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On Sums of Products of Horadam Numbers
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Abstract. In this paper we give formulae for sums of products of two Horadam type
generalized Fibonacci numbers with the same recurrence equation and with possibly dif-
ferent initial conditions. Analogous improved alternating sums are also studied as well
as various derived sums when terms are multiplied either by binomial coe�cients or by
members of the sequence of natural numbers. These formulae are related to the recent
work of Belbachir and Bencherif, �erin and �erin and Gianella.

1. Introduction

The generalized Fibonacci sequence {wn} = {wn(a0, b0; p, q)} is de�ned by

w0 = a0, w1 = b0, wn = pwn−1 − q wn−2 (n ≥ 2),

where a0, b0, p and q are arbitrary complex numbers, with q 6= 0. The numbers wn

have been studied by Horadam (see, e.g. [10]). A useful and interesting special cases
are {Un} = {wn(0, 1; p, q)} and {Vn} = {wn(2, p; p, q)} that were investigated by
Lucas [11].

For integers a ≥ 0, c ≥ 0, j ≥ 0, b > 0 and d > 0, let Pj = Ua+bjUc+dj ,
Qj = Ua+b j Vc+d j and Rj = Va+b j Vc+d j . In [1] some formulae for the sums∑n

j=0 Pj ,
∑n

j=0 Qj ,
∑n

j=0 Rj ,
∑n

j=0 (−1)j Pj ,
∑n

j=0 (−1)j Qj and
∑n

j=0 (−1)j Rj

have been discovered in the special case when b = d = 2 and q = ±1. Even in these
restricted case they gave uni�cation of earlier results by �erin and by �erin and
Gianella for Fibonacci, Lucas, Pell and Pell-Lucas numbers (see [3] � [9]).

In [2] the author eliminated all restrictions from the article [1] on b, d and q (ex-
cept that q 6= 0). Some other types of sums have also been studied like the improved
alternating sums (when we multiply terms by increasing powers of a �xed complex
number), the sums with binomial coe�cients and sums in which we multiply terms
by increasing natural numbers.

The goal in this paper is to extend these results to Horadam type generalized
Fibonacci numbers. Even in this more general case these sums could be evaluated
using the sum of a geometric series.
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2. Sums of products of two Horadam numbers

We �rst want to �nd the formula for the sum

Ψ1 =

n∑
j=0

wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q)

when a0, b0, c0, d0, p and q 6= 0 are complex numbers and n ≥ 0, a ≥ 0, c ≥ 0, b > 0
and d > 0 are integers.

Let α and β be the roots of x2 − p x+ q = 0. Then α =
p+ ∆

2
and β =

p−∆

2
,

where ∆ =
√
p2 − 4 q. Moreover, α− β = ∆, α+ β = p, αβ = q and the Binet

forms of wn, Un and Vn are

wn =
(b0 − a0β)αn + (a0α− b0)βn

α− β
, Un =

αn − βn

α− β
, Vn = αn + βn,

if α 6= β, and

wn = αn−1(a0 α+ n (b0 − a0 α)), Un = nαn−1, Vn = 2αn,

if α = β.
Let A1 = b0 − a0 α, A2 = d0 − c0 α, B1 = a0 β − b0, B2 = c0 β − d0. Let

E = αb+d, F = αb βd, G = αd βb andH = βb+d. Let e = αa+cB1B2, f = αa βcA2B1,
g = αc βaA1B2 and h = βa+cA1A2. When E 6= 1, for any integer n ≥ 0, let

En =
En+1 − 1

E − 1
. We similarly de�ne Fn, Gn and Hn. On the other hand, when

αb 6= βb, for any integer n ≥ 0, let bn =
αb(n+1) − βb(n+1)

αb n(αb − βb)
and b∗n =

αb(n+1) − βb(n+1)

βb n(αb − βb)
.

We similarly de�ne dn and d∗n. For any integer n ≥ 0, let λn = n+ 1. Let
T = αa+c−2.

Let C1 = A1 a+ a0 α, C2 = A2 c+ c0 α, K1 = b dA1A2, K3 = C1 C2 and
K2 = bA1 C2 + dA2 C1. Let K4 = K1 +K2 +K3.

Let K, M , N and P be n (2n+ 1) K1 + 3nK2 + 6K3,

n2En+3 − (2n2 + 2n− 1)En+2 + (n+ 1)2En+1 − E(E + 1),

nEn+3 − (2n+ 1)En+2 + (n+ 1)En+1 + E(E − 1),

En+3 − 2En+2 + En+1 − (E − 1)2.

Theorem 1. (a) When ∆ = 0 and E = 1, then Ψ1 =
(n+ 1)K T

6
.

(b) When ∆ = 0 and E 6= 1, then Ψ1 =
T [K1M +K2N +K3 P ]

(E − 1)3
.

Proof. (a) Recall that when ∆ = 0, then

wa+b j(a0, b0; p, q) = αa−1+b j [ bA1 j + C1 ]
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and
wc+d j(c0, b0; p, q) = αc−1+d j [ dA2 j + C2 ] .

Since, E = αb+d = 1, we see that the product

wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q)

is equal to
T
[
K1 j

2 +K2 j +K3

]
.

From
∑n

j=0 1 = n+ 1,
∑n

j=0 j =
n(n+ 1)

2
, and

∑n
j=0 j

2 =
n(n+ 1)(2n+ 1)

6
, it

follows that Ψ1 has the above value.
(b) Since ∆ = 0, the product

wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q)

is equal to
T Ej

[
K1 j

2 +K2 j +K3

]
.

From
∑n

j=0 E
j =

P

(E − 1)3
,
∑n

j=0 j E
j =

N

(E − 1)3
, and

∑n
j=0 j

2Ej =
M

(E − 1)3
,

it follows that Ψ1 has the above value. �

The following theorem covers for the sum Ψ1 the cases when ∆ 6= 0. It uses
Table 1 that should be read as follows. The symbols � and � in column E mean
E 6= 1 and E = 1. In column b they mean αb 6= βb and αb = βb. In columns F ,
G, H and d they have analogous meanings. The third subcase should be read as
follows: When (∆ 6= 0), E = 1 and αb = βb, then G = 1 and H = F and for F 6= 1
the product ∆2 Ψ1 is equal to λn (e+ g) + Fn (f + h).

Theorem 2. When ∆ 6= 0, then Table 1 gives the value of ∆2 Ψ1. In all other

cases the product ∆2 Ψ1 is equal to λn (e+ f + g + h).

Proof of row 1. When ∆ 6= 0, we have

wa+b j(a0, b0; p, q) = − 1

∆

[
αaB1 (αb)j + βaA1 (βb)j

]
and

wc+d j(c0, d0; p, q) = − 1

∆

[
αcB2 (αd)j + βcA2 (βd)j

]
.

Hence, the product wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q) is equal to

eEj

∆2
+
f F j

∆2
+
g Gj

∆2
+
hHj

∆2
.

From
∑n

j=0 E
j = En, we get ∆2 Ψ1 = eEn + f Fn + g Gn + hHn. �
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E F G H b d ∆2 Ψ1

1 � � � � En e+ Fn f +Gn g +Hn h

2 � � � � λn e+ Fn f + bn g +Hn h

3 � � � F � λn(e+ g) + Fn(f + h)

4 � � � � λn e+ dn f +Gn g +Hn h

5 � � � G � λn(e+ f) +Gn(g + h)

6 � � � (see 5)

7 � � � (see 3)

8 � � � λn(e+ g) + dn (f + h)

9 � � � λn(e+ h) + dn f + d∗n g

10 � � � � En e+ λn f +Gn g + bn h

11 � � E � � En (e+ g) + λn(f + h)

12 � � � � d∗n e+ λn f +Gn g +Hn h

13 � � � G � λn(e+ f) +Gn (g + h)

14 � � � d∗n e+ λn(f + g) + dn h

15 � � � (see 11)

16 � � � d∗n (e+ g) + λn(f + h)

17 � � � � b∗n e+ Fn f + λn g +Hn h

18 � � � F � λn(e+ g) + Fn (f + h)

19 � � � � En e+ Fn f + λn g + dn h

20 � E � � � En(e+ f) + λn(g + h)

21 � � � � b∗n (e+ f) + λn(g + h)

22 � � � � En e+ b∗n f +Gn g + λn h

23 � � E � � En (e+ g) + λn(f + h)

24 � � � � En e+ Fn f + d∗n g + λn h

25 � E � � � En (e+ f) + λn(g + h)

Table 1: The product ∆2 Ψ1 when ∆ 6= 0.
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Proof of row 2. When ∆ 6= 0 and E = αb+d = 1, we get

wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q) =
e

∆2
+
fF j

∆2
+

g

∆2

(
βb

αb

)j

+
hHj

∆2
.

From
∑n

j=0 1 = λn,
∑n

j=0 F
j = Fn and

∑n
j=0

(
βb

αb

)j

= bn (for αb 6= βb), it follows

that ∆2 Ψ1 = e λn + f Fn + g bn + hHn. �

Proof of row 3. When ∆ 6= 0, E = αb+d = 1 and αb = βb, then

G = βb αd = αb αd = E = 1

and H = βb βd = αb βd = F . Hence,

wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q) =
e+ g

∆2
+

(f + h)F j

∆2
.

From
∑n

j=0 1 = λn and
∑n

j=0 F
j = Fn (for F 6= 1, of course), it follows that the

product ∆2 Ψ1 is equal to (e+ g)λn + (f + h)Fn. �

The missing case in the Table 1 after the third row is clearly when E = 1,
αb = βb and F = 1. The above product is

wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q) =
e+ f + g + h

∆2
,

so that ∆2 Ψ1 = λn(e+ f + g + h). The selection p = 0, q = −1, b = 2 and d = 2
shows that this case can actually happen.

Notice that αn =
Vn + ∆Un

2
and βn =

Vn −∆Un

2
for ∆ 6= 0 and αn = βn =

Ũn+1

n+ 1
=
Ṽn
2

for ∆ = 0. Hence, it is clear that each of the above expressions for the

sum Ψ1 could be transformed into an expression in Lucas numbers Un and Vn (or
Ũn and Ṽn). In most cases these formulae are more complicated then the ones given
above. This applies also to other sums that we consider in this paper.

3. Sum with binomial coe�cients

In this section we consider the sum

Ψ2 =

n∑
j=0

(
n

j

)
wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q),

when a0, b0, c0, d0, p and q 6= 0 are complex numbers and n ≥ 0, a ≥ 0, c ≥ 0, b > 0
and d > 0 are integers.

Let V and U be nE [(nE + 1)K1 + (E + 1)K2] + (E + 1)2K3 and EK4 +K3.
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Theorem 3. (a) When ∆ = 0, then

Ψ2 =


T K3, if n = 0,

T U, if n = 1,

T (E + 1)n−2 V, if n ≥ 2,

(b) When ∆ 6= 0, then

Ψ2 =
(E + 1)n e+ (F + 1)n f + (G+ 1)n g + (H + 1)n h

∆2
.

Proof. (b) Since(
n

j

)
wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q) =

(
n

j

)
eEj + f F j + g Gj + hHj

∆2
,

from
∑n

j=0

(
n
j

)
Ej = (E + 1)n, it follows that Ψ2 indeed has the above value. �

4. The improved alternating sums, I

In this section we consider the sums obtained from the sums Ψ1 and Ψ2 by
multiplication of their terms with the powers of a �xed complex number k. When
k = −1 we obtain the familiar alternating sums. More precisely, we study the sums

Ψ3 =

n∑
j=0

kj wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q),

Ψ4 =

n∑
j=0

kj
(
n

j

)
wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q),

when a0, b0, c0, d0, p and q 6= 0 are complex numbers and n ≥ 0, a ≥ 0, c ≥ 0, b > 0
and d > 0 are integers.

Let E = k αb+d, F = k αb βd, G = k αd βb and H = k βb+d. When E 6= 1, for

any integer n ≥ 0, let En =
En+1 − 1

E − 1
. We similarly de�ne Fn, Gn and Hn.

In this section we can assume that k 6= 1 and k 6= 0 because the case when k = 1
was treated earlier while for k = 0 all sums are equal to zero.

With this new meaning of the symbols E, F , G and H we have the following
result.

Theorem 4. (a) The values given in Theorems 1 and 2 express the sum Ψ3. In

particular, when ∆ 6= 0, then the Table 1 gives the values of ∆2 Ψ3. In all other

cases the product ∆2 Ψ3 is equal to λn(e+ f + g + h).
(b) The values given in Theorem 3 for the sums Ψ2 express also the sum Ψ4.
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Proof. (b) Since

kj
(
n

j

)
wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q) =

(
n

j

)
eEj + f F j + g Gj + hHj

∆2
,

from
∑n

j=0

(
n
j

)
Ej = (E + 1)n, it follows that Ψ4 indeed has the same expression

as the sum Ψ2. �

5. Terms multiplied by natural numbers

In this section we study the sums

Ψ5 =

n∑
j=0

(j + 1)wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q),

Ψ6 =

n∑
j=0

(j + 1)

(
n

j

)
wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q),

when a0, b0, c0, d0, p and q 6= 0 are complex numbers and n ≥ 0, a ≥ 0, c ≥ 0, b > 0
and d > 0 are integers.

Let E = αb+d, F = αb βd, G = αd βb, H = βb+d. Let e = αa+cB1B2,
f = αa βcA2B1, g = αc βaA1B2, h = βa+cA1A2. When E 6= 1, for any integer

n ≥ 0, let En =
(n+ 1)En+2 − (n+ 2)En+1 + 1

(E − 1)2
. We similarly de�ne Fn, Gn and

Hn. On the other hand, when αb 6= βb, for any integer n ≥ 0, let

bn =
αb(n+2) + (n+ 1)βb(n+2) − (n+ 2)αb βn+1

αb n(αb − βb)2

and

b∗n =
βb(n+2) + (n+ 1)αb(n+2) − (n+ 2)βb αn+1

βb n(αb − βb)2
.

We similarly de�ne dn and d∗n. For any integer n ≥ 0, let λn =
(n+ 1)(n+ 2)

2
.

Let M and N denote nEn+3
[
n (n+ 1)E −

(
3n2 + 6n− 1

)]
+ (n+ 2)

En+1
[(

3n2 + 3n− 2
)
E − (n+ 1)

2
]

+ 2E (2E + 1) and

(E − 1)
[
n (n+ 1)En+3−2n (n+ 2)En+2+(n+ 2) (n+ 1)En+1−2E

]
.

Theorem 5. (a) When ∆ = 0 and E = 1, then the sum Ψ5 is equal to

λn T [n(3n+ 1)K1 + 4nK2 + 6K3 ]

6
.

(b) When ∆ = 0 and E 6= 1, then the sum Ψ5 is equal to

T

(E − 1)4
[
K1M +K2N +K3 (E − 1)4En

]
.
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Proof. (b) Since ∆ = 0, we have

(j + 1)wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q)

= (j + 1)
(
αa+b j−1 [ bA1 j + C1 ]

) (
αc+d j−1 [ dA2 j + C2 ]

)
= (j + 1)T Ej

[
K1 j

2 +K2 j +K3

]
.

From
∑n

j=0 (j + 1)Ej = En,
∑n

j=0 j (j + 1)Ej =
N

(E − 1)4
, and

n∑
j=0

j2 (j + 1)Ej =
M

(E − 1)4
,

it follows that Ψ5 has the above value. �

Theorem 6. When ∆ 6= 0, then the Table 1 gives the values of ∆2 Ψ5. In all other

cases the product ∆2 Ψ5 is equal to λn(e+ f + g + h).

Proof of row 1 in Table 1 for Ψ5. When ∆ 6= 0, we have

(j + 1)wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q)

= (j + 1)

(
− 1

∆

[
B1 α

a+b j +A1 β
a+b j

])(
− 1

∆

[
B2 α

c+d j +A2 β
c+d j

])
= (j + 1)

(
eEj

∆2
+
f F j

∆2
+
g Gj

∆2
+
hHj

∆2

)
.

From
∑n

j=0 (j + 1)Ej = En, we get ∆2 Ψ5 = eEn + fFn + g Gn + hHn. �

For any integer n ≥ 0, let E∗
n = (n+ 1)E + 1, E∗∗

n = E∗
n (E + 1)n−1. We de�ne

F ∗
n , G

∗
n, H

∗
n, F

∗∗
n , G∗∗

n and H∗∗
n similarly. Let

M = nE(E + 1)n−3(E∗
2n−2 + E∗

nE
∗
n−1), N = nE(E + 1)n−2(E∗

n + 1).

Theorem 7. (a) When ∆ = 0, then

Ψ6 =


T K3, if n = 0,

T [ 2EK4 +K3] , if n = 1,

T
[

3E2(K4 +K2 + 3K1) + 4EK4 +K3

]
, if n = 2,

T [M K1 +N K2 + E∗∗
n K3 ] , if n ≥ 3.

(b) When ∆ 6= 0, then ∆2 Ψ6 = E∗∗
n e+ F ∗∗

n f +G∗∗
n g +H∗∗

n h.

Proof. (b) Since

(j + 1)

(
n

j

)
wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q)

=
1

∆2
(j + 1)

(
n

j

) (
eEj + f F j + g Gj + hHj

)
,
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from
∑n

j=0 (j + 1)
(
n
j

)
Ej = E∗∗

n , it follows that ∆2 Ψ6 indeed has the above value.
�

6. The improved alternating sums, II

In this section we study the following sums obtained by multiplying the terms
of the sums Ψ5 and Ψ6 with the powers of the �xed complex number k. Of course,
for k = 1, we get the sums Ψ5 and Ψ6 from the sums Ψ7 and Ψ8.

Ψ7 =

n∑
j=0

kj (j + 1)wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q),

Ψ8 =

n∑
j=0

kj (j + 1)

(
n

j

)
wa+b j(a0, b0; p, q)wc+d j(c0, d0; p, q),

when a0, b0, c0, d0, p and q 6= 0 are complex numbers and n ≥ 0, a ≥ 0, c ≥ 0, b > 0
and d > 0 are integers.

Let E = k αb+d, F = k αb βd, G = k αd βb and H = k βb+d. When E 6= 1, for

any integer n ≥ 0, let En =
(n+ 1)En+2 − (n+ 2)En+1 + 1

(E − 1)2
. We similarly de�ne

Fn, Gn and Hn. On the other hand, when αb 6= βb, for any integer n ≥ 0, we de�ne
bn and b∗n as in the previous section. We similarly de�ne dn and d∗n. In this section

λn is again
(n+ 1)(n+ 2)

2
.

Theorem 8. The expressions for Ψ5 in Theorems 5 and 6 describe also the sum
Ψ7 (with the new meaning of E, F , G and H).

Theorem 9. The expressions for Ψ6 in Theorem 7 describe also the sum Ψ8 (with
the new meaning of E, F , G and H).
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[6] Z. �erin, Alternating Sums of Fibonacci Products, Atti del Seminario Matematico e
Fisico dell'Università di Modena e Reggio Emilia, 53(2005), 331-344.

[7] Z. �erin and G. M. Gianella, On sums of squares of Pell-Lucas numbers, INTEGERS:
Electronic Journal of Combinatorial Number Theory, 6(2006), A15.

[8] Z. �erin and G. M. Gianella, Formulas for sums of squares and products of Pell

numbers, Acc. Sc. Torino - Atti Sci. Fis., 140(2006), 113-122.

[9] Z. �erin and G. M. Gianella, On sums of Pell numbers, Acc. Sc. Torino - Atti Sci.
Fis., 141(2007), 23-31.

[10] A. F. Horadam, Generating Functions for Powers of a Certain Generalized Sequence

of Numbers, Duke. Math. J., 32(1965), 437-446.

[11] E. Lucas, Théorie des Fonctions Numériques Simplement Périodiques, American Jour-
nal of Mathematics 1(1878), 184-240.

[12] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences/.


