SUMS OF GENERALIZED FIBONACCI NUMBERS

ZVONKO CERIN AND GIAN MARIO GIANELLA

ABsTRACT. In this paper we first give formulae for sums of a fixed
number of consecutive generalized Fibonacci numbers from the same
residue class. Analogous alternating sums are also studied as well as
various derived sums when terms are multiplied by binomial coefficients
or members of some simple integer sequences.

1. Introduction

The generalized Fibonacci sequence {wy,} = {wy(a, b; p, q)} is often de-
fined by

wo=a, w1 =0b, w,=pwp_1—qup_2 (n>2),

where a, b, p and ¢ are arbitrary complex numbers, with ¢ # 0. The numbers
wp, have been studied by Horadam (see, e. g. [3]). A useful and interesting
special cases are {U,} = {wy(0, 1; p, ¢)} and {V,} = {wn(2, p; p, ¢)} that
were investigated by Lucas [5].

2. Sums of generalized Fibonacci numbers

We first want to find the formula for the sum >, wy444(a, b; p, ¢) when
n>0,r>0and t > 0 are integers.
Let o and 8 be the roots of 2 — px + ¢ = 0. Then o = % and 3 = ’%,

where A = \/p? —4q. Moreover, « — 3=A, a+ [ =p, aff =q and the
Binet forms of w,, U, and V,, are

w, — (b—aﬂ)a”—k(aa—b)ﬂ”’ U, - a”—ﬂ”’ V.= a4 gn.
a—0 a—[(
if a # 3, and
Wy =Wy, =" Ha+n(b—aa)), Uy=U,=na""t V, =V, =2a",
if a =p.

Let y=b—aa and § = b— a 3. For any integer k, let Ay, = o — 1 and
Bk = ﬁk — 1. Let 1[1 = Z?:O wr—i—ti(a) b7 D, q)
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Theorem 1. (a) When A =0 and A, =0, then
T+ 1) 2(ry+aa)+tny
5 )
(b) When A =0 and Ay # 0, then the sum ¥y is
a1 (A ((En+7r)y+aa)Ay +tnry) —t(n+ 1)y o' Ay,
A? '
(c) When A # 0 and Ay =0 and By = 0, then
(n+1)(6a" —~6")
A .
(d) When A #0, Ay =0 and By # 0, then
o' (n+1)5 B" v Bin+1)
A AB,
(e) When A #0, Ay #0 and B, =0, then
"0 Ayngr) BT (n+ 1)y
A Ay A '
(f) When A #0, Ay # 0 and By # 0, then
A" A1) 0 " By v
A Ay ABy

Uy =

Uy =

U =

1=

Uy =

Note that o™ = V"%AU" and " = V"%AU" for A # 0and o™ = " = [iﬁ:ll

= % for A = 0. Hence, it is clear that each of the above expressions for the
sum \I»'lNcould l}ve transformed into an expression in Lucas numbers U,, and
V,, (or Uy, and V,;). In most cases these formulae are more complicated then
the ones given above. This applies also to other sums that we consider in
this paper.

We shall now prove only parts (a) and (f) of Theorem 1. The proofs of
the other parts are similar. This style of proving only few cases from a large
number will be retained in the rest of the paper. The proofs are mostly by
induction so that the main problem was to discover the formulae which we
did with the help from magic possibilities of experimentation in Maple V.

Proof of (a). The proof will be by induction on n.
For o =1 and n = 0, the sum ¥y is aa” (1 — r) + o1 7 b while the right
r—1
hand side is & 2rb—aa)+2aa) ) oip e words, for the initial value of n the
relation (a) holds.
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Assume that (a) is true for n = m. Then
m+1 m

Y " Wyiti = Y Wrsti + Trpg(mer1) =
i=0 i=0

" Hm+1)[2(ry + aq) + tm~A]
2

+ o H(m+ 1)yt + (ry + aa)]

"' (m+2) 2(ry +aa) + ¢ (m+1) 7]
. .

Hence, the relation (a) holds also for n = m + 1. O

Proof of (f). The proof will again be by induction on n.
For n = 0, the sum Uy is & ‘Zﬁ "7 while the right hand side clearly has
the same value. Hence, for the initial value of n the relation (f) holds.
Assume that (f) is true for n = m. Then

m—+1 m
Z Wyt = Wrti | + Wrpt(mt+1) =
i=0 0

1=

(0/ Ayms1) 0 0" Bym+) ’Y) N (of& oltmtl) gy ﬁt(m+1)>

A Ay A By A A
_ A Ayma2) 0 B Byman) v
A Ay AB,
Hence, the relation (f) holds also for n = m + 1. O

Of course, it is clear that Theorem 1 includes many interesting sums for
all kinds of integer sequences. In particular, it is related to the results in
the articles [1] and [2]|. Recall that sequences of Fibonacci (F,), Lucas (L),
Pell (P,), Pell-Lucas (@), Jacobsthal (.J,), Jacobsthal-Lucas (j,) listed
respectively as A000045, A00032, A000129, A002203, A001045, A014551
in [7] are w, (0, 1; 1, —1), wy(2, 1; 1, —1), wy(0, 2; 2, —1), wy(2, 2; 2, —1),
wp(0, 1; 1, —=2), wy(2, 1; 1, —2) for n > 0.

3. The alternating sum and its generalization

For any integer k, let £, = (—1)*, Cy, = oF + 1 and Dy, = ¥ + 1. Let Wy
denote the sum )" ¢;wrq4i(a, b; p, q¢). By \Ilga) we mean the sum ¥y
in the subcase (a) of the theorem where this sum is studied. The similar
notation is used throughout.
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Theorem 2. (a) When A =0 and C; =0, then ¥y = \Ilga).
(b) When A =0 and C; # 0, then the sum Wy is

a" [l Cyngy ((En +7)7 +aa)Cr +ty) + (ry +aa) Gy — t]
C? ‘

(¢) When A #0 and Cy =0 and Dy =0, then ¥y = \Ifgc).
(d) When A #0, Cy =0 and Dy # 0, then
o (n + 1)(5 B BT’Y (gn Bt(n—i—l) + 1)
A A D,
(e) When A #0, Cy # 0 and Dy = 0, then
_a’d (n ot ) 4 1) B (n+1)y

2T AC A
(f) When A # 0, Cy # 0 and Dy # 0, then
o’ (1 + 4, at(n-}—l)) 5 B (1 + 4, ﬁt(n-ﬁ-l)) v

A Cy A D,
Proof of (f). The proof will again be by induction on n.
For n =0, the sum Vs is % while the right hand side clearly has

the same value. Hence, for the initial value of n the relation (f) holds.
Assume that (f) is true for n = m. Then

m+1 m
Z biwr i = (Z ti wr+ti> 1 Wrga(mr1) =

Uy =

Uy =

i=0 i=0
o (1 +4,, at(m-}—l)) 5 B (1 e, ﬁt(m—}—l)) ~
A Ct B A Dt
o’ otmtl)  gray gilm+1)
+ Em—i—l ( A — A
o (1+ b at(m+2)) 5 B (1+ i Bt(m+2)) v
a A Ct A Dt
Hence, the relation (f) holds also for n = m + 1. 0

An obvious generalization of the sum WUy is the following sum W3 defined
as Yo k" wyiei(a, b; p, q), for any complex number k. Let E;, =o'k —1
and F} = gtk — 1.
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Theorem 3. (a) When A =0 and E; =0, then U3 = \Ilga).
(b) When A =0 and E; # 0, then U3 is

o H(E((r+tn)y+aq) —ty) (@ k)" — Ey((r —t)y +aa) +t7]
B}

(¢) When A #0 and E; =0 and F; =0, then U3 = \Ifgc).
(d) When A #0, E; =0 and Fy # 0, then
a’ (n+1)8 B BTy ((ﬂt kyntt — 1)
A A F; ’
(e) When A #0, Ey # 0 and F, =0, then
o’ s ((Ozt k)n+1 _ 1) B ﬁr (n + 1),7
A E, A )
(f) When A #0, E; # 0 and F; # 0, then
o’ ((ozt k,)n—i—l _ 1) ) ﬁr’ ((ﬁt k)n—i—l _ 1) y
A E; A F; ’
Proof of (f). The proof will again be by induction on n.
For n =0, the sum W3 is & ‘Zﬁ "7 while the right hand side clearly has

the same value. Hence, for the initial value of n the relation (f) holds.
Assume that (f) is true for n = m. Then

U3 =

Uy =

Vs =

m+1 m

E . _ i +1 —
k' Wytt; = k! Wyt | + k™ Wrt(m+1) =

=0 0

1=

(o/’ ((at k,)m—i—l _ 1) 5 - B ((ﬁt k,)m—i—l _ 1) 7)

A E; A Fy

1 (ar(s at(m+1) BTy ﬁt(m-ﬁ-l))
+ k™ -

A A
B o’ ((at k‘)m+2 _ 1) ) ﬁr ((ﬁt k‘)m+2 _ 1) v
B AE, AF, '
Hence, the relation (f) holds also for n = m + 1. O

4. Sum with binomial coefficients

Let W4 denote the sum )" (") wryti(a, b p, q).

)
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Theorem 4. (a) When A =0, then
o ry4aa], ifn=0,
Uy =< HCi(ry+aa)+taly], ifn=1,
oL [Ci(ry +aa) +tnaty],  ifn>2.
(b) When A # 0, then
ar§Cp — §7 4 Dy
A .

Proof of (b). Since wy4¢4(a, b; p, q) = gar (at)iKWﬁr (ﬁt)i, we have

i n
Z <Z> wr+ti(a> b7 b, q) =

T )2 ()

1=0
" o’ §Cp — 37y D}

oa” n
- z (' +1)" = T (8 +1)" = <

Uy =

5. The alternating sum with binomial coefficients
Let W5 denote the sum Y7 4 () wrtei(a, b; p, q).
Theorem 5. (a) When A =0, then
ot ry+adal, ifn=0,
U5 =< —a" HAry+aa)+tal], ifn=1,
Al [Ai(ry+aa)+tnaty], ifn>2.

(b) When A # 0, then

tn [a" 6 A} — 8" B
x )
Let g denote the sum > 1, & (") wy4¢i(a, by p, q) for any complex num-

ber k. Let Gy — otk + 1 and Hy = Btk + 1.
Theorem 6. (a) When A =0, then
ot ry+aa], ifn=0,
Ug=1qa" ' [Gry+aa)+akty], ifn=1,
"GP [Gi(ry +aa) +nalkty],  ifn>2.

Vs =
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(b) When A # 0, then
o 5 Gy — By Hp

U, —
6 A

6. Terms multiplied by natural numbers
Let W7 denote the sum Y7 (i + 1)writ4(a, b; p, q).
Theorem 7. (a) When A =0 and A; =0, then

v — " tn+2)(n+1)3(ry + aa) + 2nyt)
7= G .

(b) When A =0 and A; # 0, then ¥y = aril(at(i;l) M+N), with
t

N = ((r—2t)y+aa) A — 271,

M = (n+1)((tn+7)y+aa) A% — (2tn + 1)y + ac) Ay + 2t .
(¢) When A # 0 and Ay =0 and By = 0, then

(n+1)(n+2)(da” —~8")
2A
(d) When A #0, Ay =0 and By # 0, then

_a"(n+)(n+2)s B v((n+1)Byniz) — (n+2)Byni))
B 2A A B?

(e) When A #0, Ay #0 and B, =0, then

_a"((n+ D Aynie) — (n+2)Aynrr)) B+ 1)(n+2)y
B A A2 2A ‘

(f) When A #0, Ay #0 and By # 0, then W7 = M(n) — N(n), where
o’ ((TL + 1)At(n+2) — (n + Z)At(n—l—l)) 1)

Uy, =

vy

vy

t
" 4+ 1)Bin+2) — (n + 2) By,
N(n) = B ((n ) t( +2A)B2(" ) t( +1))’Y'
i

Proof of (f). The proof will again be by induction on n.

For n = 0, the sum Uy is % while the right hand side clearly has
the same value because Ay — 2 A; = A? and By — 2 B; = B2, Hence, for
the initial value of n the relation (f) holds.
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Assume that (f) is true for n = m. Then

m—+1 m
Z (04 1) Wrgps = (Z (t+1) wr—i—ti) + (M + 2)Wy 4 (m1)

i=0 =0

r (m—+1) r (m+1)
(M) — Nm)) 4+ (m+2) (a 5ai + _MB; ¥ )

= M(m+1) — N(m+ 1).

Hence, the relation (f) holds also for n = m + 1. O

7. Alternating terms multiplied by natural numbers

Let Ug denote the sum > i (—1)" (i + L)wysei(a, b; p, q).

Theorem 8. (a) When A =0 and C; =0, then ¥g = \Ilga).
(b) When A =0 and Cy # 0, then ¥g = G at((;ﬂ) M+N), with

N =Ci(ry+aa)—2(C,— 1),

M =Ci((n+1)Cs +1)(ry+aa)+ (n(n+1)C? +2nCy + 2)t.

(¢) When A #0 and Cy =0 and Dy =0, then Vg = \I'gc).
(d) When A #0, Cy =0 and Dy # 0, then

Ter a"(n+1)(n+2)d B B (L, ﬁt("+1)((n +1)D;+1)+1)
8T 2A A D2 '

(e) When A #0, Cy # 0 and Dy = 0, then

a5l T (n+ )G+ 1)+ 1) F(n+1)(n+2)y
- AC? 2A '

(f) When A #0, Cy #0 and Dy # 0, then ¥g = M — N, where

a8 [1+ £, oD ((n + 1)Cy + 1))
CZA

Vg

)

BTy [L4 £ B (0 + 1) Dy +1)]
DZA

N =

Let Wy denote the sum Y 1 o k' (i + 1) wy4¢4(a, b; p, q) for any complex
number k.



SUMS OF GENERALIZED FIBONACCI NUMBERS 9

Theorem 9. (a) When A =0 and E; =0, then U9 = \Ilga).
(b) When A=0 and E; # 0, then ¥g=a" ! [Mw;;aa) + Na;écm , where
M and N are (n + 1)(af k)" — (n 4 2)(a? k)"t + 1 and
n(n+1)(a’ k)" = 2n(n 4+ 2) (' k)" + (n 4+ 1)(n + 2) (! k)" — 2.
(¢) When A #0 and E; =0 and F; =0, then Vg = \I/;c).
(d) When A #0, E; =0 and F; # 0, then Wy is equal to
a"(n+1)(n+2)8 B y((n+ DB K" = (n+2)(B k)" +1)
2A A F?
(e) When A #0, Ey # 0 and F, =0, then Yy is equal to
a"§((n+1)(a k)™ — (n+2)(@" k)" +1)  Fr(n+1)(n+2)y
A E? 2A ’
(f) When A #0, E; # 0 and F; # 0, then Vg = M — N, where
o’ 6 [(n+1)(af k)" 2 — (n +2)(af k)"t 4+ 1]

M =
EZA ’
B7y [(n+1)(8" k)" — (n+2)(8" k)" +1]
N = 5 .
FfA
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