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TEORIA DEI NUMERI

On sums of Pell numbers

Nota di ZVONKO ČERIN1 e GIAN MARIO GIANELLA2

presentata dal Socio corrispondente Marius J. STOKA
nell’adunanza del 14 Novembre 2006.

Riassunto. In questa nota che è un miglioramento della nos-

tra nota [6], si sono ottenute formule esplicite per somme di numeri

di Pell, numeri di Pell pari e numeri di Pell dispari, per somme di

quadrati di numeri di Pell, numeri di Pell pari e numeri di Pell dis-

pari e somme di prodotti di numeri di Pell. Si sono pure determinate

le forme alternate di queste somme. Esse hanno tutte interessanti

rappresentazioni mediante numeri di Pell e di Pell-Lucas.

Abstract. In this improvement of our paper [6] we give explicit

formulas for sums of Pell numbers, even Pell numbers and odd Pell

numbers, for sums of squares of Pell numbers, even Pell numbers

and odd Pell numbers and for sums of products of even and odd Pell

numbers. The alternating forms of these sums are also considered.

They all have nice representations in terms of Pell and Pell-Lucas

numbers.

1. Introduction

The Pell and Pell-Lucas sequences Pn and Qn are defined by the recurrence
relations

P0 = 0, P1 = 2, Pn = 2Pn−1 + Pn−2 for n > 2,

and
Q0 = 2, Q1 = 2, Qn = 2Qn−1 + Qn−2 for n > 2.

The numbers Qk make the integer sequence A002203 from [10] while the
numbers 1

2 Pk make A000129.
In this paper we prove twentyfour formulas for sums of a finite number

of consecutive terms of various integer sequences related to the Pell num-
bers. More precisely, for any integers k ≥ 0 and m ≥ 0 we consider the sum
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∑m
i=0 Pk+i and show that it can be evaluated as 1

2 Qk+m + Pk+m − 1
2 Qk.

In other words, we discover the formula for the sum of m + 1 consecutive
members of the Pell sequence. Then we accomplish the same thing for even
and for odd Pell numbers, for their squares and for six kinds of products of
adjacent Pell numbers. Finally, we treat also the alternating sums for those
sequences. For example, we prove that the alternating sum

∑m
i=0 (−1)i Pk+i

is equal to (−1)m 1
2 Qk+m − 1

2 Qk + Pk.

These formulas for sums have been discovered with the help of a PC com-
puter and all algebraic identities needed for the verification of our theorems
can be easily checked in either Derive, Mathematica or Maple V. Running
times of all these calculations are in the range of a few seconds.

Similar results for Fibonacci, Lucas and Pell-Lucas numbers have recently
been discovered in papers [1], [2], [3], [4] and [5]. They improved some results
in [7].

2. Statements of results

The best method to sum finitely many consecutive integers

k + (k + 1) + (k + 2) + · · · + (k + n)

is to group the initial number k and use the formula for the sum of the first
n natural numbers. Hence, the above sum is

k(n + 1) +
n(n + 1)

2
=

(n + 1)(2k + n)

2
.

In this paper our first goal is to show that the analogous explicit formula
exists for the sum of finitely many consecutive members of the Pell integer
sequence. In other words, we first want to find the formula for the sum
∑m

i=0 Pk+i when m ≥ 0 and k ≥ 0 are integers.
We use the symbols N∗ = {0, 1, 2, 3, 4, . . . } for all natural numbers (with

zero included) and N∗∗ for the product N∗ × N∗.

Theorem 1. For (m, k) ∈ N∗∗ the following equality holds:

m
∑

i=0

Pk+i =
1

2
Qk+m + Pk+m − 1

2
Qk =

1

2
(Qk+m+1 − Qk). (2.1)

Next we sum up consecutive even and odd Pell numbers.

Theorem 2. For (m, k) ∈ N∗∗ the following equalities holds:
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m
∑

i=0

P2k+2i =
1

2
[Q2k+2m + P2k+2m − Q2k + P2k] =

=
1

2
[Q2k+2m+2 − P2k+2m+2 + Q2k − P2k] . (2.2)

m
∑

i=0

P2k+2i+1 =
1

2
[2Q2k+2m + 3P2k+2m − P2k] . (2.3)

The alternating sums of consecutive Pell numbers, even Pell numbers and
odd Pell numbers are covered in the following theorem.

Theorem 3. For (m, k) ∈ N∗∗ the following equalities holds:

m
∑

i=0

(−1)i Pk+i = (−1)m
1

2
Qk+m − 1

2
Qk + Pk. (2.4)

m
∑

i=0

(−1)i P2k+2i = (−1)m
[

1

4
Q2k+2m +

1

2
P2k+2m

]

− 1

4
Q2k +

1

2
P2k. (2.5)

m
∑

i=0

(−1)i P2k+2i+1 = (−1)m
[

3

4
Q2k+2m + P2k+2m

]

+
1

4
Q2k. (2.6)

The sums of squares of consecutive Pell numbers, even Pell numbers and
odd Pell numbers are treated in the following theorem.

Theorem 4. For (m, k) ∈ N∗∗ the following equalities holds:

m
∑

i=0

P 2
k+i =

1

4
Q2k+2m +

1

2
P2k+2m +

1

4
Qk −

1

2
Pk −

(−1)k+m + (−1)k

2
. (2.7)

m
∑

i=0

P 2
2k+2i =

1

4
Q4k+4m +

3

8
P4k+4m +

1

4
Q4k − 3

8
P4k − m − 1. (2.8)

m
∑

i=0

P 2
2k+2i+1 =

3

2
Q4k+4m +

17

8
P4k+4m − 1

8
P4k + m + 1. (2.9)

Of course, the alternating sums of squares of consecutive Pell numbers,
even Pell numbers and odd Pell numbers are next.
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Theorem 5. For (m, k) ∈ N∗∗ the following equalities holds:

m
∑

i=0

(−1)i P 2
k+i =

(−1)m

4
[Q2k+2m + P2k+2m] +

1

4
[Q2k − P2k] − (−1)k (m + 1). (2.10)

m
∑

i=0

(−1)i P 2
2k+2i =

(−1)m

12
[3Q4k+4m + 4P4k+4m − 6] +

1

12
[3Q4k − 4P4k − 6] . (2.11)

m
∑

i=0

(−1)i P 2
2k+2i+1 =

(−1)m

12
[17 Q4k+4m + 24P4k+4m + 6] +

1

12
Q4k +

1

2
. (2.12)

Now we shall consider six kinds of sums of products of Pell numbers.

Theorem 6. For (m, k) ∈ N∗∗ the following equalities holds:

m
∑

i=0

Pk+i Pk+i+1 =

3

4
Q2k+2m + P2k+2m − 1

4
Q2k − (−1)k + (−1)k+m

2
. (2.13)

m
∑

i=0

Pk+2iPk+2i+1 =

5

8
Q2k+4m +

7

8
P2k+4m − 1

8
Q2k +

1

8
P2k − (−1)k(m + 1). (2.14)

m
∑

i=0

P2k+2iP2k+2i+1 =

5

8
Q4k+4m +

7

8
P4k+4m − 1

8
Q4k +

1

8
P4k − m − 1. (2.15)

m
∑

i=0

P2k+2i+1 P2k+2i+2 =

29

8
Q4k+4m +

41

8
P4k+4m − 1

8
Q4k − 1

8
P4k + m + 1. (2.16)
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m
∑

i=0

P2k+4i P2k+4i+2 =

35

24
Q4k+8m +

33

16
P4k+8m +

1

24
Q4k − 1

16
P4k − 3(m + 1). (2.17)

m
∑

i=0

P2k+4i+1 P2k+4i+3 =

17

2
Q4k+8m +

577

48
P4k+8m − 1

48
P4k + 3(m + 1). (2.18)

The last six formulas cover the alternating forms of the relations from the
previous theorem.

Theorem 7. For (m, k) ∈ N∗∗ the following equalities holds:

m
∑

i=0

(−1)i Pk+i Pk+i+1 =

(−1)m
[

1

2
Q2k+2m +

3

4
P2k+2m

]

+
1

4
P2k − (−1)k(m + 1). (2.19)

m
∑

i=0

(−1)i Pk+2i Pk+2i+1 =

(−1)m
[

7

12
Q2k+4m +

5

6
P2k+4m

]

− 1

12
Q2k+

1

6
P2k−

(−1)k(1 + (−1)m)

2
. (2.20)

m
∑

i=0

(−1)i P2k+2i P2k+2i+1 =

(−1)m
[

7

12
Q4k+4m +

5

6
P4k+4m

]

− 1

12
Q4k +

1

6
P4k−

1 + (−1)m

2
. (2.21)

m
∑

i=0

(−1)i P2k+2i+1 P2k+2i+2 =

(−1)m
[

41

12
Q4k+4m +

29

6
P4k+4m

]

+
1

12
Q4k+

1

6
P4k+

1 + (−1)m

2
. (2.22)

m
∑

i=0

(−1)i P2k+4i P2k+4i+2 =

(−1)m
[

99

68
Q4k+8m +

35

17
P4k+8m

]

+
3

68
Q4k−

1

17
P4k−3

1 + (−1)m

2
. (2.23)
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m
∑

i=0

(−1)i P2k+4i+1 P2k+4i+3 =

(−1)m
[

577

68
Q4k+8m + 12P4k+8m

]

+
1

68
Q4k + 3

1 + (−1)m

2
. (2.24)

3. Comments on the proofs

All twentyfour formulas have been discovered with the help from comput-
ers. Of course, it is possible that they could also be found without machines
using in a clever way the formula for the sum of finitely many terms of a
geometric series.

Once we have guessed the formula its proof by induction is usually quite
easy provided we know some other relations among numbers Pk and Qk.
These relations are often proved also by induction or by algebraic manipu-
lation.

We shall present only few proofs because they are all very similar so that
the reader should not have difficulties to supply their own proofs.

4. Proof of Theorem 1

The formula (2.1) clearly holds when m = 0. If we assume that it holds
for m = r, then we have

r+1
∑

i=0

Pk+i =
r

∑

i=0

Pk+i + Pk+r+1 =

1

2
Qk+r + Pk+r −

1

2
Qk + Pk+r+1 =

1

2
Qk+r+1 + Pk+r+1 −

1

2
Qk,

where the last step uses the formula Qn+1 − Qn = 2Pn for n = k + r. Hence,
(2.1) is true also for m = r + 1 and the proof by induction is complete.

The following direct proof is even simpler. Let α = 1 +
√

2 and β = 1 −
√

2.
Note that α + β = 2, α − β = 2

√
2 and α · β = −1 so that the numbers α and

β are solutions of the equation x2 − 2x − 1 = 0. Since Pj = 2(αj−βj)
α−β

= αj−βj
√

2

and Qj = αj + βj we have
m

∑

i=0

Pk+i =
m

∑

i=0

αk+i − βk+i

√
2

=

1√
2

[

αk αm+1 − 1

α − 1
− βk βm+1 − 1

β − 1

]

=
1√
2

[

αk+m+1 − αk

√
2

− βk+m+1 − βk

−
√

2

]

=
1

2

[

αk+m+1 + βk+m+1 −
(

αk + βk
)]

=
1

2
(Qk+m+1 − Qk) .
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5. Proof of (2.2)

The formula (2.2) clearly holds when m = 0. If we assume that it holds
for m = r, then we have

r+1
∑

i=0

P2k+2i =

r
∑

i=0

P2k+2i + P2k+2r+2 =

=
1

2
[Q2k+2r + P2k+2r − Q2k + P2k] + P2k+2r+2 =

=
1

2

[

Q2k+2(r+1) + P2k+2(r+1) − Q2k + P2k

]

,

where the last step uses the formula Qn+1 = Pn+1 + Pn. Hence, (2.2) is true
also for m = r + 1 and the proof by induction is complete.

The following direct proof is also simple. We have

m
∑

i=0

P2k+2i =
m

∑

i=0

α2k+2i − β2k+2i

√
2

=
1√
2

[

α2k α2m+2 − 1

α2 − 1
− β2k β2m+2 − 1

β2 − 1

]

=
1√
2

[

α2k+2m+2 − α2k

2 + 2
√

2
− β2k+2m+2 − β2k

2 − 2
√

2

]

=

α2k+2m+2 + β2k+2m+2

2
− α2k+2m+2 − β2k+2m+2

2
√

2
− α2k − β2k

2
√

2
+

α2k + β2k

2

=
1

2
[Q2k+2m+2 − P2k+2m+2 − P2k + Q2k] .

6. Proof of (2.4)

m
∑

i=0

(−1)i Pk+i =

m
∑

i=0

(−1)i
αk+i − βk+i

√
2

=

1√
2

[

αk (−α)m+1 − 1

−α − 1
− βk (−β)m+1 − 1

−β − 1

]

=

1√
2

[

αk − (−1)m+1αk+m+1

α + 1
− βk − (−1)m+1βk+m+1

β + 1

]

=

αk − βk

√
2

− αk + βk

2
+ (−1)m

[

αk+m+1 − βk+m+1

√
2

− αk+m+1 + βk+m+1

2

]

= Pk−
1

2
Qk+(−1)m

(

Pk+m+1 −
1

2
Qk+m+1

)

= Pk−
1

2
Qk+(−1)m

1

2
Qk+m.
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7. Proof of (2.7)

m
∑

i=0

P 2
k+i =

m
∑

i=0

(

αk+i − βk+i

√
2

)2

=

α2k

2

(

α2m+2 − 1

α2 − 1

)

+
β2k

2

(

β2m+2 − 1

β2 − 1

)

− (α β)k
m

∑

i=0

(α β)i =

α2k+2m+2 − α2k

4 + 4
√

2
+

β2k+2m+2 − β2k

4 − 4
√

2
− (−1)k+m + (−1)k

2
=

1

2
P2k+2m+2 −

1

4
Q2k+2m+2 +

1

4
Q2k − 1

2
P2k − (−1)k+m + (−1)k

2
=

1

4
Q2k+2m +

1

2
P2k+2m +

1

4
Qk −

1

2
Pk − (−1)k+m + (−1)k

2
,

where we used the fact that α β = −1 and the formula Pn+2 − Pn = Qn+2+Qn

2
for n = 2k + 2m.

8. Proof of (2.10)

m
∑

i=0

(−1)i P 2
k+i =

m
∑

i=0

(−1)i
(

αk+i − βk+i

√
2

)2

=

m
∑

i=0

(−1)i
α2k+2i − 2(α β)k+i + β2k+2i

2
=

α2k

2

m
∑

i=0

(−α2)i − (α β)k
k

∑

i=0

(−α β)i +
β2k

2

m
∑

i=0

(−β2)i =

α2k

2

(

(−α2)m+1 − 1

−α2 − 1

)

+
β2k

2

(

(−β2)m+1 − 1

−β2 − 1

)

− (−1)k (m + 1) =

α2k + (−1)m α2k+2m+2

8 + 4
√

2
+

β2k + (−1)m β2k+2m+2

8 − 4
√

2
− (−1)k(m + 1) =

1

4
[Q2k − P2k] − (−1)k(m + 1) +

(−1)m

4
[Q2k+2m+2 − P2k+2m+2] =

(−1)m

4
[Q2k+2m + P2k+2m] +

1

4
[Q2k − P2k] − (−1)k (m + 1),

where we used the formula Qn+2 − Pn+2 = Qn + Pn for n = 2k + 2m and
the fact that α β = −1.
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9. Proof of (2.13)

m
∑

i=0

Pk+i Pk+i+1 =
m

∑

i=0

(

αk+i − βk+i

√
2

) (

αk+i+1 − βk+i+1

√
2

)

=

1

2

m
∑

i=0

α2k+2i+1 − α + β

2

m
∑

i=0

(α β)k+i +
1

2

m
∑

i=0

β2k+2i+1 =

α2k+1

2

(

(α2)m+1 − 1

α2 − 1

)

− (−1)k+m + (−1)k

2
+

β2k+1

2

(

(β2)m+1 − 1

β2 − 1

)

=

α2k+2m+3 − α2k+1

4 + 4
√

2
+

β2k+2m+3 − β2k+1

4 − 4
√

2
− (−1)k+m + (−1)k

2
=

1

2
P2k+2m+3 −

1

4
Q2k+2m+3 −

1

2
P2k+1 +

1

4
Q2k+1 −

(−1)k+m + (−1)k

2

=
3

4
Q2k+2m + P2k+2m − 1

4
Q2k − (−1)k + (−1)k+m

2
.
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