sumsand produ
ts of the sequen
es α, β, γ and δ. On the other hand, thereferen
e [6℄ 
onsiders various matri
es with rows from these sequen
esand explore many of their properties. In this arti
le we 
ontinue withthe (generalized) determinants and permanents of these matri
es andthe 
omputations of volumes of numerous tetrahedra built on thesesequen
es.Some of our theorems have versions for the asso
iated sequen
es α̃,
β̃, γ̃ and δ̃, where α̃(n) = Ã = (π4, π3, π2), β̃(n) = B̃ = (̺4, π3, ̺2),
γ̃(n) = C̃ = (̺4, ̺3, ̺2), δ̃(n) = D̃ = (5π4, ̺3, 5π2) satisfy A

−1∼ Ã, B
−1∼

B̃, C
5∼ C̃ and D

5∼ D̃.2. The generalized determinants and permanentsFor a = (a1, a2, a3) and b = (b1, b2, b3) in Z
3, let

a·b =

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ +

∣∣∣∣
a3 a1

b3 b1

∣∣∣∣ +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ ,

a :b =

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ −
∣∣∣∣

a3 a1

b3 b1

∣∣∣∣ +

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ .Note that a·b is the determinant of the re
tangular 2 × 3 matrix withrows a and b (see [7℄). When we repla
e in the above de�nition thedeterminants | | with the permanents || ||, we shall get the de�nitionof the fun
tionals ·· and ::.We begin with a result that lists some 
ases when the values of · and
: are 
onstant.



DETERMINANTS AND PERMANENTS 3Theorem 1. The following relations hold for the triples A,. . . , D̃:
A·C = Ã·C̃ = −Ã : C̃ = −2, A :C = 10,

B ·D = −B̃ :D̃ = 14, B̃ ·D̃ = 6, B :D = 26.Proof. Sin
e A = (π1, π3, π5) and C = (̺1, ̺3, ̺5), the produ
t A·C is
∣∣∣∣

π3 π5

̺3 ̺5

∣∣∣∣ +

∣∣∣∣
π5 π1

̺5 ̺1

∣∣∣∣ +

∣∣∣∣
π1 π3

̺1 ̺3

∣∣∣∣ = 2 − 6 + 2 = −2.

�The analogous values of ·· and :: are either zero or multiples of onlythree Fibona

i numbers p7, p6 and p5.Theorem 2. The following relations hold for the triples A,. . . , D̃:
A ··C

8
=

A ::C

4
=

B ··D
32

=
B ::D

28
=

B̃ ··D̃
20

= p6,

B̃ ::D̃ = 0, Ã ··C̃ = 4 p7, Ã :: C̃ = 4 p5.Proof. Sin
e A = (π1, π3, π5) and C = (̺1, ̺3, ̺5), the value A· ·C is
∣∣∣∣
∣∣∣∣

π3 π5

̺3 ̺5

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π5 π1

̺5 ̺1

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π1 π3

̺1 ̺3

∣∣∣∣
∣∣∣∣ = 2(p8 + p6 + p4) = 8p6.

�The pairs (A, B) and (C, D) show similar relationships as the abovefor the pairs (A, C) and (B, D). The values of the fun
tionals · and
: in these pairs are multiples of p6 while those of ·· and :: involve theLu
as numbers r6.Theorem 3. The following relations hold for the triples A,. . . , D:

A · B
4

=
A : B

4
=

C · D
20

=
C : D

20
= −p6,

A ··B
2 r6 + 5

=
5 A ::B

8 r6 + 11
=

C ··D
5(2 r6 − 5)

=
C ::D

8 r6 − 11
= 2.



4 ZVONKO �ERINProof. Sin
e A = (π1, π3, π5) and B = (π1, 5π3, π5), the value A·B is
∣∣∣∣

π3 π5

5π3 π5

∣∣∣∣ +

∣∣∣∣
π5 π1

π5 π1

∣∣∣∣ +

∣∣∣∣
π1 π3

π1 5π3

∣∣∣∣ = −4π3π5 + 0 + 4π1π3 = −4p6.

�The following interesting double identity
4 A ··B − 5 A ::B = C ::D − 4

5
C ··D = 18is an easy 
onsequen
e of the previous theorem.For the asso
iated pairs (Ã, B̃) and (C̃, D̃) the values of ·, :, ·· and

:: use the produ
ts of πi and ̺j and the Lu
as numbers r5.Theorem 4. The following relations hold for the triples Ã,. . . , D̃:
Ã · B̃
π1π4

=
5 Ã : B̃

r5 − 6
=

C̃ · D̃
̺1̺4

=
C̃ : D̃

r5 + 6
= −2,

Ã ··B̃
π3̺5

=
Ã ::B̃

π3̺2

=
C̃ ··D̃
5 π5̺3

=
C̃ ::D̃

5 π2̺3

= 2.Proof. Sin
e Ã = (π4, π3, π2) and B̃ = (̺4, π3, ̺2), the value Ã·B̃ is
π3(̺2 − π2) + π2̺4 − π4̺2 + π3(π4 − ̺4) = −2 π1π4. �The formulas C̃ · D̃ − 5 Ã · B̃ = 16 and 5 Ã : B̃ − C̃ : D̃ = 24 and thedouble identity 5 Ã ··B̃ − C̃ ··D̃ = 5 Ã ::B̃ − C̃ ::D̃ = 20 are 
orollaries.The values of · and : for the mixed pairs (A, C̃), (Ã, C), et
. 
ouldbe �gured out from the following relations.Theorem 5. The following hold for the triples A,. . . , D̃:

A·C̃ + Ã·C = 4, A·C̃ − Ã·C = 4 p4, B ·D̃ + B̃ ·D = −20,

B ·D̃ − B̃ ·D = −4 r6, A : C̃ + Ã :C = 4, Ã :C − A : C̃ = −4 r7,

B :D̃ + B̃ :D = −12, B̃ :D − B :D̃ = −20 r6.Proof. Sin
e Ã = (π4, π3, π2) and C̃ = (̺4, ̺3, ̺2), the value A·C̃ is
∣∣∣∣

π3 π5

̺3 ̺2

∣∣∣∣ +

∣∣∣∣
π5 π1

̺2 ̺4

∣∣∣∣ +

∣∣∣∣
π1 π3

̺4 ̺3

∣∣∣∣ = 2 π1̺3



DETERMINANTS AND PERMANENTS 5and the value Ã·C is∣∣∣∣
π3 π2

̺3 ̺5

∣∣∣∣ +

∣∣∣∣
π2 π4

̺5 ̺1

∣∣∣∣ +

∣∣∣∣
π4 π3

̺1 ̺3

∣∣∣∣ = −2π3̺1.Hen
e, A·C̃ + Ã·C = 4 and A·C̃ − Ã·C = 4 p4.The remaining six identities are proved similarly. �Similarly, the values of ·· and :: for the mixed pairs (A, C̃), (Ã, C),et
. 
ould also be �gured out from the following relations.Theorem 6. The following hold for the triples A,. . . , D̃:
A··C̃ + Ã··C = 12 p7, A··C̃ − Ã··C = 8, Ã ::C = A :: C̃ = 2 p4,

B ··D̃
38

=
B̃ ··D

38
=

B̃ ::D

18
=

B ::D̃

18
= p6.Proof. Sin
e Ã = (π4, π3, π2) and C̃ = (̺4, ̺3, ̺2), the value A··C̃ is

∣∣∣∣
∣∣∣∣

π3 π5

̺3 ̺2

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π5 π1

̺2 ̺4

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π1 π3

̺4 ̺3

∣∣∣∣
∣∣∣∣ = 6 p7 + 4and the value Ã··C is∣∣∣∣

∣∣∣∣
π3 π2

̺3 ̺5

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π2 π4

̺5 ̺1

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π4 π3

̺1 ̺3

∣∣∣∣
∣∣∣∣ = 6 p7 − 4.Hen
e, A··C̃ + Ã··C = 12 p7 and A··C̃ − Ã··C = 8.The remaining six identities are proved similarly. �Theorem 7. The following relations hold for the triples A,. . . , D̃:

A·Ã = 2 π2

2, 5 B ·B̃ = D·D̃ = −10 p6, C ·C̃ = 2 ̺2

2,

5 A :Ã = C : C̃ = −10 π7, 5 B :B̃ = D :D̃ = −50 p6.Proof. Sin
e A = (π1, π3, π5) and Ã = (π4, π3, π2), the value A·Ã is
∣∣∣∣

π3 π5

π3 π2

∣∣∣∣ +

∣∣∣∣
π5 π1

π2 π4

∣∣∣∣ +

∣∣∣∣
π1 π3

π4 π3

∣∣∣∣ = 2 π2

2.

�Noti
e that C ·C̃ − 5A·Ã = 8.



6 ZVONKO �ERINTheorem 8. The following relations hold for the triples A,. . . , D̃:
A··Ã = 6π3π4, 5B ··B̃ = 2(19r6 + 33), C ··C̃ = 6̺3̺4,

D··D̃ = 2(19r6 − 33), A ::Ã = 2π1π3, 5 B ::B̃ = 2(9r6 + 23),

C :: C̃ = 2̺1̺3, D ::D̃ = 2(9r6 − 23).Proof. Sin
e A = (π1, π3, π5) and Ã = (π4, π3, π2), the value A··Ã is
∣∣∣∣
∣∣∣∣

π3 π5

π3 π2

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π5 π1

π2 π4

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣

π1 π3

π4 π3

∣∣∣∣
∣∣∣∣ = 6 π3π4.

�The formulas 5B ··B̃ − D··D̃ = 132 and 5B ::B̃ − D ::D̃ = 92 andthe identities 5A··Ã − C ··C̃ = 5A ::Ã − C :: C̃ = 12 are the 
orollaries.3. Volumes of some tetrahedraLet T , T̃ , TA and T̃A denote the tetrahedra ABCD, ÃB̃C̃D̃, ÃBCDand AB̃C̃D̃. The tetrahedra TB, TC , TD, T̃B, T̃C and T̃D are de�nedsimilarly.The following result shows that A, B, C and D are 
oplanar pointsand that the tetrahedron T̃ has a ni
e oriented volume.Theorem 9. For every natural number n, the points A, B, C and Dare in the plane π4 x − π0 z = 3. The tetrahedron T̃ has the orientedvolume 8

3
π2 and the 
entroid (π6, π4, π4) .Proof. Re
all that three points P (a, b, c), Q(d, e, f) and R(g, h, i) ingeneral position in the spa
e R

3 determine the plane
M∗

1 x + M∗
2 y + M∗

3 z = M,where M , M∗
1 , M∗

2 and M∗
3 are the determinants

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
,

∣∣∣∣∣∣

1 b c

1 e f

1 h i

∣∣∣∣∣∣
,

∣∣∣∣∣∣

a 1 c

d 1 f

g 1 i

∣∣∣∣∣∣
,

∣∣∣∣∣∣

a b 1
d e 1
g h 1

∣∣∣∣∣∣
.In our 
ase, for P = A, Q = B and R = C, these determinants are

M = 24π3, M∗
1 = 8π3π4, M∗

2 = 0 and M∗
3 = −8π3π0. Hen
e, the points

A, B and C determine the plane π4 x − π0 z = 3. The point D also



DETERMINANTS AND PERMANENTS 7lies in it. In order to prove the statement about the volume of thetetrahedron T̃ , we use the formula
|P1P2P3P4| =

1

6

∣∣∣∣∣∣∣∣

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣for the oriented volume of the tetrahedron P1P2P3P4, where the points
Pi have the 
oordinates (xi, yi, zi) (i = 1, 2, 3, 4). Also, the 
entroidof this tetrahedron is the point (P

xi

4
,
P

yi

4
,
P

zi

4

). �Let G(T ) denote the 
entroid of the tetrahedron T .Theorem 10. The following relations hold for the triples A,. . . , D̃:
|TA|+|TB|+|TC|+|TD| = −16

3
π0, |T̃A|+|T̃B|+|T̃C|+|T̃D| = −16

3
π1,

|G(TA)G(TB)G(TC)G(TD)| = −|G(T̃A)G(T̃B)G(T̃C)G(T̃D)| = 1

6
π1.Proof. While the volumes |T̃A| |T̃B| |T̃C | and |T̃D| are quite 
ompli-
ated, the sums |T̃A| + |T̃C | and |T̃B| + |T̃D| are 8π2 and −8

3
π5. Hen
e,

|T̃A| + |T̃B| + |T̃C | + |T̃D| = −16

3
π1. The other identities in this theoremare proved similarly. �Let G(G(TA)G(TB)G(TC)G(TD)) and G(G(T̃A)G(T̃B)G(T̃C)G(T̃D))be shortened to GT and G eT .Theorem 11. The points GT and G eT divide the segment G(T )G(T̃ )in the ratios 1 : 3 and 3 : 1.Proof. Re
all that G(P1P2P3P4) has P xi

4
, P yi

4
and P

zi

4
as 
oordinates.Hen
e, the 
entroids G(T ), G(T̃ ), GT and G eT are the triples (π2,

3π4, π6), (π6, π4, π4), (3π6−̺0

8
, 5π4

2
, 3̺6+π0

8

) and (
5π5+π0

4
, 3π4

2
, 3̺7−̺0

20

). Nowthat we know the 
oordinates of the four 
entroids it is easy to 
he
kthe 
laims in this theorem. �Let TAB denote the tetrahedron ABÃB̃. The tetrahedra TAC , TCDand TBD are de�ned similarly. The (oriented) volumes of these tetra-hedra are given in the next result. Their 
entroids lie in the plane
10 π3(π5 + π0) x − (4 r5 + 1) y − 10 π2π4 z = 5 π4.



8 ZVONKO �ERINTheorem 12. The following relations hold for the triples A,. . . , D̃:
|TAB| = 8

15
π3(2 r5 + 3), |TCD| = 8

3
̺3(2 r5 − 3),

11 |TAC| = −|TBD| = 88

3
π2.Proof. The volume |TAB| is

1

6

∣∣∣∣∣∣∣∣

π1 π3 π5 1
π1 5π3 π5 1
π4 π3 π2 1
̺4 π3 ̺2 1

∣∣∣∣∣∣∣∣
=

2π3(2π2̺2 + 2π3̺4 + π1π2 − π4π5)

3
.The long parenthesis simpli�es to 4

5
(2 r5 + 3) that gives the above value.

�The �rst two formulas imply 5|TAB|̺3 − |TCD|π3 = 16p6.4. Tetrahedra from produ
ts ↓ and ↑This se
tion uses the binary operations ↓ and ↑ de�ned by
(a, b, c) ↓ (d, e, f) = (b f − c e, c d − a f, a e − b d),

(a, b, c) ↑ (d, e, f) = (b f + c e, c d + a f, a e + b d).Note that restri
ted on the standard Eu
lidean 3-spa
e R
3 the produ
t

↓ is the familiar ve
tor 
ross-produ
t.Noti
e that the produ
ts A ↓ C, B ↓ D, Ã ↓ C̃ and B̃ ↓ D̃ havethe 
onstant values (2,−6, 2), (10,−6, 10), (2,−2, 2) and (−2, 10,−2).Hen
e, many expressions that in
lude them be
ome somewhat simpler.Let T↓↑ and T↑↓ denote the tetrahedra (A↓C)(A↓D)(B ↑C)(B ↑D)and (A↑C)(A↑D)(B ↓C)(B ↓D). We now show that they have equalvolumes and the 
entroids at ni
e distan
e.Theorem 13. |T↓↑| = |T↑↓| = 32

3
π2

1̺
2
3 p10 and |G(T↓↑)G(T↑↓)| = 4 π3̺1.Proof. Sin
e A ↓ C = (2,−6, 2), A ↓ D = (6 − 4p8,−6, 6 + 4p4), B ↑ C

= (6p8 + 4, 2p6, 6p4 − 4) and B ↑ D = (10p8, 2p6, 10p4), the volume |T↓↑|is
1

6

∣∣∣∣∣∣∣∣

2 −6 2 1
6 − 4p8 −6 6 + 4p4 1
6p8 + 4 2p6 6p4 − 4 1
10p8 2p6 10p4 1

∣∣∣∣∣∣∣∣



DETERMINANTS AND PERMANENTS 9that simpli�es to the above value. The 
al
ulation for the volume of
T↑↓ is similar and for the distan
e |G(T↓↑)G(T↑↓)| is routine sin
e weknow the 
oordinates of the verti
es. �Let T̃↓ and T̃↑ denote the tetrahedra (Ã↓ C̃)(Ã↓D̃)(B̃ ↓ C̃)(B̃ ↓D̃)and (Ã↑ C̃)(Ã↑D̃)(B̃ ↑ C̃)(B̃ ↑D̃). We similarly de�ne the tetrahedra
T↓ and T↑. Note that T↓ is a parallelogram in the plane y = −6 withthe 
entroid (6,−6, 6), the sides 4π3

√
7r6 − 4 and 4

5
̺3

√
7r6 + 4 and area

48
√

2 p6 while the 
entroid of T̃↓ is the point (0, 2,−2). Similarly, T↑ isa parallelogram in the plane y = 2p6 with the 
entroid (6p8, 2p6, 6p4),the sides 4π3

√
7r6 − 4 and 4

5
̺3

√
7r6 + 4 and area 48

√
2 p6 while the
entroid of T̃↑ is the point 2(p6, p8, p8).Theorem 14. |T̃↓| = −32

3
p6 and |T̃↑| = −32

3
p6 p4.Proof. Sin
e Ã ↓ C̃ = (2,−2,−2), Ã ↓ D̃ = (2p4, 0,−2π4̺2), B̃ ↓ C̃ =

(−2p4, 0, 2π2̺4) and B̃ ↓ D̃ = (−2, 10,−2), the volume |T̃↓| is
1

6

∣∣∣∣∣∣∣∣

2 −2 −2 1
2p4 0 −2π4̺2 1
−2p4 0 2π2̺4 1
−2 10 −2 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The 
al
ulation for the volume of
T̃↑ is a bit more 
ompli
ated. �5. Tetrahedra from produ
ts ⊙, ⊲ and ⊳Let us introdu
e three binary operations ⊙, ⊲ and ⊳ on the set Z

3of triples of integers by the rules (a, b, c) ⊙ (u, v, w) = (a u, b v, c w),
(a, b, c) ⊲ (u, v, w) = (a v, b w, c u), and

(a, b, c) ⊳ (u, v, w) = (a w, b u, c v).Noti
e that |A ⊙ C, A ⊙ D| = 4 p6, B ⊙ C = A ⊙ D, and the point
B ⊙ D divides the segment (A ⊙ C)(A ⊙ D) in the ratio −6 : 5. Thethird 
oordinates of the points A ⊲ C, A ⊲ D, B ⊲ C and B ⊲ D are π5̺1.Similarly, the �rst 
oordinates of the points A ⊳ C, A ⊳ D, B ⊳ C and
B ⊳ D are π1̺5. Finally, the se
ond 
oordinates of the points Ã ⊙ C̃,
Ã ⊙ D̃, B̃ ⊙ C̃ and B̃ ⊙ D̃ are p6.



10 ZVONKO �ERINLet T̃⊲ denote the tetrahedron with the verti
es Ã ⊲ C̃, Ã ⊲ D̃, B̃ ⊲ C̃and B̃ ⊲ D̃. The tetrahedron T̃⊳ is de�ned similarly.Theorem 15. |T̃⊲| = −|T̃⊳| = 8

3
p2

6 p2 and |G(T̃⊲), G(T̃⊳)| =
√

2 π3 ̺4.Proof. Sin
e Ã ⊲ C̃ = (π4̺3, π3̺2, π2̺4), Ã ⊲ D̃ = (π4̺3, 5π2π3, 5π2π4),
B̃ ⊲ C̃ = (̺3̺4, π3̺2, ̺2̺4) and B̃ ⊲ D̃ = (̺3̺4, 5π2π3, 5π4̺2), the volume
|T̃⊲| is

1

6

∣∣∣∣∣∣∣∣

π4̺3 π3̺2 π2̺4 1
π4̺3 5π2π3 5π2π4 1
̺3̺4 π3̺2 ̺2̺4 1
̺3̺4 5π2π3 5π4̺2 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The 
al
ulation for the volume of
T̃⊳ is analogous. �Let T⊙⊲ denote the tetrahedron with the verti
es A ⊙ C, A ⊙ D,
B ⊲ C and B ⊲ D. The tetrahedra T⊲⊙, T⊙⊳, T⊳⊙, T⊲⊳ and T⊳⊲ are de�nedsimilarly.Theorem 16. 5 |T⊙⊲| = |T⊲⊙| = 5 |T⊙⊳| = |T⊳⊙| = 200

3
p2

6 π5 π1,
|G(T⊙⊲), G(T⊲⊙)| = 2 π3 ̺1, |G(T⊙⊳), G(T⊳⊙)| = 2 π3 ̺5,

|T⊲⊳| = 8 p6π5π1̺3̺0, |T⊳⊲| = 8 p6π5π1̺3̺6, |G(T⊲⊳), G(T⊳⊲)| = 10 π2

3.Proof. Sin
e A ⊙ C = (p2, p6, p10), A ⊙ D = (p2, 5p6, p10), B ⊲ C = (π1

̺3, 5π3̺5, π5̺1) and B ⊲ D = (5π1̺3, 5π3̺5, π5̺1), the volume |T⊙⊲| is
1

6

∣∣∣∣∣∣∣∣

p2 p6 p10 1
p2 5p6 p10 1
̺3 5π3̺5 π5̺1 1

5π1̺3 5π3̺5 π5̺1 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The 
al
ulation for the other volumesis similar. �Let T1 = TA,B,C denote the tetrahedron with the verti
es A, B, C and
A ⊙ B ⊙ C. The tetrahedra T2 = TA,B,D, T3 = TC,D,A and T4 = TC,D,Bare de�ned similarly.
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|T1| = |T2| = 4 π0π3π4r7, |G(T1), G(T2)| = ̺2̺3̺4,

|T3| = |T4| = −20 π0π3π4p7, |G(T3), G(T4)| = π3(5r6 − 9).Proof. Sin
e A ⊙ B ⊙ C = (π1 p2, 5π3 p6, π5 p10), the volume |T1| is
1

6

∣∣∣∣∣∣∣∣

π1 π3 π5 1
π1 5π3 π5 1
̺1 ̺3 ̺5 1

π1 p2 5π3 p6 π5 p10 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The 
al
ulation for the other volumesis similar. �Let T⊲↓ denote the tetrahedron with the verti
es A ⊲ C, A ⊲ D, B ↓ Cand B ↓ D. The tetrahedra T↓⊲, T⊲↑, T↑⊲, T⊳↓, T↓⊳, T⊳↑ and T↑⊳, arede�ned similarly.Theorem 18.
|T⊲↓| = 8

3
π2

1̺
2
3(p8 + 7), |T↓⊲| = 8

3
π2

1̺
2
3(5p8 + 11), |T⊲↑| = 8

3
π2

1̺2̺3p6,

|T↑⊲| = 8

3
π2

1 ̺3 ̺8 p6, |T⊳↓| = 8

3
π2

5 ̺2
3(p4 + 5), |T↓⊳| = 8

3
π3 π2

5 ̺2
3 ̺4,

|T⊳↑| = 8

3
π2

5̺
2
3(5p4 + 1), |T↑⊳| = 8

3
π3 π2

5 ̺2
3 ̺−2,

|G(T⊲↓)G(T↓⊲)| = |G(T⊲↑)G(T↑⊲)| =
√

6π3

√
r9 + 5r6 − 4,

|G(T⊳↓)G(T↓⊳)| = |G(T⊳↑)G(T↑⊳)| =
√

3π3

√
5p9 + r0 − 8.Proof. Sin
e A ⊲ C = (π1̺3, π3̺5, π5̺1), A ⊲ D = (5π1̺3, π3̺5, π5̺1), B

↓ C = (2(3 + 2p8),−6, 2(3 − 2p4)) and B ↓ D = (10,−6, 10), the vo-lume |T⊲↓| is
1

6

∣∣∣∣∣∣∣∣

π1̺3 π3̺5 π5̺1 1
5π1̺3 π3̺5 π5̺1 1

2(3 + 2p8) −6 2(3 − 2p4) 1
10 −6 10 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The 
al
ulations for the other volu-mes and distan
es are similar. �



12 ZVONKO �ERINLet T· be the tetrahedron with verti
es (A·B, A·C, A·D), (B ·C, B ·D,

B ·A), (C ·D, C ·A, C ·B) and (D·A, D·B, D·C). The tetrahedra T:, T̃·and T̃: are de�ned similarly.Theorem 19.
|T·| = 128

3
p8(9 − 16p6), |T:| = 128

3
p8(81 − 16p6),

|T̃·| = 64

15
π2π5(19 − 4r5), |T̃:| = 64

75
(r7 + 6)(8r5 + 87),The tetrahedra T· and T: have the point (−4p4, 0, 4p4) as a 
ommon
entroid. The 
entroids 2π0π3(−1, 0, 1) and 2

5
(r3 + 6)(−1, 0, 1) of thetetrahedra T̃· and T̃: have the 
onstant distan
e 4
√

2.Proof. Sin
e −A·B = B ·A = 4p6, −A·C = C ·A = 2, −A·D = D·A =
2(2r6 − 3), B ·C = −C ·B = 2(2r6 + 3), B ·D = −D·B = 14 and−C ·D
= D·C = 20p6, the volume |T·| is

1

6

∣∣∣∣∣∣∣∣

−4p6 −2 −2(2r6 − 3) 1
2(2r6 + 3) 14 4p6 1
−20p6 2 −2(2r6 + 3) 1

2(2r6 − 3) −14 20p6 1

∣∣∣∣∣∣∣∣that simpli�es to the above value. The 
al
ulations for the other volu-mes and distan
es are similar. �Referen
es[1℄ E. Brown, Sets in whi
h x y + k is always a square, Mathemati
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ils of Euler triples, I, (preprint).[3℄ Z. �erin, On pen
ils of Euler triples, II, (preprint).[4℄ Z. �erin, On Diophantine triples from Fibona

i and Lu
as numbers,(preprint).[5℄ Z. �erin, Squares in Euler triples from Fibona

i and Lu
as numbers,(preprint).[6℄ Z. �erin, Matri
es with rows in Euler triples from Fibona

i and Lu
as num-bers, (preprint).[7℄ M. Radi¢, A de�nition of determinant of re
tangular matrix, Glasnik Mat. 1(21) (1966), 17-22.[8℄ N. Sloane, On-Line En
y
lopedia of Integer Sequen
es,http://www.resear
h. att.
om/∼njas/sequen
es/.
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