
RINGS OF SQUARES AROUND

ORTHOLOGIC TRIANGLES

ZVONKO ČERIN

Abstract. We explore some properties of the geometric configuration when a
ring of six squares with the same orientation are erected on the segments BD,
DC, CE, EA, AF and FB connecting the vertices of two orthologic triangles
ABC and DEF . The special case when DEF is the pedal triangle of a variable
point P with respect to the triangle ABC was studied earlier by Bottema
[1], Deaux [5], Erhmann and Lamoen [4], and Sashalmi and Hoffmann [8].
We extend their results and discover several new properties of this interesting
configuration.

1. Introduction – Bottema’s Theorem
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Figure 1. Bottema’s Theorem on sums of areas of squares.
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The orthogonal projections Pa, Pb and Pc of a point P onto the sidelines BC,
CA and AB of the triangle ABC are vertices of its pedal triangle. In [1], Bottema
made the remarkable observation that

|BPa|2 + |CPb|2 + |APc|2 = |PaC|2 + |PbA|2 + |PcB|2.
This equation has an interpretation in terms of area which is illustrated in Fig.
1. Rather than using geometric squares, other similar figures may be used as in
[8].

Fig. 1 also shows two congruent triangles homothetic with the triangle ABC
that are studied in [4] and [8].

The primary purpose of this paper is to extend Bottema’s Theorem (see Fig.
2).
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Figure 2. Notation for a ring of six squares around two triangles.

2. Connection with orthology

The origin of our generalization comes from asking if it is possible to replace
the pedal triangle PaPbPc in Bottema’s Theorem with some other triangles. In
other words, if ABC and DEF are triangles in the plane, when will the following
equality hold?

(1) |BD|2 + |CE|2 + |AF |2 = |DC|2 + |EA|2 + |FB|2
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The straightforward analytic attempt to answer this question gives the follow-
ing simple characterization of the equality (1).

Throughout, triangles will be non-degenerate.

Theorem 1. The relation (1) holds for triangles ABC and DEF if and only if
they are orthologic.

A B

C

D
E

F

[ABC, DEF ]

[DEF, ABC]

Figure 3. The triangles ABC and DEF are orthologic.

Recall that triangles ABC and DEF are orthologic provided the perpendic-
ulars at vertices of ABC onto sides EF , FD and DE of DEF are concurrent.
The point of concurrence of these perpendiculars is denoted by [ABC, DEF ]. It
is well-known that this relation is reflexive and symmetric. Hence, the perpen-
diculars from vertices of DEF onto the sides BC , CA, and AB are concurrent at
the point [DEF, ABC ]. These points are called the first and second orthology
centers of the (orthologic) triangles ABC and DEF .

It is obvious that a triangle and the pedal triangle of any point are orthologic
so that Theorem 1 extends Bottema’s Theorem and the results in [8] (Theorem
3 and the first part of Theorem 5).

Proof of Theorem 1. The proofs in this paper will all be analytic.
In the rectangular coordinate system in the plane, we shall assume throughout

that A(0, 0), B(1, 0), C(u, v), D(d, δ), E(e, ε) and F (f, ϕ) for real numbers



4 ZVONKO ČERIN

u, v, d, δ, e, ε, f and ϕ. The lines will be treated as ordered triples of coeffi-
cients (a, b, c) of their (linear) equations a x + b y + c = 0. Hence, the perpen-
diculars from the vertices of DEF onto the corresponding sidelines of ABC are
(u − 1, v, d(1 − u) − v δ), (u, v, −(u e + v ε)) and (1, 0, −f). They will be con-
current provided the determinant v ∆ = v((u − 1) d − ue + f + v (δ − ε)) of the
matrix from them as rows is equal to zero. In other words, ∆ = 0 is a necessary
and sufficient condition for ABC and DEF to be orthologic.

On the other hand, the difference of the right and the left side of (1) is 2 ∆
which clearly implies that (1) holds if and only if ABC and DEF are orthologic
triangles. �

3. The triangles S1S3S5 and S2S4S6

We continue our study of the ring of six squares with the Theorem 2 about
two triangles associated with the configuration. Like Theorem 1, this theorem
detects when two triangles are orthologic. Recall that S1, . . . , S6 are the centers
of the squares in Fig. 2. Note that a similar result holds when the squares are
folded inwards, and the proof is omitted.
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Figure 4. |S1S3S5| = |S2S4S6| iff ABC and DEF are orthologic.

Theorem 2. The triangles S1S3S5 and S2S4S6 have equal area if and only if the
triangles ABC and DEF are orthologic.
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Proof of Theorem 2. The vertices V and U of the square DEV U have co-ordinates
(e + ε − δ, ε + d − e) and (d + ε − δ, δ + d − e). From this we infer easily coor-
dinates of all points in Fig. 2.

A′(−ε, e), A′′(ϕ, −f), B′(1 − ϕ, f − 1), B′′(1 + δ, 1 − d),

C ′(v + u − δ, v − u + d), C ′′(u − v + ε, u + v − e), D′(d + δ, 1 − d + δ),

D′′(d + v − δ, d − u + δ), E ′(e − v + ε, u − e + ε), E ′′(e − ε, e + ε),

F ′(f + ϕ, ϕ− f), F ′′(f −ϕ, f − 1 + ϕ), S1((1 + d + δ)/2, (1− d + δ)/2),

S2((d+u+v−δ)/2, (d−u+v+δ)/2), S3((u−v+e+ε)/2, (u+v−e+ε)/2),

S4((e−ε)/2, (e+ε)/2), S5((f+ϕ)/2, (ϕ−f)/2), S6((f+1−ϕ)/2, (f−1+ϕ)/2).

Let P x and P y be the x– and y– coordinates of the point P . Since the area
|DEF | is a half of the determinant of the matrix with the rows (Dx, Dy, 1),
(Ex, Ey, 1) and (F x, F y, 1), the difference |S2S4S6| − |S1S3S5| is ∆

4
. We conclude

that the triangles S1S3S5 and S2S4S6 have equal area if and only if the triangles
ABC and DEF are orthologic. �

4. The first family of pairs of triangles

The triangles S1S3S5 and S2S4S6 are just one pair from a whole family of
triangle pairs which all have the same property with a single notable exception.

For any real number t different from −1 and 0, let St
1, . . . , St

6 denote points
that divide the segments AS1, AS2, BS3, BS4, CS5 and CS6 in the ratio t : 1.
Let ρ(P, θ) denote the rotation about the point P through an angle θ. Let Gσ

and Gτ be the centroids of ABC and DEF .
The following result is curios (See Figure 5) because the particular value t = 2

gives a pair of congruent triangles regardless of the position of the triangles ABC
and DEF .

Theorem 3. The triangle S2
2S

2
4S

2
6 is the image of the triangle S2

1S
2
3S

2
5 under

the rotation ρ
(

Gσ,
π
2

)

. The radical axis of their circumcircles goes through the
centroid Gσ.

Proof of Theorem 3. Since the point that divides the segment DE in the ratio
2 : 1 has coordinates

(

d+2 e
3

, δ+2 ε
3

)

, it follows that

S2
1

(

1 + d + δ

3
,

1 − d + δ

3

)

and S2
2

(

d + u + v − δ

3
,

d − u + v + δ

3

)

.

Since Gσ

(

1+u
3

, v
3

)

, it is easy to check that S2
2 is the vertex of a (negatively ori-

ented) square on GσS2
1 . The arguments for the pairs (S2

3 , S2
4 , ) and (S2

5 , S2
6 , ) are

analogous.
Finally, the proof of the claim about the radical axis starts with the observation

that since the triangles S1S3S5 and S2S4S6 are congruent it suffices to show
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Figure 5. The triangles S2
1S

2
3S

2
5 and S2

2S
2
4S

2
6 are congruent.

that |GσOodd|2 = |GσOeven|2, where Oodd and Oeven are their circumcenters. This
routine task was accomplished with the assistance of a computer algebra system.

�

The following result resembles Theorem 2 (see Figure 6) and shows that each
pair of triangles from the first family could be used to detect if the triangles ABC
and DEF are orthologic.

Theorem 4. For any real number t different from −1, 0 and 2, the triangles
St

1S
t
3S

t
5 and St

2S
t
4S

t
6 have equal area if and only if the triangles ABC and DEF

are orthologic.

Proof of Theorem 3. Since the point that divides the segment DE in the ratio
t : 1 has coordinates

(

d+te
t+1

, δ+tε
t+1

)

, it follows that the points St
i have the coordi-

nates

St
1

(

t (1 + d + δ)

2(t + 1)
,

t (1 − d + δ)

2(t + 1)

)

, St
2

(

t (d + u + v − δ)

2(t + 1)
,
t (d − u + v + δ)

2(t + 1)

)

,

St
3

(

2 + t(u − v + e + ε)

2(t + 1)
,

t (u + v − e + ε)

2(t + 1)

)

, St
4

(

2 + t(e − ε)

2(t + 1)
,

t (e + ε)

2(t + 1)

)

,

St
5

(

2 u + t(f + ϕ)

2(t + 1)
,
2 v − t(f− ϕ)

2(t + 1)

)

, St
6

(

2 u + t(1 + f− ϕ)

2(t + 1)
,

2 v − t(1 − f− φ)

2(t + 1)

)

.
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t
5| = |St

2S
t
4S

t
6| iff ABC and DEF are orthologic.

As in the proof of Theorem 2, we find that the difference of areas of the

triangles St
2S

t
4S

t
6 and St

1S
t
3S

t
5 is t(2−t)∆

4(t+1)2
. Hence, for t 6= −1, 0, 2, the triangles

St
1S

t
3S

t
5 and St

2S
t
4S

t
6 have equal area if and only if the triangles ABC and DEF

are orthologic. �

5. The second family of pairs of triangles

The first family of pairs of triangles was constructed on lines joining the centers
of the squares with the vertices A, B and C. In order to get the second analogous
family we shall use instead lines joining midpoints of sides with the centers of the
squares (see Figure 7). A slight advantage of the second family is that it has no
exceptional cases.

Let Ag, Bg and Cg denote the midpoints of the segments BC, CA and AB.
For any real number s different from −1, let T s

1 , . . . , T s
6 denote points that divide

the segments AgS1, AgS2, BgS3, BgS4, CgS5 and CgS6 in the ratio s : 1. Notice
that T s

1 T s
2 Ag, T s

3 T s
4 Bg and T s

5 T s
6 Cg are isosceles triangles with the right angles at

the vertices Ag, Bg and Cg.

Theorem 5. For any real number s different from −1 and 0, the triangles T s
1 T s

3 T s
5

and T s
2 T s

4 T s
6 have equal area if and only if the triangles ABC and DEF are

orthologic.

Proof of Theorem 5. As in the proof of Theorem 4, we find that the difference
of areas of the triangles T s

1 T s
3 T s

5 and T s
2 T s

4 T s
6 is s∆

4(s+1)
. Hence, for s 6= −1, 0, the
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Figure 7. |T s
1 T s

3 T s
5 | = |T s

2 T s
4 T s

6 | iff ABC and DEF are orthologic.

triangles T t
1T

t
3T

t
5 and T t

2T
t
4T

t
6 have equal area if and only if the triangles ABC

and DEF are orthologic. �

6. The third family of pairs of triangles

When we look for reasons why the previous two families served our purpose
of detecting orthology it is clear that the vertices of a triangle homothetic with
ABC should be used. This leads us to consider a family of pairs of triangles that
depend on two real parameters and a point (the center of homothety).

For any real numbers s and t different from −1 and any point P the points X,
Y and Z divide the segments PA, PB and PC in the ratio s : 1 while the points

U
(s,t)
i for i = 1, . . . , 6 divide the segments XS1, XS2, Y S3, Y S4, ZS5 and ZS6 in

the ratio t : 1.
The above results (Theorems 4 and 5) are special cases of the following theorem

(see Figure 8).

Theorem 6. For any point P and any real numbers s 6= −1 and t 6= −1, 2 s
s+1

,

the triangles U
(s,t)
1 U

(s,t)
3 U

(s,t)
5 and U

(s,t)
2 U

(s,t)
4 U

(s,t)
6 have equal areas if and only if

the triangles ABC and DEF are orthologic.
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1 U

(s,t)
3 U

(s,t)
5 | = |U (s,t)

2 U
(s,t)
4 U

(s,t)
6 | iff ABC and DEF

are orthologic.

Proof of Theorem 6. Let the point P has the coordinates (p, q). The point U
(s,t)
1

has coordinates
(

(1+d+δ)st+(1+d+δ)t+2 p

2(s+1)(t+1)
, (1−d+δ)st+(1−d+δ)t+2 q

2(s+1)(t+1)

)

. The other points

U
(s,t)
i for i = 2, . . . , 6 have similar coordinates. As in the proof of Theorem 4, we

find that the difference of areas of the triangles U
(s,t)
2 U

(s,t)
4 U

(s,t)
6 and U

(s,t)
1 U

(s,t)
3 U

(s,t)
5

is t(2s−t(s+1)) ∆

4(s+1)(t+1)2
. Hence, for s 6= −1 and t 6= −1, 2s

s+1
, the triangles U

(s,t)
1 U

(s,t)
3 U

(s,t)
5

and U
(s,t)
2 U

(s,t)
4 U

(s,t)
6 have equal area if and only if the triangles ABC and DEF

are orthologic. �

7. The triangles A0B0C0 and D0E0F0

In this section we shall see that the midpoints of the sides of the hexagon
S1S2S3S4S5S6 also have some interesting properties.

Let A0, B0, C0, D0, E0 and F0 be the midpoints of the segments S1S2, S3S4,
S5S6, S4S5, S6S1 and S2S3. Notice that the triangles A0B0C0 and D0E0F0 have
as centroid the midpoint of the segment GσGτ .

Recall that triangles ABC and XY Z are homologic provided the lines AX, BY ,
and CZ are concurrent. In stead of homologic many authors use perspective.



10 ZVONKO ČERIN

Theorem 7. (a) The triangles ABC and A0B0C0 are orthologic if and only if
the triangles ABC and DEF are orthologic.

(b) The triangles DEF and D0E0F0 are orthologic if and only if the triangles
ABC and DEF are orthologic.

(c) If the triangles ABC and DEF are orthologic, then the triangles A0B0C0

and D0E0F0 are homologic.

Proof of Theorem 7. Let D1(d1, δ1), E1(e1, ε1) and F1(f1, ϕ1). Recall from [2]
that the triangles DEF and D1E1F1 are orthologic if and only if ∆0 = 0, where

∆0 = ∆0(DEF, D1E1F1) =

∣

∣

∣

∣

∣

∣

d d1 1
e e1 1
f f1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

δ δ1 1
ε ε1 1
ϕ ϕ1 1

∣

∣

∣

∣

∣

∣

.

Then (a) and (b) follow from the relations

∆0(ABC, A0B0C0) = −∆

2
and ∆0(DEF, D0E0F0) =

∆

2
.

The line DD1 is (δ − δ1, d1 − d, δ1 d − d1 δ), so that the triangles DEF and
D1E1F1 are homologic if and only if Γ0 = 0, where

Γ0 = Γ0(DEF, D1E1F1) =

∣

∣

∣

∣

∣

∣

δ − δ1 d1 − d δ1 d − d1 δ
ε − ε1 e1 − e ε1 e − e1 ε
ϕ − ϕ1 f1 − f ϕ1 f − f1 ϕ

∣

∣

∣

∣

∣

∣

.

Part (c) follows from the observation that Γ0(A0B0C0, D0E0F0) contains ∆ as
a factor. �

8. Triangles from centroids

Let G1, G2, G3 and G4 denote the centroids of the triangles G12AG34BG56C ,
G12DG34EG56F , G45AG61BG23C and G45DG61EG23F where G12A, G12D, G34B, G34E ,
G56C , G56F , G45A, G45D, G61B , G61E , G23C and G23F are centroids of the triangles
S1S2A, S1S2D, S3S4B, S3S4E, S5S6C, S5S6F , S4S5A, S4S5D, S6S1B, S6S1E,
S2S3C and S2S3F .

Theorem 8. The points G1 and G2 are the points G3 and G4 respectively. The
points G1 and G2 divide the segments GσGτ and GτGσ in the ratio 1 : 2.

Proof of Theorem 8. The centroids G12A, G34B and G56C have the coordinates
(

2 d+1+v+u
6

, 2 δ+1+v−u
6

)

,
(

2 e+2+u−v
6

, 2 ε+v+u
6

)

and
(

2 f+2 u+1
6

, 2 ϕ+2 v−1
6

)

. It follows

that G1 is
(

d+e+f+2 u+2
9

, δ+ε+ϕ+2 v

9

)

. Similarly, G2 is
(

2 d+2 e+2 f+1+u

9
, 2 δ+2 ε+2 ϕ+v

9

)

.
It is now easy to check that G3 = G1 and G4 = G2.

Let G′
1 divide the segment GσGτ in the ratio 1 : 2. Since Gτ

(

d+e+f

3
, δ+ε+ϕ

3

)

and

Gσ

(

1+u
3

, v
3

)

, we have (G′
1)

x = 2 (Gσ)x+(Gτ )x

3
= (2+2 u)+(d+e+f)

9
= (G1)

x. Of course,
in the same way we see that (G′

1)
y = (G1)

y and that G2 divides GτGσ in the
same ratio 1 : 2. �
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Figure 9. G1 and G2 divide GσGτ in four equal parts and ABC
is orthologic with G12AG34BG56C iff it is orthologic with DEF .

Theorem 9. The following statements are equivalent:
(a) The triangles ABC and G12AG34BG56C are orthologic.
(b) The triangles ABC and G12DG34EG56F are orthologic.
(c) The triangles DEF and G45AG61BG23C are orthologic.
(d) The triangles DEF and G45DG61EG23F are orthologic.
(e) The triangles G12AG34BG56C and G45AG61BG23C are orthologic.
(f) The triangles G12DG34EG56F and G45DG61EG23F are orthologic.
(g) The triangles ABC and DEF are orthologic.

Proof of Theorem 9. The equivalence of (a) and (g) follows from the relation

∆0(ABC, G12AG34BG56C) =
∆

3
.

The equivalence of (g) with (b), (c), (d), (e) and (f) one can prove in the same
way. �

9. Four triangles on vertices of squares

In this section we consider four triangles A′B′C ′, D′E ′F ′, A′′B′′C ′′, D′′E ′′F ′′

which have twelve outer vertices of the squares as vertices. The sum of areas of
the first two is equal to the sum of areas of the last two. The same relation holds
if we replace the word ”area” by the phrase ”sum of the squares of the sides”.
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Figure 10. Four triangles A′B′C ′, D′E ′F ′, A′′B′′C ′′ and D′′E ′′F ′′.

For a triangle XY Z let |XY Z| and s2(XY Z) denote its (oriented) area and
the sum |Y Z|2 + |ZX|2 + |XY |2 of squares of lengths of its sides.

Theorem 10. (a) The following equality for areas of triangles holds:

|A′B′C ′| + |D′E ′F ′| = |A′′B′′C ′′| + |D′′E ′′F ′′|.
(b) The following equality also holds:

s2(A
′B′C ′) + s2(D

′E ′F ′) = s2(A
′′B′′C ′′) + s2(D

′′E ′′F ′′).

Proof of Theorem 10. The areas |A′B′C ′|, |D′E ′F ′|, |A′′B′′C ′′| and |D′′E ′′F ′′| are

1

2
[(ε − ϕ + 1) d + (u + v − 1 − δ + ϕ) e − (u + v − δ + ε) f − δ + (v − u + 1) ε + (u − v)ϕ + 2 v] ,

1

2
[(u − v + 2 ε − 2 ϕ) d − (1 + 2 δ − 2 ϕ) e + (1 − u + v + 2 δ − 2 ε) f + (u + v) δ − ε + (1 − u − v) ϕ + v] ,

1

2
[(u − v + ε − ϕ) d − (1 + δ − ϕ) e + (1 − u + v + δ − ε) f + (u + v) δ − ε + (1 − u − v)ϕ + 2 v] ,

1

2
[(1 + 2 ε − 2 ϕ) d + (u + v − 1 − 2 δ + 2 ϕ) e − (u + v − 2 δ + 2 ε) f − δ + (1 − u + v) ε + (u − v) ϕ + v] ,

By looking vertically at each term we see easily that (a) is true.
On the other hand, s2(A

′B′C ′), s2(D
′E ′F ′), s2(A

′′B′′C ′′) and s2(D
′′E ′′F ′′) are

2
[

2(u2 − u + v2 + 1) − (2 d − e − f)(u − v) − (2 δ − ε − ϕ)(u + v) + d2 + e2+

f 2 + δ2 + ε2 + ϕ2 − de − df − ef − δε − δϕ − εϕ + d + e − 2f + δ + ε − 2ϕ
]

,
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2
[

u2 − u + v2 + 1 + (d − 2e + f)(u + v) + (δ − 2ε + ϕ)(v − u) + 2(d2 + e2+

f 2 + δ2 + ε2 + ϕ2 − de − df − ef − δε − δϕ − εϕ) − 2d + e + f + 2δ − ε − ϕ
]

,

2
[

2(u2 − u + v2 + 1) + (d − 2e + f)(u + v) + (δ − 2ε + ϕ)(v − u) + d2 + e2+

f 2 + δ2 + ε2 + ϕ2 − de − df − ef − δε − δϕ − εϕ − 2d + e + f + 2δ − ε − ϕ
]

,

2
[

u2 − u + v2 + 1 + (2d − e − f)(v − u) − (2δ − ε − ϕ)(v + u) + 2(d2 + e2+

f 2 + δ2 + ε2 + ϕ2 − de − df − ef − δε − δϕ − εϕ) − d + e − 2f + δ + ε − 2ϕ
]

,

Again, by direct inspection, we see that (b) holds. �

Let A′
1, B′

1 and C ′
1 denote centers of squares of the same orientation built on the

segments B′C ′, C ′A′ and A′B′. The points D′
1, E ′

1, F ′
1, A′′

1, B′′
1 , C ′′

1 , D′′
1 , E ′′

1 and
F ′′

1 are defined analogously. Notice that (A′B′C ′, A′
1B

′
1C

′
1), (A′′B′′C ′′, A′′

1B
′′
1C ′′

1 ),
(D′E ′F ′, D′

1E
′
1F

′
1) and (D′′E ′′F ′′, D′′

1E
′′
1F ′′

1 ) are four pairs of both orthologic and
homologic triangles.

The following theorem claims that the four triangles from these centers of
squares retain the same property regarding sums of areas and sums of squares of
lengths of sides.

Theorem 11. (a) The following equality for areas of triangles holds:

|A′
1B

′
1C

′
1| + |D′

1E
′
1F

′
1| = |A′′

1B
′′
1C ′′

1 | + |D′′
1E

′′
1F ′′

1 |.
(b) The following equality also holds:

s2(A
′
1B

′
1C

′
1) + s2(D

′
1E

′
1F

′
1) = s2(A

′′
1B

′′
1C

′′
1 ) + s2(D

′′
1E

′′
1F ′′

1 ).

Notice that in the above theorem we can take instead of the centers any points
that have the same position with respect to the squares erected on the sides of
the triangles A′B′C ′, D′E ′F ′, A′′B′′C ′′ and D′′E ′′F ′′. Also, there are obvious
extensions of the previous two theorems from two triangles to the statements
about two n-gons for any integer n > 3.

Of course, it is possible to continue the above sequences of triangles and define
for every integer k ≥ 0 the triangles A′

kB
′
kC

′
k, A′′

kB
′′
kC ′′

k , D′
kE

′
kF

′
k and D′′

kE
′′
kF ′′

k .
The sequences start with A′B′C ′, A′′B′′C ′′, D′E ′F ′ and D′′E ′′F ′′. Each member
is homologic, orthologic, and shares the centroid with all previous members and
for each k an analogue of Theorem 11 is true.

Proof of Theorem 11. The (a) part follows from Theorem 10 and the observation

that the expressions
8 |A′

1
B′

1
C′

1
|−s2(A′B′C′)

4
,

8 |D′

1
E′

1
F ′

1
|−s2(D′E′F ′)

4
,

8 |A′′

1
B′′

1
C′′

1
|−s2(A′′B′′C′′)

4

and
8 |D′′

1 E′′

1 F ′′

1 |−s2(D′′E′′F ′′)

4
are respectively equal to

(e − f)(u + v) + (ε − ϕ)(u − v) + (1 + ε − ϕ)d − (1 + δ − ϕ)e + (δ − ε)f − δ + ε + 2v,

(d − f)(u − v) + (δ − ϕ)(u + v) + 2(ε − ϕ)d − (1 + 2δ − 2ϕ)e + (1 + 2δ − 2ε)f − ε + ϕ + v,
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(d − f)(u − v) + (δ − ϕ)(u + v) + (ε − ϕ)d − (1 + δ − ϕ)e + (1 + δ − ε)f − ε + ϕ + 2v,

(e − f)(u + v) + (ε − ϕ)(v − u) + (1 + 2ε − 2ϕ)d − (1 + 2δ − 2ϕ)e + 2(δ − ε)f − δ + ε + v.

On the other hand, the (b) part follows also from Theorem 10 and the obser-

vation that
s2(A′

1B′

1C′

1)−s2(A′B′C′)

3
,

s2(D′

1E′

1F ′

1)−s2(D′E′F ′)

3
,

s2(A′′

1B′′

1 C′′

1 )−s2(A′′B′′C′′)

3
and

s2(D′′

1 E′′

1 F ′′

1 )−s2(D′′E′′F ′′)

3
are respectively equal to the same above expressions. �

A B

C

D
E

F

S1

S3

S5

Gσ

Gτ

Gσ′′

Gτ ′

Gτ ′′

Gσ′

B
′′

D
′

D
′′

C
′

C
′′

E
′

E
′′

A
′

A
′′

F
′

F
′′

B
′

Figure 11. GσGτGτ ′Gσ′′ and GσGτGτ ′′Gσ′ are squares.

10. The centroids of the four triangles

Let Gσ′ , Gτ ′ , Gσ′′ , Gτ ′′ , Go and Ge be shorter notation for the centroids GA′B′C′ ,
GD′E′F ′, GA′′B′′C′′, GD′′E′′F ′′, GS1S3S5

and GS2S4S6
. The following theorem shows

that these centroids are the vertices of three squares associated with the ring of
six squares.

Theorem 12. (a) The centroids Gσ′′, Gτ ′, Gτ and Gσ are vertices of a square.
(b) The centroids Gσ′ and Gτ ′′ are reflections of the centroids Gσ′′ and Gτ ′ in

the line GσGτ . Hence, the centroids Gτ ′′, Gσ′, Gσ and Gτ are also vertices of a
square.
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(c) The centroids Ge and Go are the centers of the squares in (a) and (b),
respectively. Hence, the centroids Gσ, Ge, Gτ and Go are also vertices of a
square.

Proof of Theorem 12. (a) The centroid Gσ′′ is
(

δ+ε+ϕ+u−v+1
3

, u+v+1−d−e−f

3

)

while

the centroids Gσ and Gτ are
(

u+1
3

, v
3

)

and
(

d+e+f

3
, δ+ε+ϕ

3

)

. In other words, Gσ′′ is
the vertex above Gσ of a (negatively oriented) square built on the segment GσGτ .
Its fourth vertex is Gτ ′.

(b) The proof is very similar to the proof of (a). The only difference is that
the positively oriented square on GσGτ appears.

(c) The centroid Ge is
(

d+e+f−δ−ε−ϕ+u+v+1
6

, d+e+f+δ+ε+ϕ−u+v−1
6

)

and these are
precisely the coordinates of the center of the (negatively oriented) square built
on the segment GσGτ (look at the coordinates of the point S2 and apply the rule
to the points Gσ and Gτ instead of the points D and C). The argument for the
centroid Go is similar. �

11. Remarkable midpoints

Let A∗, B∗, C∗, D∗, E∗, F ∗, Dg, Eg and Fg denote the midpoints of the
segments A′A′′, B′B′′, C ′C ′′, D′D′′, E ′E ′′, F ′F ′′, EF , FD and DE. Notice that
the points A∗, B∗, C∗, D∗, E∗ and F ∗ are the centers of squares built on the
segments S4S5, S6S1, S2S3, S1S2, S3S4 and S5S6, respectively. Also, the triangles
A∗B∗C∗ and D∗E∗F ∗ share the centroids with the triangles ABC and DEF .

Theorem 13. The triangles ABC and DEF are orthologic if and only if the
triangles A∗B∗C∗ and D∗E∗F ∗ are orthologic.

Proof of Theorem 13. Since the coordinates of A∗, B∗, C∗, D∗, E∗ and F ∗ are
(

ϕ−ε

2
, e−f

2

)

,
(

1 + δ−ϕ

2
, f−d

2

)

,
(

u − δ−ε
2

, v + d−e
2

)

,
(

d + v
2
, δ − u−1

2

)

,
(

e − v
2
, ε + u

2

)

,

and
(

f, ϕ − 1
2

)

, we easily get 4 ∆0(A
∗B∗C∗, D∗E∗F ∗) = −∆. �

Theorem 14. The triangles ABC and A∗B∗C∗ are homologic if and only if the
triangles ABC and DEF are orthologic or the points D, E and F are collinear.
Also, the triangles DEF and D∗E∗F ∗ are homologic if and only if the triangles
ABC and DEF are orthologic or the points A, B and C are collinear.

Proof of Theorem 14. The first part follows from the relation

4 Γ0(ABC, A∗B∗C∗) + |DEF |∆ = 0,

while the second is a consequence of 4 Γ0(DEF, D∗E∗F ∗) + |ABC|∆ = 0. �

Theorem 15. The lines AA∗, BB∗, CC∗, DD∗, EE∗ and FF ∗ are perpen-
dicular to the sidelines EF , FD, DE, BC, CA and AB, respectively. More-

over, |AA∗| = |EF |
2

, |BB∗| = |FD|
2

, |CC∗| = |DE|
2

, |DD∗| = |BC|
2

, |EE∗| = |CA|
2

and

|FF ∗| = |AB|
2

.
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A
B

C

D

E

F

1

2

3

4

D
∗

E
∗

F
∗

A
∗

B
∗

C
∗

Figure 12. The triangles ABC and DEF are orthologic iff the
triangles A∗B∗C∗ and D∗E∗F ∗ are orthologic.

Proof of Theorem 15. The lines EF and AA∗ are (ε − ϕ, f − e, e ϕ − f ε) and
(e − f, ε − ϕ, 0). Clearly, they are perpendicular because the condition for lines
(a, b, c) and (p, q, r) to be perpendicular is a p + b q = 0. On the other hand, the

formula for the Euclidean distance gives |AA∗| = 1
2

√

(e − f)2 + (ε − ϕ)2 = |EF |
2

.
The arguments for the other corresponding pairs of points are similar. �

Theorem 16. If the triangles ABC and DEF are orthologic then the homo-
logy centers of (ABC, A∗B∗C∗) and (DEF, D∗E∗F ∗) are the orthology centers
[ABC, DEF ] and [DEF, ABC].

Proof of Theorem 16. This follows from the first part of Theorem 15. �

Theorem 17. The triangles ABC and DEF are orthologic if and only if the
triangles ABC and D∗E∗F ∗ and/or the triangles DEF and A∗B∗C∗ are ortho-
logic.

Proof of Theorem 17. This follows from the relations ∆0(ABC, D∗E∗F ∗) = −∆
and ∆0(DEF, A∗B∗C∗) = ∆. �

Let Aa, Ba and Ca denote the vertices of the anticomplementary triangle of
the triangle ABC.
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A
B

C

D

E

F

1

2

A
∗

B
∗

C
∗

Figure 13. If the triangles ABC and DEF are orthologic, then
the triangles ABC and A∗B∗C∗ are homologic.

Theorem 18. If the triangles ABC and DEF are orthologic, then the follow-
ing are pairs of homologic triangles: (A∗B∗C∗, AaBaCa), (D∗E∗F ∗, DaEaFa),
(A∗B∗C∗, AgBgCg) and (D∗E∗F ∗, DgEgFg).

Proof of Theorem 18. Since Aa(u + 1, v), Ba(u − 1, v) and Ca(1 − u, −v), we get
4 Γ0(A

∗B∗C∗, AaBaCa) = ∆ M , where the factor M is (ε − ϕ + 2u + 2)d + (ϕ − δ
+2u − 4)e + (δ − ε − 4u + 2)f + 2v(δ + ε − 2ϕ + 6). It follows that if the triang-
les ABC and DEF are orthologic, then the triangles A∗B∗C∗ and AaBaCa are
homologic. The other three pairs are treated similarly. �

12. Another set of midpoints

Let Am, Dm, Bm, Em, Cm and Fm be midpoints of the segments BD, DC,
CE, EA, AF and FB.

Theorem 19. (a) The common centroid of the triangles AmBmCm and DmEmFm

is the midpoint of the segment GσGτ .
(b) The triangles ABC and DEF are orthologic if and only if the triangles

AmBmCm and DmEmFm have equal sums of squares of lengths of sides.
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A
B

C

D

E

F

Aa

Ba

Ca

Ag

Bg

Cg
A

∗

B
∗

C
∗

Figure 14. If the triangles ABC and DEF are orthologic, then
the triangle A∗B∗C∗ is homologic with AaBaCa and AgBgCg.

Proof of Theorem 19. (a) The triangles AmBmCm and DmEmFm have the point
(

d+e+f+u+1
6

, δ+ε+ϕ+v

6

)

as a common centroid and these are precisely the coordi-
nates of the midpoint of the segment GσGτ .

(b) This follows from the relation s2(DmEmFm) − s2(AmBmCm) = 3
2
∆. �

Let s be a real number different from 0 and −1. Let the points As, Bs and
Cs divide the segments BD, CE and AF in the ratio s : 1 and let the points Ds,
Es and Fs divide the segments DC, EA and FB in the ratio 1 : s. The above
theorem is a special case (for s = 1) of the following result.

Theorem 20. (a) The common centroid of the triangles AsBsCs and DsEsFs

divides the segment GσGτ in the ratio s : 1.
(b) The triangles ABC and DEF are orthologic if and only if the triangles

AsBsCs and DsEsFs have equal sums of squares of lengths of sides.
(c) When the triangles ABC and DEF are orthologic then neither the triangle

AsBsCs nor the triangle DsEsFs is orthologic with the triangle ABC.

Proof of Theorem 20. (a) The points As, Bs, Cs, Ds, Es and Fs have the coor-
dinates

�
1+sd
s+1

, sδ
s+1

�
,
�

u+se
s+1

, v+sε
s+1

�
,
�

sf

s+1
, sϕ

s+1

�
,
�

sd+u
s+1

, sδ+v
s+1

�
,
�

se
s+1

, sε
s+1

�
and

(

sf+1
s+1

, sϕ

s+1

)

so

that the triangles AsBsCs and DsEsFs have the point
(

(d+e+f)s+1+u

3(s+1)
, (δ+ε+ϕ)s+v

3(s+1)

)
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D
E

F

As

DsBs

Es

Cs Fs

Gσ

Gτ

V

Figure 15. The common centroid V of the triangles AsBsCs and
DsEsFs divides GσGτ in the ratio s : 1.

as a common centroid and these are precisely the coordinates of the point which
divides the segment GσGτ in the ratio s : 1.

(b) This follows from the relation s2(DsEsFs) − s2(AsBsCs) = 6s
(s+1)2

∆.

(c) We know that the triangles ABC and DEF are orthologic if and only if
f = (1 − u) d + ue + v (ε − δ). If we compute the expressions ∆0(AsBsCs, ABC)

and ∆0(DsEsFs, ABC) for this value of f , we get the quotients u−u2−v2−1
s+1

and
u2−u+v2 1

s+1
which could never be equal to zero (for real values of u and v). �

13. Improvement of Ehrmann–Lamoen results

Let KaKbKc be a triangle from intersections of parallels to the lines BC,
CA and AB through the points B′′, C ′′ and A′′. Similarly, LaLbLc, MaMbMc,
NaNbNc, PaPbPc and QaQbQc are constructed in the same way through the triples
of points (C ′, A′, B′), (D′′, E ′′, F ′′), (D′, E ′, F ′), (S1, S3, S5) and (S2, S4, S6),
respectively. Some of these triangles have been considered in the case when the
triangle DEF is the pedal triangle PaPbPc of the point P . Work has been done
by Ehrmann and Lamoen in [4] and also by Hoffmann and Sashalmi in [8]. In this
section we shall see that natural analogues of their results hold in more general
situations.

Theorem 21. (a) The triangles KaKbKc, LaLbLc, MaMbMc, NaNbNc, PaPbPc

and QaQbQc are each homothetic with the triangle ABC.
(b) The quadrangles KaLaMaNa, KbLbMbNb and KcLcMcNc are parallelo-

grams.
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A

B

C

DE

F

B
′′

C
′′

A
′′Ka

Kb

Kc

K0

Figure 16. The triangle KaKbKc from parallels to BC, CA, AB
through B′′, C ′′, A′′ is homothetic to ABC from the center K0.

(c) The centers Ja, Jb and Jc of these parallelograms are the vertices of a
triangle that is also homothetic with the triangle ABC.

Proof of Theorem 21. (a) The parallels to the lines AB and CA through the
points A′′ and C ′′ are (0, 1, f) and (v, −u, u2 + v2 − eu − εv) so that their in-

tersection Ka is
(

u(e−f)+εv−u2−v2

v
, −f

)

. In a similar way we find that the points

Kb and Kc have coordinates
(

(u−1)(d−f)+δv−u+v+1
v

, −f
)

and (pc, qc) with

pc =
u(u − 1)(d − e) + v(uδ − (u − 1)ε) + u3 + uv2 − 2 u2 + uv − v2 + u

v

and qc = (u − 1)d − ue + vδ − vε + u2 − u + v2 + v + 1. The lines AKa, BKb

and CKc intersect in the point K0(p0, q0) where p0 = −ue−vε+uf+v2+u2

(u−1)d+vδ−ue−vε+f+u2−u+v2+1

and q0 = vf

(u−1)d+vδ−ue−vε+f+u2−u+v2+1
. Moreover, the pairs of lines (BC, KbKc),

(CA, KcKa) and (AB, KaKb) are parallel so that we conclude that the triangle
KaKbKc is homothetic with the triangle ABC.

(b) The simplest method is to prove that the midpoints of the segments KxMx

and LxNx coincide for x = a, b, c.
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A
B

C

D

E

F

Figure 17. The triangles KaKbKc, LaLbLc, MaMbMc and
NaNbNc together with three parallelograms.

(c) The points Ja, Jb and Jc have the coordinates
(

u(ϕ−ε)+ev−u2−u−v2

2v
, ϕ−1

2

)

,
(

(u−1)(ϕ−δ)+u2−3u+v2+v(1+d)+2
2v

, ϕ−1
2

)

and (jc, kc) where

jc =
u(u − 1)(δ − ε) + uvd + (1 − u)ve + 2u3 + 2uv2 − 3u2 + uv − v2 + u

2v

and kc = vd+(1−u)δ−ve+uε−2u+v+1+2u2+2v2

2
. Then we proceed as in the proof of (a).

�

Let J0, K0, L0, M0, N0, P0 and Q0 be centers of the above homotheties. Notice
that J0 is the intersection of the lines K0M0 and L0N0.

Theorem 22. (a) The symmedian point K of the triangle ABC lies on the line
K0L0.

(b) The points P0 and Q0 coincide with the points N0 and M0.

(c) The equalities 2 · −−−→PvQv =
−−−→
KvLv hold for v = a, b, c.

Proof of Theorem 22. (a) From the proof of Theorem 21 we know the coordinates

of K0. The same method gives the coordinates u(f−1)−ue−vε

(u−1)d+vδ−ue−vε+f−u2+u−v2−1
and

v(f−1)
(u−1)d+vδ−ue−vε+f−u2+u−v2−1

of the center L0. Hence, the line K0L0 is the triple
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A
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D
E

F

K

L0

K0

Figure 18. The line K0L0 goes through the symmedian point K
of the triangle ABC.

((u −1)d + vδ −ue − vε −(2u2 −2u + 2v2 + 1)f + u2 − u + v2 + 1, (u2 + u + v2)
(d − du − vδ) − (u2 − 3u + v2 + 2)(ue + vε) + (u2 − u + v2) ( (2u− 1)f + u2 − u
+v2 + 1), v (ue + vε + (u2 + v2)f − u2 − v2)). The equation of this line is satis-

fied by the coordinates
(

u2+u+v2

2(u2−u+v2+1)
, v

2(u2−u+v2+1)

)

of the symmedian point K of

the triangle ABC.
(b) That the center P0 coincides with the center N0 follows easily from the fact

that (A, Na, Pa) and (B, Nb, Pb) are triples of collinear points.
(c) Since Qy

a = f+ϕ−1
2

, P y
a = ϕ−f

2
, Ly

a = f − 1 and Ky
a = −f , we see that

2 · (Qy
a − P y

a ) = Ly
a − Ky

a .

Similarly, 2 · (Qx
a − P x

a ) = Lx
a − Kx

a . This proves the equality 2 · −−−→PaQa =
−−−→
KaLa.

�

Theorem 23. The triangles KaKbKc and LaLbLc are congruent if and only if
the triangles ABC and DEF are orthologic.

Proof of Theorem 23. Since the triangles KaKbKc and LaLbLc are both homo-
thetic to the triangle ABC, we conclude that they will be congruent if and only
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if |KaKb| = |LaLb|. Hence, the theorem follows from the equality

|KaKb|2 − |LaLb|2 =
[(2u − 1)2 + (2v + 1)2 + 2] ∆

v2
.

�

Let O and ω denote the circumcenter and the Brocard angle of the triangle
ABC.

Theorem 24. If the triangles ABC and DEF are orthologic then the following
statements are true.

(a) The symmedian point K of the triangle ABC is the midpoint of the segment
K0L0.

(b) The triangles MaMbMc and NaNbNc are congruent.
(c) The triangles PaPbPc and QaQbQc are congruent.
(d) The common ratio of the homotheties of the triangles KaKbKc and LaLbLc

with the triangle ABC is (1 + cot ω) : 1.
(e) The vector of the translations KaKbKc 7→ LaLbLc and NaNbNc 7→ MaMbMc

is the image of the vector 2 ·
−−−−−−−−−−→
O[DEF, ABC] under the rotation ρ

(

O, π
2

)

.
(f) The vector of the translation PaPbPc 7→ QaQbQc is the image of the vector−−−−−−−−−−→

O[DEF, ABC] under the rotation ρ
(

O, π
2

)

.

Proof of Theorem 24. (a) Let ξ = u2 − u + v2. Let the triangles ABC and DEF
be such that the centers K0 and L0 are well-defined. In other words, let M, N 6= 0,
where M, N = (u − 1)d + vδ − ue − vε + f ± (ξ + 1). Let Z0 be the midpoint of

the segment K0L0. Then |Z0K|2 = ∆2 P
4(ξ+1)2 M2 N2 , where

P =
Q S2

(ξ + u)2(ξ + 3u + 1)2
+

4v2(ξ + 1)2 T 2

(ξ + u)(ξ + 3u + 1)
,

S = (ue + vε)(ξ2 + ξ − 3u(u − 1)) + (ξ + u)

[(ξ + 3u + 1)((u − 1)d + vδ) + ((1 − 2ξ)u − ξ − 1)f − (ξ + 1)(ξ + u − 1)],

Q = ξ2 + (4u + 1)ξ + u(3u + 1) and T = ue + vε + (ξ + u)(f − 1). Hence, when
the triangles ABC and DEF are orthologic (i. e., ∆ = 0), then K = Z0. The
converse is not true because the factors S and T can be simultaneously equal to
zero. For example, this happens for the points A(0, 0), B(1, 0), C

(

1
3
, 1

)

, D(2, 5),

E
(

4, −32
9

)

and F (3, −1). An interesting problem is to give geometric description
for the conditions S = 0 and T = 0.

(b) This follows from the equality

|NaNb|2 − |MaMb|2 =
4(vd + (1 − u)δ − ve + uε − ϕ + ξ + 1) ∆

v2
.
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(c) This follows similarly from the equality

|PaPb|2 − |QaQb|2 =
(vd + (1 − u)δ − ve + uε − ϕ + ξ + v + 1) ∆

v2
.

(d) The ratio |KaKb|
|AB| is |∆+u2−u+v2+v+1|

v
. Hence, when the triangles ABC and

DEF are orthologic, then ∆ = 0 and this ratio is

u2 − u + v2 + v + 1

v
= 1 +

|BC|2 + |CA|2 + |AB|2
4 · |ABC| = 1 + cotω.

(e) The tip of the vector
−−−→
KaLa (translated to the origin) is at the point

V (ξ − 2(ue + vε − uf), 2f − 1). The intersection of the perpendiculars through
the points D and E onto the sidelines BC and CA is the point

U

(

(1 − u)d − vδ + ue + vε,
uvδ + (u − 1)(du − ue − vε)

v

)

.

When the triangles ABC and DEF are orthologic this point will be the second
orthology center [DEF, ABC]. Since the circumcenter O has the coordinates
(

1
2
, ξ

2v

)

, the tip of the vector 2 · −→OU is at the point

W ∗
(

2((1 − u)d − vδ + ue + vε) − 1,
2((u − 1)(ud − ue − vε) + uvδ) − ξ

v

)

.

Its rotation about the circumcenter by the angle π
2

has the tip in the point

W (−(W ∗)y, (W ∗)x). The relations Ux − W x = 2u∆
v

and Uy − W y = 2∆ now con-
firm that the claim (e) holds.

(f) The proof for this part is similar to the proof of the part (e). �

14. New results for the pedal triangle

Let a, b, c and S denote the lengths of sides and the area of the triangle ABC.
In this section we shall assume that DEF is the pedal triangle of the point P
with respect to ABC. Our goal is to present several new properties of Bottema’s
original configuration. It is particularly useful for the characterizations of the
Brocard axis.

Theorem 25. There is a unique central point P with the property that the triang-
les S1S3S5 and S2S4S6 are congruent. The first trilinear coordinate of this point
P is a((b2 + c2 + 2 S)a2 − b4 − c4 − 2 S(b2 + c2)). It lies on the Brocard axis and
divides the segment OK in the ratio (− cotω) : (1 + cot ω) and is also the image
of K under the homothety h(O, − cotω).

Proof of Theorem 25. Let P (p, q). The orthogonal projections Pa, Pb and Pc of
the point P onto the sidelines BC, CA and AB have the coordinates

(

(u − 1)2p + v(u − 1)q + v2

ξ − u + 1
,

v((u − 1)p + vq − u + 1)

ξ − u + 1

)

,



25

A B

C

D

E

F

K

O

P

A
′

A
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′′

Figure 19. s2(A
′B′C ′) = s2(A

′′B′′C ′′) iff P is on the Brocard axis.

(

u(up+vq)
ξ+u

, v(up+vq)
ξ+u

)

and (p, 0).

Since the triangles S1S3S5 and S2S4S6 have equal area, it is easy to prove
using the Heron formula that they will be congruent if and only if two of their
corresponding sides have equal length. In other words, we must find the solution
of the equations

|S3S5|2 − |S4S6|2 =
vξp

ξ + u
− v2q

ξ + u
+

ξ + u − 1

2
= 0,

|S5S1|2 −|S6S2|2 =
vξp

ξ −u +1
+

v2q

ξ −u +1
− ξ2 −(2(u − v) −1) ξ + u (u −1)

2(ξ −u +1)
= 0.

As this is a linear system it is clear that there is only one solution. The required

point is P
(

1−2 u+v
2v

, ξ2+(v+1)ξ−v2

2v2

)

. Let s = − 1
1+ v

ξ+1

= − cot ω
1+cot ω

. The point P divides

the segment OK in the ratio s : 1, where O
(

1
2
, ξ

2v

)

and K
(

ξ+2u

2(ξ+1)
, v

2(ξ+1)

)

. �

Theorem 26. The triangles S1S3S5 and S2S4S6 have the same centroid if and
only if the point P is the circumcenter of the triangle ABC.

Proof of Theorem 26. We easily get that |GoGe|2 = M2+N2

9(ξ−u+1)(ξ+u)(1+4ξ)
, where N =

v(1 + ξ)(2p − 1) and M = 3ξ(2u − 1)p + v(1 + 4ξ)q − ξ(2ξ + 3u − 1). Hence, Go
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= Ge if and only if N = 0 and M = 0. In other words, the centroids of the
triangles S1S3S5 and S2S4S6 coincide if and only if p = 1

2
and q = ξ

2v
(i. e., if and

only if the point P is the circumcenter O of the triangle ABC). �

Recall that the Brocard axis of the triangle ABC is the line joining its circum-
center with the symmedian point.

Theorem 27. For the pedal triangle DEF of a point P with respect to the triangle
ABC the following statements are equivalent:

(a) The triangles A0B0C0 and D0E0F0 are orthologic.
(b) The triangles ABC and G45AG61BG23C are orthologic.
(c) The triangles ABC and G45DG61EG23F are orthologic.
(d) The triangles G12AG34BG56C and G45DG61EG23F are orthologic.
(e) The triangles G12DG34EG56F and G45AG61BG23C are orthologic.
(f) The triangles A′B′C ′ and A′′B′′C ′′ have the same area.
(g) The triangles A′B′C ′ and A′′B′′C ′′ have the same sums of squares of lengths

of sides.
(h) The triangles D′E ′F ′ and D′′E ′′F ′′ have the same area.
(i) The triangles D′E ′F ′ and D′′E ′′F ′′ have the same sums of squares of lengths

of sides.
(j) The triangles S1S3S5 and S2S4S6 have equal sums of squares of lengths of

sides.
(k) For any real number t 6= −1, 0, 2, the triangles St

1S
t
3S

t
5 and St

2S
t
4S

t
6 have

equal sums of squares of lengths of sides.
(l) For any real number s 6= −1, 0, the triangles T s

1 T s
3 T s

5 and T s
2 T s

4 T s
6 have equal

sums of squares of lengths of sides.
(m) The triangles AsBsCs and DsEsFs have the same area.
(n) The point P lies on the Brocard axis of the triangle ABC.

Proof of Theorem 27. (a) The orthology criterion ∆0(A0B0C0, D0E0F0) is equal
to the quotient −v M

8(ξ+u)(ξ−u+1)
, with M the following linear polynomial in p and q.

M = 2
(

ξ2 + ξ − v2
)

p + 2 v (2 u − 1) q − (ξ + u) (ξ + u − 1) .

In fact, M = 0 is the equation of the Brocard axis because the coordinates
(

1
2
, ξ

2v

)

and
(

ξ+2u

2(ξ+1)
, v

2(ξ+1)

)

of the circumcenter O and the symmedian point K satisfy

this equation. Hence, the statements (a) and (n) are equivalent.
(f) It follows from the equality |A′′B′′C ′′| − |A′B′C ′| = v M

2(ξ+u)(ξ−u+1)
that the

statements (f) and (n) are equivalent.
(i) It follows from the equality s2(D

′E ′F ′) − s2(D
′′E ′′F ′′) = v M

2(ξ+u)(ξ−u+1)
that

the statements (i) and (n) are equivalent. �

It is well-known that cot ω = a2+b2+c2

4S
so that we shall assume that the de-

generate triangles do not have well-defined Brocard angle. It follows that the
statement ”The triangles S1S3S5 and S2S4S6 have equal Brocard angles” could
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be added to the list of the previous theorem provided we exclude the points
for which the triangles S1S3S5 and S2S4S6 are degenerate. The following result
explains when this happens. Let K−ω denote the point described in Theorem 25.

Theorem 28. The following statements are equivalent:
(a) The points S1, S3 and S5 are collinear.
(b) The points S2, S4 and S6 are collinear.
(c) The point P is on the circle with the center K−ω and the radius equal to

the circumradius R of the triangle ABC times the number
√

(1 + cot ω)2 + 1.

Proof of Theorem 28. Let M be the following quadratic polynomial in p and q:

v2(p2 + q2) + v (2 u − v − 1) p −
(

ξ2 + (v + 1) ξ − v2
)

q − (ξ + u) (ξ − u + v + 1) .

The points S1, S3 and S5 are collinear if and only if

0 =

∣

∣

∣

∣

∣

∣

Sx
1 Sy

1 1
Sx

3 Sy
3 1

Sx
5 Sy

5 1

∣

∣

∣

∣

∣

∣

=
v M

2(u − 1 − ξ)(u + ξ)
.

The equivalence of (a) and (c) follows from the fact that M = 0 is the equa-
tion of the circle described in (c). Indeed, we see directly that the coordinates of

its center are
(

1−2u+v
v

, ξ2+(v+1)ξ−v2

2v2

)

so that this center is the point K−ω while the

square of its radius is
(ξ−u+1)(ξ+u)((ξ+v+1)2+v2)

4v4 = (ξ−u+1)(ξ+u)
4v2 · (ξ+v+1)2+v2

v2 = R2 · β2,

where β is equal to the number
√

(1 + cot ω)2 + 1 because cot ω = ξ+1
v

.
The equivalence of (b) and (c) is proved in the same way. �

Theorem 29. The triangles A0B0C0 and D0E0F0 always have different sums of
squares of lengths of sides.

Proof of Theorem 29. The difference s2(A0B0C0) − s2(D0E0F0) is equal to the

quotient 3v3 N
4(ξ−u+1)(u+ξ)

, where N denotes the following quadratic polynomial in

variables p and q:
(

p − 1

2

)2

+

(

q − ξ

2v

)2

+
3(ξ − u + 1)(ξ + u)

4v2
.

However, this polynomial has no real roots. �

Theorem 30. The triangles A0B0C0 and D0E0F0 have the same areas if and
only if the point P lies on the circle θ0 with the center at the symmedian point K
of the triangle ABC and the radius R

√
4 − 3 tan2 ω, where R and ω have their

usual meanings associated with triangle ABC.

Proof of Theorem 30. The difference |D0E0F0| − |A0B0C0| is v2(ξ+1)2 M

16(ξ−u+1)(ξ+u)
, where

M denotes the following quadratic polynomial in variables p and q:
(

p − ξ + 2 u

2(ξ + 1)

)2

+

(

q − v

2(ξ + 1)

)2

− (ξ + u) (ξ − u + 1) (4(ξ + 1)2 − 3 v2)

4 (ξ + 1)2 v2
.
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Figure 20. |A0B0C0| = |D0E0F0| iff P is on the circle θ0.

The third term is clearly equal to −R2(4 − 3 tan2 ω). Hence, M = 0 is the equa-
tion of the circle whose center is the symmedian point of the triangle ABC with

the coordinates
(

ξ+2 u

2(ξ+1)
, v

2(ξ+1)

)

and the radius R
√

4 − 3 tan2 ω. �

Notice that the lines AA∗, BB∗ and CC∗ intersect in the isogonal conjugate
of the point P with respect to the triangle ABC.

Theorem 31. The triangles A∗B∗C∗ and D∗E∗F ∗ have the same sums of squares
of lengths of sides if and only if the point P lies on the circle θ0.

Proof of Theorem 31. The proof is almost identical to the proof of the previous

theorem since the difference s2(D
∗E∗F ∗) − s2(A

∗B∗C∗) is equal to v2(ξ+1)2 M

2(ξ−u+1)(ξ+u)
.

�

Theorem 32. For any point P the triangles A∗B∗C∗ and D∗E∗F ∗ always have
different areas.

Proof of Theorem 32. The proof is similar to the proof of Theorem 29 since the
difference |D∗E∗F ∗| − |A∗B∗C∗| is equal to v3 N

8(ξ−u+1)(ξ+u)
. �
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15. New results for the antipedal triangle

Recall that the antipedal triangle P ∗
a P ∗

b P ∗
c of a point P not on the side lines of

the triangle ABC has as vertices the intersections of the perpendiculars erected
at A, B and C to PA, PB and PC respectively. Note that the triangle P ∗

a P ∗
b P ∗

c

is orthologic with the triangle ABC so that Bottema’s Theorem holds also for
antipedal triangles.

Our final result is an analogue of Theorem 27 for the antipedal triangle of a
point. It gives a nice connection of a Bottema configuration with the Kiepert
hyperbola (i. e., the rectangular hyperbola which passes through the vertices,
the centroid and the orthocenter [3]).

In the next theorem we shall assume that DEF is the antipedal triangle of the
point P with respect to ABC. Of course, the point P must not be on the side
lines BC, CA and AB.

A B

C
D

E

F

H
P

S1

S2

S3

S4

S5

S6

G

Figure 21. s2(S1S3S5) = s2(S2S4S6) when P is on the Kiepert hyperbola.

Theorem 33. The following statements are equivalent:
(a) The triangles A0B0C0 and D0E0F0 are orthologic.
(b) The triangles ABC and G45AG61BG23C are orthologic.
(c) The triangles ABC and G45DG61EG23F are orthologic.
(d) The triangles G12AG34BG56C and G45DG61EG23F are orthologic.
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Figure 22. s2(S1S3S5) = s2(S2S4S6) also when P is on the circumcircle.

(e) The triangles G12DG34EG56F and G45AG61BG23C are orthologic.
(f) The triangles A′B′C ′ and A′′B′′C ′′ have the same area.
(g) The triangles A′B′C ′ and A′′B′′C ′′ have the same sums of squares of lengths

of sides.
(h) The triangles D′E ′F ′ and D′′E ′′F ′′ have the same area.
(i) The triangles D′E ′F ′ and D′′E ′′F ′′ have the same sums of squares of lengths

of sides.
(j) The triangles S1S3S5 and S2S4S6 have equal sums of squares of lengths of

sides.
(k) For any real number t 6= −1, 0, 2, the triangles St

1S
t
3S

t
5 and St

2S
t
4S

t
6 have

equal sums of squares of lengths of sides.
(l) For any real number s 6= −1, 0, the triangles T s

1 T s
3 T s

5 and T s
2 T s

4 T s
6 have equal

sums of squares of lengths of sides.
(m) The triangles AsBsCs and DsEsFs have the same area.
(n) The point P lies either on the Kiepert hyperbola of the triangle ABC or

on its circumcircle.

Proof of Theorem 33. (g) s2(A
′′B′′C ′′) − s2(A

′B′C ′) = 2v M N
q(vp−uq)(v(p−1)−(u−1)q)

, with

M =

(

p − 1

2

)2

+

(

q − ξ

2v

)2

− ξ2 + v2

4v2
,
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N = v (2u − 1)
(

p2 − q2 − p
)

− 2
(

u2 − u − v2 + 1
)

pq +
(

u2 + u − v2
)

q.

In fact, M = 0 is the equation of the circumcircle of the triangle ABC while N = 0
is the equation of its Kiepert hyperbola because the coordinates of the vertices

A, B and C and the coordinates
(

u, u(1−u)
v

)

and
(

u+1
3

, v
3

)

of the orthocenter H

and the centroid G satisfy this equation. Hence, the statements (g) and (n) are
equivalent.

(j) It follows from the equality s2(S2S4S6) − s2(S1S3S5) = v M N
q(vp−uq)(v(p−1)−(u−1)q)

that the statements (j) and (n) are equivalent.
(m) It follows from the equality

|DsEsFs| − |AsBsCs| =
s v M N

2(s + 1)2 q(vp − uq)(v(p − 1) − (u − 1)q)

that the statements (m) and (n) are equivalent. �

Of course, as in the case of the pedal triangles, we can add the statement ”The
triangles S1S3S5 and S2S4S6 have equal Brocard angles.” to the list in Theorem 33
but the points on the circle described in Theorem 28 must be excluded from
consideration.

Notice that when the point P is on the circumcircle of ABC then much more
could be said about the properties of the six squares built on segments BD, DC,
CE, EA, AF and FB. A considerable simplification arises from the fact that
the antipedal triangle DEF reduces to the antipodal point Q of the point P .
For example, the triangles S1S3S5 and S2S4S6 are the images under the rotations

ρ(U, π
4
) and ρ(V, −π

4
) of the triangle A⋄B⋄C⋄ = h(O,

√
2

2
)(ABC) (the image of

ABC in the homothety with the circumcenter O as the center and the factor
√

2
2

).
The points U and V are constructed as follows.

Let the circumcircle σ⋄ of the triangle A⋄B⋄C⋄ intersect the segment OQ in
the point R, let ℓ be the perpendicular bisector of the segment QR and let T
be the midpoint of the segment OQ. Then the point U is the intersection of the
line ℓ with ρ(T, π

4
)(PQ) while the point V is the intersection of the line ℓ with

ρ(T, −π
4
)(PQ).
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