
ALTERNATING SUMS OF FIBONACCI PRODUCTS

ZVONKO ČERIN

Abstract. We consider alternating sums of squares of odd and
even terms of the Fibonacci sequence and alternating sums of their
products. These alternating sums are related to the products of
appropriate Fibonacci and Lucas numbers and to the integer se-
quences A049685 and A004178.

1. Introduction

The Fibonacci and Lucas sequences Fn and Ln are defined by the
recurrence relations

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for n > 3,

and

L1 = 1, L2 = 3, Ln = Ln−1 + Ln−2 for n > 3.

The note [1] derived formulas for the sums
∑j

i=0 F 2
2k+2i−1,

∑j

i=0 F 2
2k+2i

and
∑j

i=0 F2k+2i−1 F2k+2i of squares of odd and even and products of
consecutive Fibonacci numbers that improved some results from [6].
The aim of this work is to give similar results for the alternating sums
∑j

i=0 (−1)i F 2
2k+2i−1,

∑j

i=0 (−1)i F2k+2i and
∑j

i=0 (−1)i F2k+2i−1 F2k+2i.
For Lucas numbers this was done in [2] and [3].

Therefore we shall prove the following three theorems covering each
of these alternating sums. Their proofs are by mathematical induction.

In each theorem we must treat odd and even summations separately.
The results are similar in form and the method of proof. They could be
viewed as examples of situations where the following integer sequences
A049685 and A004178 in [7] appear.

Let the sequence ak be defined by the recurrence relation a0 = 1,
a1 = 6, and ak = 7 ak−1 − ak−2, for k > 2. Then ak = L4k+2

3
.

For k > 0, let bk =
∑k

i=0 ai. Since ak = bk − bk−1 we see that the
terms bk satisfy the recurrence relations b0 = 1, b1 = 7, b2 = 48, and

bk = 8 bk−1 − 8 bk−2 + bk−3 for k > 3. Let α = 1+
√

5
2

and β = 1−
√

5
2

. We
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easily find that bk = u(α, β)k v(α, β) + u(β, α)k v(β, α) for every k > 0,
where u(α, β) = 5 α + 2 β and v(α, β) = 11 α+4 β

15
. Also, bk−1 = F4k

3
.

In order to state our theorems we shall also need the following integer
sequences which are not listed in [7].

Let ck denote the sequence whose k-th term for k > 0 is given by
c0 = 1 and ck = 1 + 7 (

∑k−1
i=0 bk) for k > 1. The first seven terms of this

sequence are 1, 8, 57, 393, 2696, 18481, 126673. In a standard way one

can prove that ck = 21+7
√

5
30

(

7+3
√

5
2

)k

+ 21−7
√

5
30

(

7−3
√

5
2

)k

−

2
5
.

Let dk denote the sequence whose k-th term for k > 0 is given by
d0 = 2 and dk = 2 + 11 (

∑k−1
i=0 bk) for k > 1. The first seven terms of

this sequence are 2, 13, 90, 618, 4237, 29042, 199058. In a standard

way one can prove that dk = 33+11
√

5
30

(

7+3
√

5
2

)k

+ 33−11
√

5
30

(

7−3
√

5
2

)k

−

1
5
.

Here are our three theorems on alternating sums.

Theorem 1. (a) For every n > 1 and k > 1 the following equality
holds:

D) F4 n +

2 n−1
∑

i=0

(−1)i F 2
2k+2i = −

F4n

3
F2k+2n+1 L2k+2n−3;

(b) For every n > 0 and k > 1 the following equality holds:

E) F 2
2 n+1 +

2 n
∑

i=0

(−1)i F 2
2k+2i =

L4n+2

3
F2k+2n+1 F2k+2n−1.

Theorem 2. (a) For every n > 1 and k > 1 the following equality
holds:

K)
F4 n

3
+

2 n−1
∑

i=0

(−1)i F 2
2k+2i−1 = −

F4n

3
F2k+2n−1 L2k+2n−3;

(b) For every n > 0 and k > 1 the following equality holds:

L) cn +

2 n
∑

i=0

(−1)i F 2
2k+2i−1 =

L4n+2

3
F2k+2n+1 F2k+2n−3.

Theorem 3. (a) For every n > 1 and k > 1 the following equality
holds:

P )
F4 n

3
+

2 n−1
∑

i=0

(−1)i F2k+2i−1 F2k+2i = −

F4n

3
F2k+2n−2 L2k+2n−1;
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(b) For n = 0 and every k > 2 and also for every n > 1 and k > 1
the following equality holds:

Q) dn +

2 n
∑

i=0

(−1)i F2k+2i−1 F2k+2i =
L4n+2

3
F2k+2n+2 F2k+2n−3.

2. Lemmas for Theorem 1

For the initial step in an inductive proof of the part a) of our first
theorem we shall use the following lemma.

Lemma 1. For every k > 1 the following equality holds:

A) 3 + F 2
2 k − F 2

2 k+2 + F2 k+3 L2 k−1 = 0.

Proof. First note that

F 2
2k+2 − F 2

2k = (F2k+2 − F2k)(F2k+2 + F2k) = F2k+1 L2k+1 = F4k+2

so that it suffices to prove that

F2k+3 L2k−1 = F4k+2 − 3.

Now using the Binet formulas Fk = αk
−β2

α−β
, Lk = αk + βk, (see [4] and

[5]) we have

F2k+3 L2k−1 =

(

α2k+3
− β2k+3

α − β

)

(

α2k−1 + β2k−1
)

=

α4k+2
− β4k+2 + α2k+3 β2k−1

− α2k−1 β2k+3

α − β
=

F4k+2 + (α β)2k−1

(

α4
− β4

α − β

)

= F4k+2 + (−1)2k−1 F4 = F4k+2 − 3.

�

The above proof was supplied by the referee. The proofs of the other
lemmas are modelled on this example. They all use basic Fibonacci
identities such as can be found in [4] or [8]. The author’s original proofs
used the symbolic computation software Maple V. The following was
the proof of Lemma 1 which explains our method. All other lemmas
in this paper can be easily proved in this way.

Proof. By the Binet formula Fk is equal to αk
−βk

α−β
and Lk is equal to

αk + βk (see [4] and [5]). It follows that the left hand side of A) is
equal to W = −

M
α3 (α2+1)2

, where M denotes the expression

α10 + α8
− 3 α7

− 6 α5
− 3 α3

− α2
− 1 + α4k+9

−

α4 k+8
− α4 k+6

− α4k+5
− α−4 k+5 + α−4k+4 + α−4 k+2 + α−4k+1.



4 ZVONKO ČERIN

The fifteen terms of M can be considered as one group of seven terms
and two groups of four terms that have similar exponents. The first
group is α10 + α8

− 3 α7
− 6 α5

− 3 α3
− α2

− 1. It is equal to zero be-
cause it factors as (α2

− α − 1) (α4 + α3 + α2
− α + 1) (α2 + 1)

2
and α

is the root of the equation x2
− x − 1 = 0. One can prove similarly

that the other two groups are zero. Hence, M = 0 and the proof is
complete.

We shall now describe input for the proof of Lemma 1 in Maple V.
We first use fF and fL as short names for functions of Fibonacci and

Lucas numbers by Binet formula. We make the assumption that k and
r are positive integers and that α is positive.
fF:=k->(alphâ k-betâ k)/(alpha-beta): fL:=k->alphâ k+betâ k:

assume(k,posint): assume(r,posint): assume(alpha>0):

The following will give us the left hand side W of the relation A).
sumA:=3+fF(2*k)ˆ2-fF(2*k+2)ˆ2+fF(2*k+3)*fL(2*k-1):

fW:=simplify(factor(subs(beta=-1/alpha,sumA)));

The part M is extracted as follows. In some situations M is not the
first part but second or third.
fM:=collect(op(1,fW),alpha,distributed,factor):

The first group is factored out with the following input. Here it can
happen that these seven terms are not the initial seven so that we pick
up these terms by counting parts in an output of fM.
simplify(factor(add(op(i,fM),i in [1,2,3,4,5,6,7]))); �

For the induction step in the proof of the part a) of Theorem 1 we
shall use the following lemma.

Lemma 2. For every r > 1 and k > 1 the following equality holds:

B) F 2
2 k+4 r + br (3 + F2 k+2 r+3 L2 k+2 r−1)

− F 2
2 k+4 r+2 − br−1 (3 + F2 k+2 r+1 L2 k+2 r−3) = 0.

Proof. First note that, by the formulas (I8) and (I7) in [4],

F 2
2k+4r+2 − F 2

2k+4r = (F2k+4r+2 − F2k+4r)(F2k+4r+2 + F2k+4r)

= F2k+4r+1 L2k+4r+1 = F4k+8r+2.
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Also, using the Binet formulas we have

F2n+3 L2n−1 =

(

α2n+3
− β2n+3

α − β

)

(

α2n−1
− β2n−1

)

=
α4n+2

− α2n−1 β2n+3 + α2n+3 β2n−1 + β4n+2

α − β

= F4n+2 + (α β)2n−1

(

α4
− β4

α − β

)

= F4n+2 − 3,

since α β = −1 and α4
−β4

α−β
= F (4) = 3. For n = k + r and n = k + r − 1

we get

3 + F2k+2r+3 L2k+2r−1 = F4k+4r+2

and

3 + F2k+2r+1 L2k+2r−3 = F4k+4r−2.

Hence, if we use br = F4r+4

3
, it suffices to prove

F4r+4 F4k+4r+2 − F4r F4k+4r−2 = 3 F4k+8r+2.

This is the special case of the formula

Fm+4 Fm+n+2 − Fm Fm+n−2 = 3 F2m+n+2,

that is proved using Binet formulas as follows.

Fm+4 Fm+n+2 − Fm Fm+n−2 =

(αm+4
− βm+4) (αm+n+2

− βm+n+2) − (αm
− βm) (αm+n−2

− βm+n−2)

(α − β)2

=
1

(α − β)2

[

α2m+n+6 + β2m+n+6
− (α β)m+2 β2 αn

− (α β)m+2 βn α2

+(α β)m−2 βn α2 + (α β)m−2 β2 αn
− α2m+n−2 + β2m+n−2

]

=
α4 α2m+n+2 + β4 β2m+n+2

− α−4 α2m+n+2
− β−4 β2m+n+2

(α − β)2

=
α4

− α−4

(α − β)2
α2m+n+2 +

β4
− β−4

(α − β)2
β2m+n+2

= 3
α2m+n+2

− β2m+n+2

α − β
= 3 F2 m+n+2.

�

For the induction step in the proof of the part b) of our first theorem
we shall use the following lemma.
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Lemma 3. For every r > 0 and k > 1 the following equality holds:

C) 3 [F 2
2 r+3 − F 2

2 r+1 + F 2
2 k+4 r+4 − F 2

2 k+4 r+2]−

F2 k+2 r+1 [L4r+6 F2 k+2 r+3 − L4 r+2 F2 k+2 r−1] = 0.

Proof. Representing differences of squares as products in the same way
as in the proofs of Lemmas 1 and 2 and applying the formula (13) in [8,
p. 176] we conclude that the first square bracket is F4r+4 + F4k+8r+6.
The application of the formula (10a) in [8, p. 176] to each product in the
second square bracket implies that it is equal to F2k+6r+9 − F2k+6r+1.
Hence, it suffices to prove that

F2k+2r+1(F2k+6r+9 − F2k+6r+1) = 3 (F4r+4 + F4k+8r+6).

Then we again use the Binet formula on the left hand side and reduce
terms containing powers of both α and β to infer that

F2k+2r+1(F2k+6r+9 − F2k+6r+1) =

1

5
[L4k+8r+10 + L4r+8 − L4k+8r+2 − L4r] .

But, by the formula (17b) in [8, p. 177]

L4k+8r+10 − L4k+8r+2 = 5 F4 F4k+8r+6

and

L4r+8 − L4r = 5 F4 F4r+4,

so that the left hand side of the above alleged equality is indeed equal
to the right hand side because F4 = 3. �

3. Proof of the first theorem

Proof of Theorem 1. a). The proof is by induction on n. For n = 1 the
relation D) is 3 + F 2

2k − F 2
2k+2 = −F2k+3 L2k−1 (i. e., the relation A))

which is true by Lemma 1. Assume that the relation D) is true for
n = r. Then

3 br +

2(r+1)−1
∑

i=0

(−1)i F 2
2k+2i =

3 br +

2 r−1
∑

i=0

(−1)i F 2
2k+2i + F 2

2k+4 r − F 2
2k+4 r+2 =

3 br − 3 br−1 + F 2
2k+4 r − F 2

2k+4 r+2 − br−1 F2k+2r+1 L2k+2r−3 =

−br F2k+2(r+1)+1 L2k+2(r+1)−3,

where the last step uses Lemma 2. Hence, D) is true for n = r + 1.
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b). The proof is also by induction on n. For n = 0 the relation E)
is 1 + F 2

2k = F2k+1 F2k−1 which is the special case (for n = 2 k) of the
formula (29) in [8].

Assume that the relation E) is true for n = r. Then

F 2
2(r+1)+1 +

2(r+1)
∑

i=0

(−1)i F 2
2k+2i =

F 2
2(r+1)+1 +

2 r
∑

i=0

(−1)i F 2
2k+2i − F 2

2k+4 r+2 + F 2
2k+4 r+4 =

ar F2k+2r+1 F2k+2r−1 + F 2
2r+3 − F 2

2r+1 − F 2
2k+4 r+2 + F 2

2k+4 r+4 =

ar+1 F2k+2(r+1)+1 F2k+2(r+1)−1,

where the last step uses Lemma 3. Hence, E) is true for n = r + 1. �

4. Lemmas for Theorem 2

For the initial step in an inductive proof of the part a) of our second
theorem we shall use the following lemma.

Lemma 4. For every k > 1 the following equality holds:

F ) 1 + F 2
2 k−1 − F 2

2 k+1 + F2 k+1 L2 k−1 = 0.

Proof. First note that, by the formulas (1) and (6) in [8, p. 176],

F 2
2k+1 − F 2

2k−1 = (F2k+1 − F2k−1)F2k+1 + F2k−1) = F2k L2k,

so that it suffices to prove that

F2k+1 L2k−1 − F2k L2k = −1.

But, this is the special case of the formula (19b) in [8, p. 177] for
n = 2k, h = 1 and k = −1 since F1 = 1 and L−1 = −1. �

For the induction step in the proof of the part a) of our second
theorem we shall use the following lemma.

Lemma 5. For every r > 1 and k > 1 the following equality holds:

G) br(1 + F2 k+2 r+1 L2 k+2 r−1)−

br−1(1 + F2 k+2 r−1 L2 k+2 r−3) + F 2
2 k+4 r−1 − F 2

2 k+4 r+1 = 0.

Proof. First we apply the formula (19b) in [8, p. 177] for n = 2k + 2r,
h = 1 and k = −1 to get

F2k+2r+1 L2k+2r−1 − F2k+2r L2k+2r = (−1)2k+2r F1 L−1 = −1.

Hence,

1 + F2 k+2 r+1 L2 k+2 r−1 = F2k+2r L2k+2r = F4k+4r,
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by the formula (13) in [8, p. 177]. In a similar way we obtain

1 + F2 k+2 r−1 L2 k+2 r−3 = F2k+2r L2k+2r−4 − 3.

On the other hand, from the formulas (1), (6) and (13) in [8], we have

F 2
2k+4r+1 − F 2

2k+4r+1 =

(F2k+4r+1 −F2k+4r−1)(F2k+4r+1 + F2k+4r−1) = F2k+4r L2k+4r = F4k+8r.

Since br−1 = F4r

3
and br = F4r+4

3
the equality G) is equivalent with

F2k+2r [F4r+4 L2k+2r − F4r L2k+2r−4] = 3 [F4k+8r − F4r] .

Appling the formula (10a) on each product in the square bracket on
the left hand side we get further simplification

F2k+2r [F2k+6r+4 − F2k+6r−4] = 3 [F4k+8r − F4r] .

Then we again use the Binet formula on the left hand side and reduce
terms containing powers of both α and β to infer that

F2k+2r(F2k+6r+4 − F2k+6r−4) =

1

5
[L4k+8r+4 + L4r−4 − L4k+8r−4 − L4r+4] .

But, by the formula (17b) in [8, p. 177]

L4k+8r+4 − L4k+8r−4 = 5 F4 F4k+8r

and

L4r+4 − L4r−4 = 5 F4 F4r,

so that the left hand side of the last alleged equality is indeed equal to
its right hand side because F4 = 3. �

For the induction step in the proof of the part b) of our second
theorem we shall use the following lemma.

Lemma 6. For every r > 1 and k > 1 the following equality holds:

H) 21 br + 3 F 2
2 k+4 r+3 − 3 F 2

2 k+4 r+1−

L4 r+6 F2 k+2 r−1 F2 k+2 r+3 + L4 r+2 F2 k+2 r−3 F2 k+2 r+1 = 0.

Proof. From the formulas (1), (6) and (13) in [8], we have

3
[

F 2
2 k+4 r+3 − F 2

2 k+4 r+1

]

= 3 (F2k+4r+3 − F2k+4r+1)·

(F2k+4r+3 + F2k+4r+1) = 3 F2k+4r+2 L2k+4r+2 = 3 F4k+8r+4.



SUMS OF FIBONACCI PRODUCTS 9

Since br = F4r+4

3
the relation H) is equivalent with

3 F4k+8r+4 + 7 F4r+4 =

L4r+6 F2k+2r−1 F2k+2r+3 − L4r+2 F2k+2r−3 F2k+2r+1.

Then we again use the Binet formula on the right hand side and reduce
terms containing powers of both α and β to conclude that

L4r+6 F2k+2r−1 F2k+2r+3 − L4r+2 F2k+2r−3 F2k+2r+1 =

1

5
[L4k+8r+8 + L4r+10 + L4r+2 − L4k+8r − L4r+6 − L4r−2] .

But, by the formula (17b) in [8, p. 177]

L4k+8r+8 − L4k+8r = 5 F4 F4k+8r+4,

L4r+10 − L4r−2 = 5 F6 F4r+4,

and
L4r+2 − L4r+6 = −5 F2 F4r+4,

so that the right hand side of the last alleged equality is indeed equal
to its left hand side because F2 = 1 and F6 = 8. �

5. Proof of the second theorem

Proof of Theorem 2. a). The proof is by induction on n. For n = 0 the
relation K) is 1 + F 2

2k−1 − F 2
2k+1 = −F2k+1 L2k−1 (i. e., the relation F))

which is true by Lemma 4. Assume that the relation K) is true for
n = r. Then

F4(r+1)

3
+

2(r+1)−1
∑

i=0

(−1)i F 2
2k+2i−1 =

F4r+4

3
+

2 r−1
∑

i=0

(−1)i F 2
2k+2i−1 + F 2

2k+4 r−1 − F 2
2k+4 r+1 =

F4r+4

3
−

F4r

3
+ F 2

2k+4 r−1 − F 2
2k+4 r+1 −

F4r

3
F2k+2r−1 L2k+2r−3 =

−

F4(r+1)

3
F2k+2(r+1)−1 L2k+2(r+1)−3,

where the last step uses Lemma 5. Hence, K) is true for n = r + 1.
b). The proof is also by induction on n. For n = 0 the relation L) is

1 + F 2
2k−1 = F2k+1 F2k−3 that we prove as follows.

For m = 2 k + 1 and n = 2 k − 3 the formula (17b) in [8] says that
L4 k−2 − (−1)2 k+1 L4 = 5 F2 k−3 F2 k+1 and since L4 = 7 we get L4 k−2 + 7
= 5 F2 k−3 F2 k+1. On the other hand, the formula (23) in [8] implies the
relation L4 k−2 + 2 = 5 F 2

2k−1 so that 1 + F 2
2k−1 = F2k+1 F2k−3.
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Assume that the relation L) is true for n = r. Then

cr+1 +

2(r+1)
∑

i=0

(−1)i F 2
2k+2i−1 =

cr+1 +
2 r
∑

i=0

(−1)i F2k+2i−1 − F 2
2k+4 r+1 + F 2

2k+4 r+3 =

ar F2k+2r−3 F2k+2r+1 + cr+1 − cr − F 2
2k+4 r+1 + F 2

2k+4 r+3 =

ar+1 F2k+2r−1 F2k+2r+3,

where the last step uses Lemma 6. Hence, L) is true for n = r + 1 and
the proof is completed. �

6. Lemmas for Theorem 3

For the initial step in an inductive proof of the part a) of our third
theorem we shall use the following lemma.

Lemma 7. For every k > 1 the following equality holds:

M) 1 + F2 k (F2 k−1 + L2 k+1) − F2 k+1 F2 k+2 = 0.

Proof. First we look into the bracket and use the formula (6) in [8]
to write L2k+1 = F2 k + F2k+2 and then note that F2k−1 + F2k = F2k+1

so that after the multiplication and factoring out terms that contain
F2k+1 we get that the left hand side is equal to

1 − F2k+1(F2 k+2 − F2 k) + F2 k F2 k+2

and thus to
1 − F 2

2k+1 + F2 k F2 k+2,

since F2 k+2 − F2 k = F2k+1. This is indeed zero by the famous Cassini
formula (i. e., the formula (29) in [8]). �

For the induction step in the proof of the part a) of our third theorem
we shall use the following lemma.

Lemma 8. For every r > 1 and k > 1 the following equality holds:

N) br (1 + F2 k+2 r L2 k+2 r+1) − br−1 (1 + F2 k+2 r−2 L2 k+2 r−1)−

F2 k+4 r+1 F2 k+4 r+2 + F2 k+4 r−1 F2 k+4 r = 0.

Proof. The formula (15b) in [8, p. 177] implies that

1 + F2 k+2 r L2 k+2 r+1 = F4k+4r+1

and
1 + F2 k+2 r−2 L2 k+2 r−1 = F4k+4r−3.
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On the other hand, since F2k+4r+2 = F2k+4r+1 + F2k+4r and

F2k+4r = F2k+4r+1 − F2k+4r−1

we see that

F2 k+4 r+1 F2 k+4 r+2 − F2 k+4 r−1 F2 k+4 r = F 2
2k+4r+1 + F 2

2k+4r.

This sum of squares is F4k+8r+1 by the formula (11) in [8]. Since

br−1 = F4r

3
and br = F4r+4

3
, it follows that the equality N) is equivalent

with
F4r+4 F4k+4r+1 − F4r F4k+4r−3 = 3 F4k+8r+1.

We now apply the formula (17b) trice to get

5 F4r+4 F4k+4r+1 = L4k+8r+5 − L4k−3,

5 F4r F4k+4r−3 = L4k+8r−3 − L4k−3,

and
5 F4 F4k+8r+1 = L4k+8r+5 − L4k+8r−3.

This obviously completes the proof because F4 = 3. �

For the induction step in the proof of the part b) of our third theorem
we shall use the following lemma.

Lemma 9. For every r > 1 and k > 1 the following equality holds:

O) 33 br + 3 F2 k+4 r+3 F2 k+4 r+4 − 3 F2 k+4 r+1 F2 k+4 r+2+

L4 r+2 F2 k+2 r−3 F2 k+2 r+2 − L4 r+6 F2 k+2 r−1 F2 k+2 r+4 = 0.

Proof. Let us multiply the left hand side of O) by number 5 and use
the formula (17b) from [8, p. 177] four times to get

5 F2 k+4 r+3 F2 k+4 r+4 = L4k+8r+7 + 1,

5 F2 k+4 r+1 F2 k+4 r+2 = L4k+8r+3 + 1,

5 F2 k+2 r−3 F2 k+2 r+2 = L4k+4r−1 + 11,

and
5 F2 k+2 r−1 F2 k+2 r+4 = L4k+4r+3 + 11.

Since br = F4r+4

3
, the five times the left hand side of O) is equal to

55 F4r+4 − 11(L4r+6 − L4r+2)+

3(L4k+8r+7 − L4k+8r+3) − (L4r+6 L4k+4r+3 − L4r+2 L4k+4r−1).

Once again the formula (17b) in [8] implies L4r+6 − L4r+2 = 5 F4r+4 so
that the second term is the opposite of the first term. The third term,
by the same formula, is equal to 15 F4k+8r+5. The first product of Lucas
numbers in the last term is, by the formula (17a) in [8], equal to

L4r+6 L4k+4r+3 = L4k+8r+9 + L4k−3,
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while the second is

L4r+2 L4k+4r−1 = L4k+8r+1 + L4k−3.

Another application of the formula (17b) on the difference of these
products shows that the last term is the opposite of the third term so
that the relation O) holds. �

7. Proof of the third theorem

Proof of Theorem 3. a). The proof is by induction on n. For n = 1
the relation P) is 1 + F2k−1 F2k − F2k+1 F2k+2 = −F2k L2k+1 (i. e., the
relation M)) which we already proved in Lemma 7. Assume that the
relation P) is true for n = r. Then

br +

2(r+1)−1
∑

i=0

(−1)i F2k+2i−1 F2k+2i =

br +
2 r−1
∑

i=0

(−1)iF2k+2i−1F2k+2i + F2k+4 r−1F2k+4 r − F2k+4r+1F2k+4r+2 =

−br−1F2k+2r−2L2k+2r−1+br−br−1+F2k+4r−1F2k+4r−F2k+4r+1F2k+4r+2

= −br F2k+2(r+1)−2 L2k+2(r+1)−1,

where the last step uses Lemma 8. Hence, P) is true for n = r + 1 and
the proof is completed.

b). The proof is also by induction on n. For n = 0 and k > 2 the
relation Q) is

2 + F2 k−1 F2 k = F2 k−3 F2 k+2.

This identity follows immediately from the formula (20a) in [8] for
n = 2 k, h = −3 and k = 2.

Assume that the relation Q) is true for n = r with r > 1. Let
U = 2k + 4r. Then

dr+1 +

2(r+1)
∑

i=0

(−1)i F2k+2i−1 F2k+2i =

dr+1 +
2 r
∑

i=0

(−1)i F2k+2i−1 F2k+2i − FU+1 FU+2 + FU+3 FU+4 =

ar F2k+2r−3 F2k+2r+2 + dr+1 − dr − FU+1 FU+2 + FU+3 FU+4 =

ar+1 F2k+2(r+1)−3 F2k+2(r+1)+2,

where we get the last line from the previous using Lemma 9. Hence,
Q) is true for n = r + 1. �
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