DETERMINANTS AND PERMANENTS OF MATRICES
FROM FIBONACCI AND LUCAS NUMBERS

ZVONKO CERIN

ABSTRACT. In this paper we shall continue to study from [4], for
k= -1 and k =5, the infinite sequences of triples A = (Fap41,
Fonys, Fonys), B = (Fapy1, 5Fonq3, Fonts), C = (Lant1, Lonss,
L2n+5), D= (L2n+1, 5L2n+3, L2n+5) with the property that the
product of any two different components of them increased by k
are squares. The sequences A and B are built from the Fibonacci
numbers F,, while the sequences C and D from the Lucas numbers
L,,. We show many interesting properties of various matrices with
rows from these sequences and give methods how to compute some
of their generalized determinants and permanents. We also study
numerous tetrahedra with vertices from these sequences concen-
trating on their volumes and centroids. Some of our theorems have
versions for the associated sequences A = (Fayt4, Fonyts, Fony2),
B = (Lant4, Fong3, Lont2), C = (Lonta, Lonys, Lont2) and D =
(5F2n+4, Lant3, 5Fan42).

1. INTRODUCTION

For integers a, b and ¢, let us write a L provided a + b = ¢%. For the
triples A = (a,b,¢), D = (d, e, f) and A = (@,b,?) the notation A R A
means that bc iZi, caband abL & When D= (k,k, k), let us
write A X A for AR A. Hence, A is the D(k)-triple (see [1]) if and

only if there is a triple A such that A £ A.

In the paper [4] we constructed infinite sequences o = {«(n)}22, and
5 = {B(n) )2 of D(—1)-triples and 5 = {(n)}32o and & = {3(n)}:2,
of D(5)-triples. Here, a(n) = A = (Fona1, Fonys, Fonss), B(n) = B =
(Fant1, 5Fonys, Fongs) and y(n) = C' = (Lant1, Lonts, Lants), 6(n) =
D = (Lapy1, DLopyts, Lonts), where the Fibonacci and Lucas sequences
of natural numbers F,, and L, are defined by the recurrence rela-
tions F(] = O, F1 = 1, Fn = 1L'p—1 —|—Fn_2 for n 2 2 and LO = 2, L1 = 1,
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L,=1L, 1+ L, 5 forn > 2. For an integer k, let us use m, ok, pr and
vy for Foyyp, Longk, Fangr and Lyp k.

The numbers Fy, make the integer sequence A000045 from [8] while
the numbers L; make A000032.

The goal of this article is to further explore the properties of the
sequences «, (3, 7 and 0. Each member of these sequences is an Euler
D(—1)- or D(5)-triple (see [2] and [3]) so that many of their properties
follow from the properties of the general (pencils of) Euler triples. It
is therefore interesting to look for those properties in which at least
two of the sequences appear. The paper |5] presented several results
of this kind giving many squares from the components, various sums
and products of the sequences «, 3, v and §. On the other hand, the
reference [6] considers various matrices with rows from these sequences
and explore many of their properties. In this article we continue with
the (generalized) determinants and permanents of these matrices and
the computations of volumes of numerous tetrahedra built on these
sequences.

Some of our theorems have versions for the associated sequences Q,
3, 7 and 0, where a(n) A ~(7r4,7r3,7r2) B(n) =B = (94,zr3,92)
Aﬁ(n) = C’ (04, Qg, 92) 5( ) = D = (5my, 03, bmy) satisfy A ~ A, B ~
B CRCand DR D.

2. THE GENERALIZED DETERMINANTS AND PERMANENTS
For a = (ay, ag, az) and b= (by, by, b3) in Z3, let

| a2 as as aj a1 Qo
a b_ bg b3 b3 bl + bl b2 ’
. _ | G2 as as ap a1 Qs
wb=1" 0, bs by | | by by

Note that a-b is the determinant of the rectangular 2 x 3 matrix with
rows a and b (see |7]). When we replace in the above definition the
determinants | | with the permanents || ||, we shall get the definition
of the functionals -- and ::.

We begin with a result that lists some cases when the values of - and
:are constant.
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Theorem 1. The following relations hold for the triples A,. .., D:
AC=AC=-A:C=-2 A:C=10,
B-D=-B:D=14, B-D=6, B:D=26.
Proof. Since A = (my, 73, m5) and C = (o1, 03, 05), the product A-C'is

T3 Ts
03 05

s T
05 01

T T3
01 03

=2-6+2=-2.

O

The analogous values of -- and :: are either zero or multiples of only
three Fibonacci numbers p7, pg and ps.

Theorem 2. The following relations hold for the triples A,. .., D:

A~~C_A::C_B~~D_B::D_§--ﬁ
8 4 32 28 20

= Pe,

B:D =0, g~~5:4p7, K::5:4p5.
Proof. Since A = (my, 73, m5) and C = (o1, 03, 05), the value A--C'is

e N

The pairs (A, B) and (C, D) show similar relationships as the above
for the pairs (A,C) and (B, D). The values of the functionals - and
: in these pairs are multiples of pg while those of -- and :: involve the
Lucas numbers tg.

T3 Ts
03 05

s T
05 01

T T3
01 03

‘ = 2(ps + P + pa) = 8pe.

U

Theorem 3. The following relations hold for the triples A,. .., D:
A-B A:B C-D (C:D

4 4 20 20
A-B  5A:B  C--D  Cz:D

2t¢+5  8tg+ 11 52t —5) 8rg—11

= —Ps,

2.
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Proof. Since A = (my, 73, m5) and B = (7, 573, 75), the value A-B is

T3 Ts
HTs T

s T
s T

T T3

T 5T = —Amyms + 0+ 4mymy = _4p6

O
The following interesting double identity

4A--B—5A::B:C::D—%C--D:18

is an easy consequence of the previous theorem.
For the associated pairs (A, B) and (C, D) the values of -, :, -+ and
;2 use the products of m; and p; and the Lucas numbers ts.

Theorem 4. The following relations hold for the triples ;[,, . D:

i.B 5i:B &.D @:D

- = = = —2,
M Ty t5 — 6 0104 t5 + 6
iB_AB_GD_Gib
305 m302 dT503 D Ta03 .

Proof. Since A= (74,73, m3) and B= (04,73, 02), the value A-B is
m3(02 — o) + T204 — T402 + W3(T4 — 04) = —2 17Ty O

The formulas 6; 5~— 5 g é =16 and 5 ZL §~— C : D = 24 and the
double identity 5A--B —C--D =5A:B — C:: D = 20 are corollaries.

The values of - and : for the mixed pairs (A, C), (A4, C), etc. could
be figured out from the following relations.

Theorem 5. The following hold for the triples A,. .., D:
AC+AC=4, AC—-AC=4p,, B-D+B-D=-20,
B-D—B-D=—4v, A:C+A:C=4, A:C—A:C=—4r,,

B:ﬁ+§:D:—12, E:D_B:ﬁ:_20t6.
Proof. Since A= (74, 73, m5) and C= (04, 03, 02), the value A-C is
T3 T T T T T
3 Ts 5 T L
03 02 02 04 04 O3
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and the value A-C' is

T3 T2 Ty T4 T4 T3 — om0
93 05 05 01 01 03
Hence, AC+AC=4and A-C—A-C = 4py.
The remaining six identities are proved similarly. U

Similarly, the values of -+ and :: for the mixed pairs (A, 5), (g, ),
etc. could also be figured out from the following relations.

Theorem 6. The following hold for the triples A,..., D:
A-C+A-C=12p;, A-C—A-C=8, A:C=A:C=2p,,

B-D B--D B:D B:D
33 38 18 18
Proof. Since A= (74, T3, T2) and C = (04, 03, 02), the value A--Cis

Ps-

Ty Ty Ty T '_'_‘ T T3 ':6p7+4
93 02 Q2 04 04 03
and the value A--C is
T3 T2 ! + T4 T3 = 6p; — 4.
93 05 o5 01 01 03
Hence, A--C + A--C = 12p; and A--C—A--C=3.
The remaining six identities are proved similarly. U

Theorem 7. The following relations hold for the triples A,. .., D:
A-A=2x2 5B-B=D-D=—-10p;, C-C =20,
5A:A=C:C=-10m;, 5B:B=D:D=—50ps.

Proof. Since A = (my, 73, m5) and A= (74, 73, m2), the value A-Ais

T3 Ts
T3 T2

Ty T1
To T4

T T3

=273
T4 T3

Notice that C-C — 5A-A = 8.
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Theorem 8. The following relations hold for the triples A,..., D

A--A=6mymy,  5B-B=2(19v+33), C--C = 6004,
D--D=2(19t —33), AuA=2mm,  5B:B=2(9+23),
C:C =200, DD =29 — 23).

Proof. Since A = (my, 73, m5) and A= (74, 73, m2), the value A--As
4
O

The formulas 5B- B— D- D= 132 and 5B:: B—D:D=92 and
the identities 54--A — C--C = 5A:: A — C::C = 12 are the corollaries.

T3 Ts
T3 T2

5 T
g T4

T T3
Ty T3

‘ = 67T37T4.

3. VOLUMES OF SOME TETRAHEDRA

Let T, T T4 and TA denote the tetrahedra ABC’D ABCD ABCD
and ABCD. The tetrahedra Tg, Te, Th, TB, TC and Tp are defined
similarly.

The following result shows that A, B, C'and D are coplanar points
and that the tetrahedron 71" has a nice oriented volume.

Theorem 9. For every natural number n, the points A, B, C and D
are in the plane myx — w92 = 3. The tetrahedron T has the oriented
volume %7?2 and the centroid (mg, mq,T4) -
Proof. Recall that three points P(a,b,c), Q(d,e, f) and R(g,h,i) in
general position in the space R? determine the plane

Mix+ M;y+ Mgz=M,

where M, M7, M5 and M3 are the determinants

a b c 1 b ¢ a 1 ¢ a b 1
d e f], 1 e f], d 1 f], d e 1
g h i 1 h g 1 1 g h 1

In our case, for P=A, ) = B and R = C, these determinants are
M = 24ms, M| = 8msmy, M5 = 0 and M5 = —8msmy. Hence, the points
A, B and C determine the plane 74z — 72 = 3. The point D also
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lies in it. In order to prove the statement about the volume of the
tetrahedron 7', we use the formula
Iy Y1 2
Lz 2 2
P P,PsPy| = —
PP 6| T3 Y3 23
Ty Yy 2z 1

for the oriented volume of the tetrahedron P, P, P3P,, where the points
P; have the coordinates (z;, y;, z;) (i =1, 2, 3, 4). Also, the centroid

of this tetrahedron is the point <Z49“, 243”, 24'21'). O

—_ = =

Let G(T') denote the centroid of the tetrahedron 7T

Theorem 10. The following relations hold for the triples A,.
Tl +|Ts|+|Te|+|Tp| = —¥mo,  |Tal+|Ts|+|Te|+|Tp| = -,
|G(Ta)G(T)G(To)G(Tp)| = —|G(Ta)G(T)G(To)G(Tp)| = §m1.

Proof. While the volumes |T4] |TB| |Tc| and |Tp| are qulte compli-
cated, the sums |T4| + |T¢| and |T;| + |Tp| are 87 and —275. Hence,
Ta| + |Ts| + |Tc| + |Tp| = —287,. The other identities in this theorem
are proved similarly. U

Let G(G(T4)G(Tp)G(Io)G(Tp)) and G(G(Ta)G(Tp)G(Te)G(Th))
be shortened to G'r and G5.

Theorem 11. The points G and Gz divide the segment G(T)G(T')
in the ratios 1: 3 and 3 : 1.

Proof. Recall that G(P; P,P;P;) has Eml 24?” and E i as coordinates.

Hence, the centroids G(T)), G(T), GT and Gz are the triples (mo,
371'4, 7r6)7 (71-6’ T4, 7T4)7 (?WST_Q()’ 5%’ 396%) and (57T52_7T07 3%7 3972590)' Now
that we know the coordinates of the four centroids it is easy to check

the claims in this theorem. O

Let T'4p denote the tetrahedron ABAB. The tetrahedra Tac, Tep
and Tpp are defined similarly. The (oriented) volumes of these tetra-
hedra are given in the next result. Their centroids lie in the plane

10m3(ms + 7o)z — (dvs+ 1)y — 10 memy 2 = 57y,
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Theorem 12. The following relations hold for the triples A,. .., D:
Tap| = Em3(2¢s5 + 3), [Tep| = §03(2¢s5 — 3),
11|Tac| = —=|Tpp| = Emo.
Proof. The volume |Tyg| is

1 T3 Tx 1

1| m bmg w5 1| _ 2m3(2ma00 + 2m304 + MM — TyT5)
6|m m m 1 3 ’
o4 T 02 1

The long parenthesis simplifies to %(2 t5; + 3) that gives the above value.
O

The first two formulas imply 5|Tag|es — |Top|ms = 16ps.

4. TETRAHEDRA FROM PRODUCTS | AND |

This section uses the binary operations | and T defined by
(a,b,c) l (d>6af) = (b.f —ce,cd—af,ae— bd)>

(a,b,¢) T (dye, f)=(bf+cecd+afae+bd).

Note that restricted on the standard Euclidean 3-space R? the product
| is the familiar vector cross-product. o L

Notice that the products A | C, B| D, A| C and B | D have
the constant values (2, —6,2), (10, —6,10), (2, —2,2) and (-2, 10, —2).
Hence, many expressions that include them become somewhat simpler.

Let T4 and T} denote the tetrahedra (A|C)(A]D)(B1C)(B1D)
and (ATC)(ATD)(B|C)(B| D). We now show that they have equal
volumes and the centroids at nice distance.

Theorem 13. ‘TlT‘ = |TTl‘ = %ﬂ'%@gplo and |G(TH)G(TH)‘ = 47’(’3@1.

Proof. Since A | C' = (2,-6,2), A | D = (6 —4ps, —6,6 +4py), BT C
= (6]38 + 4, 2pg, 6p4 — 4) and BT D = (10]38, 2ps, 10]34), the volume |TlT|
1S
2 —6 2
6| 6ps+4 2pg 6py —4
10ps  2ps  10p4

—_ = =
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that simplifies to the above value. The calculation for the volume of
T3, is similar and for the distance |G(T};)G(17))| is routine since we
know the coordinates of the vertices. U

Let Tl and TT denote the tetrahedra (A|C)(A|D)(B|C)(B|D)
and (A1C)(ATD)(B1C)(B1D). We similarly define the tetrahedra
T and T;. Note that 7| is a parallelogram in the plane y = —6 with
the centroid (6, —6,6), the sides 4m31/Ttg — 4 and 3 03/7ts + 4 and area
48v/2 pg while the centroid of ﬁ is the point (0,2, —2). Similarly, 7} is
a parallelogram in the plane y = 2pg with the centroid (6ps, 2pg, 6p4),
the sides 4m3\/Ttg —4 and £034/Ttg + 4 and area 48+/2ps while the

centroid of TT is the point 2(pg, ps, Ps)-

Theorem 14. |Tl| = —3—32 pe and |TT| = —3—32 Pe Pa.

Proof. Since AlC :~(2, -2, —2), Zl D= (2py4, 0, —27r4£2), B 1 C =
(—2p4,0,2m04) and B | D = (=2, 10, —2), the volume |T}] is

2 —2 —2 1
Ll 2p, 0 —2mpe 1

6 —2p4 0 271'2@4 1
-2 10 —2 1

that simplifies to the above value. The calculation for the volume of
T’ is a bit more complicated. O

5. TETRAHEDRA FROM PRODUCTS ®, > AND <

Let us introduce three binary operations ®, > and < on the set Z3
of triples of integers by the rules (a, b, ¢) ® (u, v, w) = (au, bv, cw),
(a, b, ¢)> (u, v, w) = (av, bw, cu), and

(a, b, ¢) < (u, v, w) = (aw, bu, cv).

Notice that |[A©® C,A® D| =4ps, BOC =A® D, and the point
B ® D divides the segment (A ® C)(A® D) in the ratio —6 : 5. The
third coordinates of the points A C, A> D, B> C and B> D are 750;.
Similarly, the first coordinates of the points A<C, A<D, B<C and

B <D are mgs. Finally, the second coordinates of the points Ao C
AG D, B@C’andB@Darep6
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LetLﬁ denote the tetrahedron with the vertices Ap 6’, Ap 5, B>C
and B> D. The tetrahedron T is defined similarly.

Theorem 15. |f>| = —|i1| = gp%pg and |G(TD),G(T4)| = /275 04.

Proof. Since AsC = (T403, T309, T204), AsD = (m403, HTams, HTaTy),
BoC = (0304, 302, 0204) and BoD = (0304, 5Tams, 5T402), the volume
T is
403 T302  T204 1
1| w403 bmoms bmemy 1
0304 T302 0204 1
0304 OTom3 HW40y 1
that simplifies to the above value. The calculation for the volume of
i is analogous. U

Let T, denote the tetrahedron with the vertices A® C, A® D,
B Cand B> D. The tetrahedra 1., T, Tae, Thq and T, are defined
similarly.

Theorem 16. 5|15, | = |Tho| = 5 |Tod = [Tao| = 2 pg 5 1,
|G(Tes), G(Tho)| = 273 01, |G(Thq), G(Tao)| = 273 05,
I Tha| = 8pemsm10300, |Tas| = 8 pemsmio306, |G(Tha), G(Ta)| = 1075.

Proof. Since A ® C = (p2, ps, P10), A © D = (P2, 5ps, P10), B> C = (m
03, 57T3Q5,7T5Q1) and B> D = (571'1@3, 577'3@5,77'5@1), the volume |T®[>‘ 18

P2 Ps po 1
L1 po s pio 1
6| ©3 Om305 T501 1
Om103 Om305 Ts501 1

that simplifies to the above value. The calculation for the other volumes
is similar. O

Let T} = T4 p,c denote the tetrahedron with the vertices A, B, C' and
A ® B ® C. The tetrahedra Tg = TA,B,D; T3 = TC,D,A and T4 = TC,D,B
are defined similarly.
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Theorem 17.
T1| = |To| = dmomsmary,  [G(Th), G(T3)] = 020304,
|T5| = |Ty| = —20 momsmapr, |G(T3), G(Ty)| = m3(5v6 — 9).
Proof. Since A® B ® C = (7 pa, 573 Ps, 5 P10), the volume |17 is

m 3 s 1

1 ™1 57'('3 5 1
6| o1 03 o5 1
mip2 Om3Pe P01

that simplifies to the above value. The calculation for the other volumes
is similar. U

Let 7| denote the tetrahedron with the vertices A>C, A>D, B | C
and B | D. The tetrahedra T\, Ty, Ths, 1oy, T\a, Tq and T, are
defined similarly.

Theorem 18.

Ty | = %W%@%(ps +7), |Twl= %W%Q§(5P8 +11), [Ty] = %77%9293136,
T| = 872030806, |Ta)| = §72 03(pa+5), |T)a| = 5 m372 03 04,
T | = Sm303(5ps + 1), |Tha| = § w32 03 0-o,
G(T))G(T1s)| = |G(T4)G(Thi)| = V6ms\/rg + Brg — 4,
|G(Te)G(T14)| = |G (Te)G(Tha)| = V3m51/5pg +v0 — 8.

Proof. Since A>C' = (7T1@3,7T305,7T5@1), A D = (57T10377T305,7T5Q1), B
1 C=(2(342ps),—6,2(3 —2p4)) and B | D = (10,—6,10), the vo-
lume |13,| is

103 305 T501 1

1| 5mos w305 501 1
6|20B+2ps) —6 23—2py) 1
10 —6 10 1

that simplifies to the above value. The calculations for the other volu-
mes and distances are similar. U
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Let T' be the tetrahedron with vertices (A-B, A-C, A-D), (B-C, B-D,
B-A), (C-D,C-A,C-B) and (D-A, D-B, D-C). The tetrahedra T,, T'

and 7. are defined similarly.
Theorem 19.
IT| = 128pg(9 — 16pg), |T'] = 28ps(81 — 16ps),

IT| = Smyms (19 — dvs), T2 = &(tr + 6)(8ts + 87),

The tetrahedra T. and T. have the point (—4p4,0,4p,s) as a common
centroid. The centroids 2myms(—1,0,1) and 2(vs +6)(—1,0,1) of the
tetrahedra T. and T, have the constant distance 4+/2.

Proof. Since —A-B = B-A=4ps, —A-C=C-A=2, —-A-D=D-A=

2(2t5 — 3), B-C = —C-B =2(2ts+3), B-D=—D-B =14 and —C-D
= D-C = 20pg, the volume |T'| is

_4p6 —2 —2(2t6 — 3) 1
1| 2025 +3) 14 a1
6l —20ps 2 22 +3) 1

226 —3) —14  20ps 1

that simplifies to the above value. The calculations for the other volu-
mes and distances are similar. U
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