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Riassunto. In questo lavoro si provano diverse formule per
somme di quadrati di numeri pari di Pell, somme di quadrati
di numeri dispari di Pell e somme di prodotti di numeri pari
e dispari di Pell. Queste somme hanno delle rappresentazioni
interessanti come prodotti di numeri appropriati di Pell e con
coefficienti tratti da certe successioni di interi.

Abstract. In this note we prove several formulas for sums
of squares of even Pell numbers, sums of squares of odd Pell
numbers and sums of products of even and odd Pell numbers.
These sums have nice representations as products of appropriate
Pell numbers with terms from certain integer sequences.

1. Introduction

The Pell and Pell-Lucas sequences Pn and Qn are defined by the recurrence
relations

P0 = 0, P1 = 2, Pn = 2Pn−1 + Pn−2 for n > 2,

and
Q0 = 2, Q1 = 2, Qn = 2Qn−1 + Qn−2 for n > 2.

In the sections 2–4 we consider sums of squares of odd and even terms
of the Pell sequence and sums of their products. These sums have nice
representations as products of appropriate Pell numbers.

The numbers Qk make the integer sequence A002203 from [11] while the
numbers 1

2 Pk make A000129. In this paper we shall also need the sequence
A001109 that we shorten to ak with k > 0. We shall see later that ak = 1

4 P2k.

These formulas for sums have been discovered with the help of a PC com-
puter and all algebraic identities needed for the verification of our theorems
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can be easily checked in either Derive, Mathematica or Maple V. Running
times of all these calculations are in the range of a few seconds.

Similar results for Fibonacci, Lucas and Pell-Lucas numbers have recently
been discovered in papers [1], [2], [3], [4] and [5]. They improved some results
in [8].

2. Pell even squares

The following lemma is needed to accomplish the inductive step in the
proof of our first theorem.

Lemma 1. For every m > 0 and k > 0 the following equality holds:

4 ak [am+2 P2k+2m+2 − am+1 P2k+2m] = P 2
2k+2m+2 − P 2

2m+2. (2.1)

Proof. Let α = 1 +
√

2 and β = 1 −
√

2. Note that α + β = 2 and α · β = −1
so that the numbers α and β are solutions of the equation x2 − 2x − 1 = 0.
Since Pj = 2(αj

−βj)
α−β

and

aj =
7α + β

16
α2j−2 +

α + 7β

16
β2j−2

for every j > −1, the difference of the left hand side and the right hand
side of the relation (2.1) (after the substitutions αm = A, βm = B, αk = U ,
βk = V ) and the replacement of α and β with 1 +

√
2 and 1 −

√
2 we get

the rational function whose numerator is

128
(

17 − 12
√

2
)

(

1 − (U V )2
)

(

B2 −
(

17 + 12
√

2
)

A2
)2

.

Since U V = ±1 we conclude that the above difference is zero and the proof
is complete. �

Theorem 1. For every m > 0 and k > 0 the following equality holds:
m
∑

i=0

P 2
2k+2i =

m
∑

i=0

P 2
2i + 4 · am+1 · ak · P2k+2m. (2.2)

Proof. When m = 0 the above formula is P 2
2k = 4 ak P2k. It holds as the

consequence of the relation P2k = 4 ak that we prove easily as follows.
Since P2k = 2(α2 k

−β2 k)
α−β

and 4 ak = 7 α+β
4 α2 k−2 + α+7 β

4 β2 k−2, we get

P2k − 4 ak =

(

α2 + 6β α + β2
)

(Aβ − Bα) (Bα + Aβ)

4 (α − β) α2β2
= 0,



Formulas for sums of squares and products of Pell numbers 3

where A = αk, B = βk and α2 + 6β α + β2 = 0 for α = 1 +
√

2 and β =
1 −

√
2.

Assume that the relation (2.2) is true for m = r. Then

r+1
∑

i=0

P 2
2k+2i =

r
∑

i=0

P 2
2k+2i + P 2

2k+2r+2 =

r
∑

i=0

P 2
2i + 4 ar+1 ak P2k+2r + P 2

2k+2r+2 =

r+1
∑

i=0

P 2
2i + 4 ar+1 ak P2k+2r

+ P 2
2k+2r+2 − P 2

2r+2 =

r+1
∑

i=0

P 2
2i + 4 ar+2 ak P2k+2r+2,

where the last step uses Lemma 1 for m = r. Hence, (2.2) is true for
m = r + 1 and the proof is completed by induction. �

The formula (2.2) shows that in order to sum up m squares of consecutive
even indexed Pell numbers it suffices to know the initial such sum. Hence, we
can view this as the appropriate translation property for sums of consecutive
squares. All other formulas in this note have analogous properties.

The next remark lists some other variants of the formula (2.2). It uses
the integer sequence bk whose first ten terms are 1, 1, 5, 29, 169, 985, 5741,
33461, 195025 and 1136689 and which is not in the Sloane depository [11].
The explicit formula for its terms is

bk =
(3 + 2

√
2)k (2 −

√
2)

4
+

(3 − 2
√

2)k (2 +
√

2)

4
or

bk =
(4 − α + β)(3 + α − β)k

8
+

(4 + α − β)(3 − α + β)k

8

for any integer k. We shall see later that bk = 1
2 P2k−1.

Remark 1. The following are four additional versions of Theorem 1:
For every m > 0 and k > 0 the following equalities holds:

m
∑

i=0

P 2
2k+2i + 4

(

m+1
∑

i=0

b2
i

)

= 2 · am+1 · bk+1 · P2k+2m−1, (2.5)

m
∑

i=0

P 2
2k+2i = 16

(

m
∑

i=0

a2
i−1

)

+ 4 · am+1 · ak+1 · P2k+2m−2, (2.6)
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m
∑

i=0

P 2
2k+2i + 4

(

m+1
∑

i=0

b2
i

)

= 4 + 2 · am+1 · bk · P2k+2m+1, (2.7)

m
∑

i=0

P 2
2k+2i =

(

m+1
∑

i=0

P 2
2i

)

+ 4 · am+1 · ak−1 · P2k+2m+2. (2.8)

3. Pell odd squares

The exceptional case (when m = 0) of our second theorem is the following
lemma.

Lemma 2. For every k > 0 the following identity holds:

P 2
2k+1 = 4 + 4 ak+1 P2k. (3.1)

Proof. By the Binet formula Pk = 2(αk
−βk)

α−β
so that we have

P 2
2k+1 − 4 ak+1 P2k − 4 = P 2

2k+1 − P2k+2 P2k − 4 =
(

2(α2k+1 − β2k+1)

α − β

)2

−
(

2(α2k+2 − β2k+2)

α − β

)(

2(α2k − β2k)

α − β

)

− 4

= 4(AB − 1) = 0,

where A = α2k and B = β2k. �

The initial step in an inductive proof of our second theorem uses the
following lemma.

Lemma 3. For every k > 0 the following identity holds:

P 2
2k+1 + P 2

2k+3 = 8 + 24 ak+1 P2k+2. (3.2)

Proof. By the Binet formula Pk = 2(αk
−βk)

α−β
so that we have

P 2
2k+1 + P 2

2k+3 − 24 ak+1 P2k+2 − 8 = P 2
2k+1 + P 2

2k+3 − 6P 2
2k+2 − 8 =

(

2(α2k+1 − β2k+1)

α − β

)2

+

(

2(α2k+3 − β2k+3)

α − β

)2

− 6

(

2(α2k+2 − β2k+2)

α − β

)2

− 8 = 8(AB − 1) = 0,

where again A = α2k and B = β2k and we substitute 1 +
√

2 and 1 −
√

2 for
α and β (and their small concrete powers). �



Formulas for sums of squares and products of Pell numbers 5

The following lemma is needed to accomplish the inductive step in the
proof of our second theorem.

Lemma 4. For every m > 0 and k > 0 the following equality holds:

4 ak+1 [am+2 P2k+2m+2 − am+1 P2k+2m] = P 2
2k+2m+3 − P 2

2m+1. (3.3)

Proof. The difference of the left hand side and the right hand side of the
relation (3.3) (after the substitutions αm = A, βm = B, αk = U , βk = V )
and the replacement of α and β with 1 +

√
2 and 1 −

√
2 we get the rational

function whose numerator is

128
(

−3 + 2
√

2
)

(

(U V )2 − 1
)

(

(3 + 2
√

2)A2 + B2
)2

.

Since U V = ±1 we conclude that the above difference is zero and the proof
is complete. �

Theorem 2. For every m > 1 and k > 0 the following equality holds:

m
∑

i=0

P 2
2k+2i+1 =

(

m−1
∑

i=0

P 2
2i+1

)

+ 4 (1 + am+1 · ak+1 · P2k+2m) . (3.4)

Proof. The proof is by induction on m. For m = 1 the relation (3.4) is true
by the relation (3.2) in Lemma 3. Assume that the relation (3.4) is true for
m = r.

r+1
∑

i=0

P 2
2k+2i+1 =

r
∑

i=0

P 2
2k+2i+1 + P 2

2k+2r+3 =

r−1
∑

i=0

P 2
2i+1 + 4 + 4 ar+1 ak+1 P2k+2r + P 2

2k+2r+3 = 4 + 4 ar+1 ak+1 P2k+2r

+

r
∑

i=0

P 2
2i+1 + P 2

2k+2r+3 − P 2
2r+1 =

r
∑

i=0

P 2
2i+1 + 4 + 4 ar+2 ak+1 P2k+2r+2,

where the last step uses Lemma 4. Hence, (3.4) is true also for m = r + 1
and the proof by induction is complete. �

Other versions of Theorem 2 are listed in the following statement:

Theorem 3. For every m > 0 and k > 0 the following equalities holds:
(

m
∑

i=0

P 2
2k+2i+1

)

+

(

m
∑

i=0

P 2
2i

)

= am+1 · P2k+1 · P2k+2m+1, (3.5)
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m
∑

i=0

P 2
2k+2i+1 =

(

m
∑

i=0

P 2
2i+1

)

+ 4 · am+1 · ak · P2k+2m+2, (3.6)

(

m
∑

i=0

P 2
2k+2i+1

)

+

(

m+1
∑

i=0

P 2
2i

)

= 2 · am+1 · bk · P2k+2m+3, (3.7)

m
∑

i=0

P 2
2k+2i+1 =

(

m+1
∑

i=0

P 2
2i+1

)

+ 4 (am+1 · ak−1 · P2k+2m+4 − 1) . (3.8)

Proof. We shall only outline the key steps in an inductive proof of the formula
(3.6) leaving the details to the reader because they are analogous to the proof
of Theorem 2.

The initial step is the equality P 2
2k+1 = 4 + P2k P2k+2 which holds for every

k > 0. On the other hand, the inductive step is realized with the following
equality:

4 ak [am+2 P2k+2m+4 − am+1 P2k+2m+2] = P 2
2k+2m+3 − P 2

2m+3,

which holds for every k > 0 and every m > 0. �

4. Sums of products of Pell numbers

For the first two steps in a proof by induction of our next theorem we
require the following lemma.

Lemma 5. For every k > 0 the following equalities hold:

P2k+1 = 2 bk+1. (4.1)

8 + P2k P2k+1 + P2k+2 P2k+3 = 12P2k+2 bk+1. (4.2)

Proof of (4.1). By the Binet formula we have

P2k+1 − 2 bk+1 =
2(α2 k−1 − β2 k−1)

α − β
−

(4 − α + β)(3 + α − β)k+1

4
−

(4 + α − β)(3 − α + β)k+1

4
=

(

2 +
√

2
) (

A2 − B
)

2
= 0,

where A = (1 −
√

2)k, B = (3 − 2
√

2)k and (1 −
√

2)2 = 3 − 2
√

2. �
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Proof of (4.2). When we apply the Binet formula to the terms in the dif-
ference of the left hand side and the right hand side of (4.2) and substitute
α = 1 +

√
2 and β = 1 −

√
2 we get

(3
√

2 − 5)A2 C + 3(7 − 5
√

2)(A2 − B)A2+

(7 + 5
√

2)(46
√

2 − 65 + 3D − 3C2),

where we have D = (17 + 12
√

2)k, C = (3 + 2
√

2)k, B = (3 − 2
√

2)k and
A = (1 −

√
2)k. Since A2 = B, A2 C = 1 and D = C2, the above expression

is equal to
(3

√
2 − 5) + (7 + 5

√
2)(46

√
2 − 65) = 0.

�

With the following lemma we shall make the inductive step in the proof
of the fourth theorem.

Lemma 6. For every m > 0 and k > 0 the following equality holds:

2 bk+1 [am+2 P2k+2m+2 − am+1 P2k+2m] =

P2k+2m+2 P2k+2m+3 + P2m+1 P2m+2. (4.3)

Proof. Let R denote the difference of the left hand side and the right hand
side of the above relation. We need to show that R = 0.

Using the Binet formula and replacing α and β with 1 +
√

2 and 1 −
√

2
we get

R =
1

16

(

10 − 7
√

2
)((

3264 + 2308
√

2
)

a2 z−
(

16 − 12
√

2
)

b4d4 +
(

17 − 12
√

2
)

d4 y −
(

3264 + 2308
√

2
)

x z

+
(

3 + 2
√

2
)

d4 − c4y −
(

3 + 2
√

2
)

c4
)

,

with a = (3 + 2
√

2)k, b = (
√

2 − 1)k, c = (1 −
√

2)m, d = (
√

2 − 1)m, x =
(17 + 12

√
2)k, y = (17 − 12

√
2)k and z = (17 + 12

√
2)m. Since a2 = x, y =

b4 and d = −c, it follows that R = 0. �

Theorem 4. For every m > 1 and k > 0 the following equality holds:

m
∑

i=0

P2k+2i ·P2k+2i+1 = 2·am+1 ·bk+1·P2k+2m−
m−1
∑

i=0

P2i+1 ·P2i+2 (4.4)
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Proof. The proof is by induction on m. For m = 1 the relation (4.4) is true
by (4.2).

Assume that the relation (4.4) is true for m = r. Then

r+1
∑

i=0

P2k+2i P2k+2i+1 +

r
∑

i=0

P2i+1 P2i+2 =

r
∑

i=0

P2k+2i P2k+2i+1+

r−1
∑

i=0

P2i+1 P2i+2 + P2r+1 P2r+2 + P2k+2r+2 P2k+2r+3 = P2r+1 P2r+2

+ 2 ar+1 bk+1 P2k+2r + P2k+2r+2 P2k+2r+3 = 2 ar+2 bk+1 P2k+2r+2,

where the last step uses Lemma 6. Hence, (4.4) is true also for m = r + 1. �

Other versions of Theorem 4 are listed in the following statement:

Theorem 5. For every j > 0 and k > 0 the sum
∑m

i=0 P2k+2i · P2k+2i+1 is
equal to the following expressions:

(

m
∑

i=0

P2i · P2i+1

)

+ 4 · am+1 · ak · P2k+2m+1, (4.5)

2 · am+1 · bk · P2k+2m+2 −

(

m
∑

i=0

P2i+1 · P2i+2

)

, (4.6)

(

m+1
∑

i=0

P2i · P2i+1

)

+ 4 · am+1 · ak−1 · P2k+2m+3, (4.7)

2 (am+1 · bk−1 · P2k+2m+4 + 4) −

(

m+1
∑

i=0

P2i+1 · P2i+2

)

, (4.8)

Proof. We shall only outline the key steps in an inductive proof of the part
(4.6) leaving the details and other parts to the reader because they are
analogous to the proof of Theorem 4.

The initial step is the equality 2 bk P2k+2 − 8 = P2k P2k+1 which holds for
every k > 0. On the other hand, the inductive step is realized with the
following equality:

2 bk [am+2 P2k+2m+4 − am+1 P2k+2m+2] =

P2k+2m+2 P2k+2m+3 + P2m+3 P2m+4,

which holds for every k > 0 and every m > 0. �
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