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Abstract. We consider triangles in the plane with coordinates of points from
the Pell and the Pell-Lucas sequences. It is possible to take for both coordinates
consecutive either Pell numbers or Pell-Lucas numbers or mix these two kinds of
numbers taking for the first coordinates Pell numbers and for the second coordinates
Pell-Lucas numbers and vice verse. For these four infinite sequences of triangles
we explore what geometric properties they share or how are they related to each
other. We also calculate some of their quantities like area, Brocard angles, and
distances of certain central points when these are rather simple expressions of Pell
and Pell-Lucas numbers. Sometimes, these results give interesting relations among
Pell and Pell-Lucas numbers.

The Pell and Pell-Lucas sequences P, and @, are defined by the recurrence
relations

FPy=0, P =2, P,=2P, 1+ P, o forn>2,
and
Qo =2, Q1 =2, Qn=2Qn_1+Qpn_o forn=>2
The numbers @) make the integer sequence A002203 from [6] while the

numbers 1 P, make A000129.
Let k be a positive integer. Let Ay and 'y be the triangles with vertices

A = (Py, Pry1), By, = (Pr+1, Prt2), Cr = (P2, Pit3)

and
Xk = (Qrs Qrt1), Yi = (Qig1, Qrt2)s Z = (Qry2, Qr+3),

respectively.

In this paper we shall explore some common properties of the triangles
Ay and T'g. Analogous infinite series of triangles with coordinates from the
Fibonacci and Lucas integer sequences was studied by the first author in [3].
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There is a great similarity between these two papers in statements of some
results and in methods of their proofs. Of course, there are also some new
observations like the possibility to consider triangles with mixed coordinates
of vertices and the involvement of the homology relation.

We begin with the following theorem which shows that these triangles
share the property of orthology.

Recall that the triangles ABC and XY Z are called orthologic when the
perpendiculars at vertices of ABC onto the corresponding sides of XY Z are
concurrent. The point of concurrence is [ABC, XY Z]. It is well-known that
the relation of orthology for triangles is reflexive and symmetric. Hence, the
perpendiculars at vertices of XY Z onto the corresponding sides of ABC' are
concurrent at the point [XY Z, ABC].

By replacing in the above definition perpendiculars with parallels we get
the analogous notion of paralogic triangles and of points (ABC, XY Z) and
(XY Z, ABC).

The triangle ABC' is paralogic to its first Brocard triangle A, B, Cp, which
has the orthogonal projections of the symmedian point K onto the perpen-
dicular bisectors of sides as vertices (see |4] and [5]).

Theorem 1. For all positive integers m and n, the following are pairs of
orthologic triangles: (A, Ay), (Am, Ty), and (T, Tn).

Proof. It is well-known (see [1]) that the triangles ABC and XY Z with
coordinates of points (a1, az2), (b1, b2), (c1, c2), (z1, x2), (Y1, y2), and (21, 22)
are orthologic if and only if

air b1 ¢ az by c
1 y1 21 |+ 22 y2 22 | =0.
1 1 1 1 1 1

Let « =1+ v2and 8 =1— /2. Note that o + 5 = 2 and a3 = —1 so that
the numbers o and 3 are solutions of the equation 2?2 — 22 —1=0. Since
P; = 2(05__;]) and Q; = ol + 37 for every j >0, when we substitute the
coordinates of the vertices of A,,, and A,, into the left hand side of the above

criterion we get

d(a-1)(B-1(af+1)(a"B" —a™ ")
a—p
For the pairs A,,, I';, and T, T, we get

2(@=1)(B-D(af+1)(@™ " +a" ™)

and
(= B)(a=1)(B = 1)(af+1)(a™p" —a" ™).

From this the conclusion of the theorem is obvious because a8+ 1=0. 0O
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Theorem 2. For all positive integers m the orthocenters H(A,,) and H(T'y,)
of the triangles A, and Ty, and the orthology centers [Ap,, U] and [Ty, Ay
satisfy

[H(Am)[Am, Tl _ V2

[HTm)[Cm, Al 2
Proof. Let us use ¢} as a short notation for the expression a + bv/2. Let
A =a™ and B = . Using the Binet formula for Pell and Pell-Lucas num-
bers it is easy to check that H(A,,) has the coordinates
017 A3+ 01 A2B+060*, AB2+0'7,B% —0] A3 +05A2B+63,AB2—¢"_ B3
2AB ’ 2AB )

Similarly, the orthocenter H(T';,) has coordinates

—032 A3+ 02 A2B+ 02, AB? - 024, B3 01043 105A2B+0%, AB? +0'9 B?
2AB ’ 2AB )

For [A,,, T';;,] this method gives
(—ﬂgA3+€%A2B+ﬂ11AB2—G“hlﬁ egA3+egA2B+ﬁ32AB2+975BS>

2AB ’ 2AB

Finally, the second orthology center [I'),, A,,] has coordinates
028 A3 + 02 A2 B+ 62, AB2 4+ 624 B> —6010 A3 4 91 A2 B + 04, A B2 — 010, B3
2AB ’ 2AB

The square of the distance between the points H(T',,) and [Ty, Ay] is
03352 AS + 9132 BS while the square of the distance between the points
H(A,,) and [A,,, T'),] is exactly half of this value. O

Theorem 3. For all positive integers m the oriented areas |Ay,| and |y,
of the triangles A, and Ty, are as follows:

IAp| =4(=1D™ and |Tp|=2|Apse1]| =8 (=1

Proof. Let us again assume that o™ = A and B = . Note that « 8 = —1
so that A B = (—1)™. Recall that the triangle with the vertices whose coor-
dinates are (x1, x2), (y1, y2), and (21, 2z2) has the oriented area equal to

(21 —y) w2+ (21— 2) Y2 + (y1 — 1) 22

5 .
By direct substitution and simplification we get that |A,,| =4 AB =4 (—1)".
On the other hand, for T',,, we get |Tyn| = —8AB = 2|A,,11] = 8 (—1)™F1.
(]

At this point we can go back and keep coordinates of vertices according to
their original definition and discover that the first claim in the above theorem
is equivalent to the identity

Pm (Pm+2 - Pm+3) + Pm+1 (Pm+2 + Pm+3) = Pr%;,-}-l + Pr%:,+2 + 8(_1)m7
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while the second claim in the above theorem is equivalent to the identity

Qm (Qm+2 - Qm+3) + Qm-i—l (Qm+2 + Qm+3) = Q?n-i—l + Q?n-i—Q - 16(_1)m’

Theorem 4. For all natural numbers m the centroids G(A,,) and G(I'y,)

\ 34 Poyn+26 QZm

of the triangles Ay, and Ty, are at the distance S

Proof. With the notation from the proof of Theorem 2 we get that the cen-
troids G(A,,;) and G(I';,) have the coordinates

<9§A+96_5B 9%§A+91_6113> 1 <9§A+9233 6§1A+91_18B>
all .

6 ’ 6 3 ’ 3
o . 0%6(49 A%2409%], B2 S : .
The square of their distance is idl Zr s E— ) which in turn is precisely
34 sz-|9—26 Qom ) 0

The following interesting identity represents an equivalent way in which
we can state the above theorem.

34P2m + 26 Q2m - (Pm - Qm)2 - (Pm+3 - Qm+3)2 =
2(Pmt14+Pmt2—Qmt+1—Qm+2)(Pmn+Pmt1+Pmi24+Prni3—Qm—Qm+1—Qmi2—Qm+3).

Theorem 5. For all positive integers m the circumcenters O(A,,) and O(T'y,)

V/ Pam+3(10+Qam+6)
3 .

of the triangles Ay, and I, are at the distance

Proof. With the notation from the proof of Theorem 2 we get that the cir-
cumcenters O(A,,) and O(T',,) have

9(A+B)(17A2—22AB+17B2) 9(A+B)(7A2+6AB+782)
" V4(A-B)(3A24+2AB+3B2) (A-B)(5A2+14AB+5B2)
4AB ’ 4AB

and
98(A+B)(3A2—2AB+3B2) _02(A+B)(5A2—14AB+532)
(A-B)(17A2+22AB+17B?) (A—B)(TA2—6AB+7B2)

4AB ’ 4AB

as coordinates. The square of their distance is

910(A2+BQ)(197(A2+B2)—186)
7(A2—-B2)(199(A2+B2)+210)

8

which is equal to

985 Q6m + 1393 Py, + 55 Qo + 77 Poyy
4

and therefore to P2m+3(104+Q4m+6)_ .
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Theorem 6. For every positive integer m, the triangles Ty, and A, are
reversely similar and the sides of Ty, are v/2 times longer than the corre-
sponding sides of A,,.

Proof. 1t is well-known that two triangles are reversely similar if and only
if they are ortologic and paralogic (see [2]). Since, by Theorem 1, we know
that triangles T';, and A,, are orthologic, it remains to see that they are
paralogic.

Recall that triangles ABC and XY Z with coordinates of points (a1, a2),
(b1, ba), (c1, c2), (21, x2), (y1, y2) and (21, z2) are paralogic if and only if
the expression U — V is equal to zero where

ar b az by c
U=|z2 y2 22 |, V=21 51 2
1 1 1 1 1 1

In our situation when we represent coordinates of vertices of triangles A,,
and I',;, by the Binet formula in terms of a and S by substitution and easy
simplification we get that U — V' = 0 so that these triangles are indeed para-
logic. In a similar way one can easily show that | X,,Y,|? = 2|4, Bn|?>. O

Theorem 7. For every positive integer m, the triangles Ty, and A, are both
orthologic and paralogic. The centers (A, T'm] and (A, T'y,) are antipodal
points on the circumcircle of Ay,. The centers [I'y,, Ap] and (T, Ayy) are
antipodal points on the circumcircle of T'y,.

Proof. The first claim has been established in the previous theorem. In order
to prove the second claim we shall prove that the orthology center [A,,, I';;]
lies on the circumcircle of A, by showing that it has the same distance
from its circumcenter O(A,,) as the vertex A,, and that the reflection of the
point (A, ') in the circumcenter O(A,,,) agrees with the point [A,,, I'y]
(because their distance is equal to zero!).

In the proof of Theorem 5 we found the coordinates of the point O(A,,;)

and in the proof of Theorem 2 of the center [A,,, I';,]. The coordinates of
A(A+B)  pI10(A+B)

the center (A,,, T';,) are ( AA-B) | A ) Now it is easy to establish that

[Am, Fm]O(Am)|2 —0(An) Am|2 =0.

On the other hand, if W denotes the reflection of the point (A,,, I';,) in the
circumcenter O(A,,) (i. e., W divides the segment (A, I';,)O(4A,,) in ratio
—2), then |[W[A,,, T)n]1? = 0.

The third claim has a similar proof. O

Theorem 8. The square of the diameter of the circumcircle of the triangle
Ay, is equal to 2 (Pomys)? Pom1.
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Proof. In the proof of the previous theorems we found the coordinates of the
circumcenter O(A,,,). Hence, the square of its distance from the vertex A,,
is 169 Qgm + 31 Qo + 239 Py, + 43 Psy,,. However, this expression is in fact

Py P
R
O

Let k£ be a positive integer. Let & and Wy be the triangles with vertices
Dy = (Pg, Qr+1)s  Ex = (Pet1, Qir2)s I = (Prt2, Qkrs)

and
Ur = (Qs Pit1), Vi = (Qr+1, Pry2), Wi = (Qk+2, Pets),

respectively.

In order to describe our next results, recall that triangles ABC and XY Z
are homologic provided lines AX, BY, and CZ are concurrent. The point
P in which they concur is their homology center and the line ¢ containing
intersections of pairs of lines (BC, YZ), (CA, ZX), and (AB, XY) is their
homology awis.

In stead of homologic, homology center, and homology axis many authors
use the terms perspective, perspector, and perspectrix.

Theorem 9. For all positive integers m the lines DpUpy1, EnVipge1 and
FpWiat1 are parallel to the line y = x so that the triangles ®,, and ¥, 1 are
homologic. Their homology center is the point at infinity and their homology
axis is the line y =x. They are never orthologic neither paralogic. The
oriented area of both triangles is 4 (—1)™.

Proof. The lines DpUn+1, EmVims1 and F, Wi, 41 have equations
g2(A+B) gLA+B) p10(A+B)

It follows that they are parallel to the line y = .
Since
0 0%
EmmeVm—i—le—i-l = 9A+17B’ 0A+17B )
—~12B -12B
0% 45 01%4s
En D O Win1Um1 = gA-1TB’ pA-TTB |-
12B 12B
and

VO e
Din B OV U1 Vi1 = 9;1@’ 92—33 ’
2B 2B

we conclude that the homology axis of the triangles ®,, and ¥,,,+1 is the line
Yy =1
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The above conditions for the triangles ®,, and ¥,,41 to be orthologic and
paralogic are both equal to 16 (—1)"*! = 0 which is not true for any value
m. (]

The claims about the oriented areas of the triangles ®,, and ¥,,,, are
equivalent to the following identities:

2 Qm+2 Pm+1 - (Qm+3 - Qm+2)Pm + (Qm+2 - Qm—l—l)Pm—i—Q + 8(_1)m7
2Qm+2 Pnts +8(=1)" = (Qm+3 — Qm+2) P2 + (Qm+2 — Qmr1) Pmya.
Theorem 10. The triangles A,, and ®,, have equal Brocard angles.

Proof. 1t is well-known that the cotangent of the Brocard angle of the triangle
with vertices A(x, a), B(y, b) and C(z, ¢) is equal to

T Yy z
2l a b c
1 1 1

(y=2P+(z - + (@ =y + (b-cP?+(c—a)P+(a=b?
Hence, by direct substitution of coordinates and simplification we discover

that the triangles A, and ®,, both have cotangents of its Brocard angles
O

8
equal £ Gy w7y 50 Qo
In a similar way one can show the following result.

Theorem 11. The cotangent of the Brocard angle of the triangle V.41 is
equal to 8

6+(—1)™ (298 Porn+211 Qa2m) *

Theorem 12. For all positive integers m the lines Dy Xp41, By Ym+1 and
FopZ 41 are parallel to the line y = 2 x so that the triangles ®,,, and T'y,41 are
homologic. Their homology center is the point at infinity and their homology
axis is the line y = x. They are never orthologic neither paralogic.

Proof. The lines Dy, X411, EmYmy1 and Fy, Z, 41 have equations

3(A+B)

2(A-B) — 0.

20 —y+A+B=0, 20-y+60475=0, and 22 —y+0

It follows that they are parallel to the line y = 2x.
Since
EmFm N Ym+1Zm+1 = EmFm N Vm+le+17
FpDy N Zm+1Xm+1 = FpDp N Wm—l—lUm—l—la
and
DmEm N Xm+lYm+l = DmEm N Um—l—lvm-‘rla
we conclude that the homology axis of the triangles ®,,, and I'j,11 is the line
Yy =zx.
The above conditions for the triangles ®,,, and I';,+1 to be orthologic and

paralogic are both equal to 24 (—1)™*! = 0 which is not true for any value
m. (]
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Theorem 13. For all positive integers m the triangle A, is orthologic to
both triangles ®.11 and Vopyq.

ap b1 o az by c2
Proof. The expression | ©1 y1 21 |+ | 2 y2 2o | for triangles A, and
1 1 1 1 1 1
®,,11 is equal to 2(a—1)(B — 1)(a? B+ a % +2)a™ ™ and therefore to
zero because a5 = —1 and a4+ = 2. For the triangles A,, and ¥,, 11 we

get that this expression is equal to

20 -=1)(B-1(2aB+a+B3)a™p™

so that the same conclusion holds. O

In fact, it is possible to prove the following better results:
e For natural numbers m and n the triangles A,, and ®,, are orthologic
if and only if n =m + 1.
e For natural numbers m and n the triangles A, and ¥,, are orthologic
if and only if n =m + 1.
On the other hand, for the triangles I',,, we can analogously prove the
following results.

e For all natural numbers m and n the triangle I',, is not orthologic
neither with the triangle ®,, nor with the triangle ¥,,.

Theorem 14. For all positive integers m the triangle A, is paralogic to the
triangle V,,,. Moreover,

2 ‘(ATWJ \Ilm> <\Ilm7 A777,>’2 - PT?’L Pm+1.

ar by ¢ az by c2
Proof. The expression | z2 y2 22 | —| x1 w1 21 | for triangles A, and
1 1 1 1 1 1

U,, is equal to 2(a —1)(8 —1)(2 — a — ) @™ ™ and therefore to zero be-
cause o + 8 = 2.
With the notation from the proof of Theorem 2 we get that the points
(A, ¥p,) and (¥, A,,) have
_6,(A+B)(3A2—14AB+3B2) G(B—A)(7A2—22AB+7B2)
2(A—B)(A2—3AB+B?) (A+B)(A—5B)(B—5A)
4AB ’ 4v2AB

and
(B-A)(B-3A)(3B-A)  p(B—A)(B-34)(3B-A)
—2(A+B)(A2—6AB+B2) ’—2(A+B)(A2—6AB+B?)

4v/2AB ’ 4v/2AB




as coordinates. The square of their distance is

4 n3A%4+2AB+3B2
(A - B) 92(A2—B2)

32

2
which is equal to %. O

Of course, again it is possible to prove the following better result:
e For natural numbers m and n the triangles A,, and ¥,, are paralogic
if and only if n = m.
On the other hand, we can also prove the following results.

e For all natural numbers m and n the triangle A,, is not paralogic
with the triangle ®,,.

e For all natural numbers m and n the triangle I'y, is not paralogic
neither with the triangle ®,, nor with the triangle ¥,,.

In closing, let us observe that the following are also pairs of homologic
triangles: (A, Pm), (Am, Y, (T, @) and (T, ¥,,). The reason in
these cases is quite simple — the corresponding vertices have identical either
first or second coordinates.
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