ALTERNATING SUMS OF FIBONACCI PRODUCTS
ZVONKO CERIN

ABSTRACT. We consider alternating sums of squares of odd and
even terms of the Fibonacci sequence and alternating sums of their
products. These alternating sums are related to the products of
appropriate Fibonacci and Lucas numbers and to the integer se-
quences A049685 and A004178.

1. INTRODUCTION

The Fibonacci and Lucas sequences F), and L, are defined by the
recurrence relations

Fl = ]_, F2 = 1, Fn = Fn—l + Fn_g for n 2 3,
and
Ll = 1, L2 = 3, Ln = Ln—l + Ln_g for n 2 3.

The note [1] derived formulas for the sums >>7_ F2 o 1, S0 F2 .,
and Z‘Z:O Foji 0,1 Fopio; of squares of odd and even and products of
consecutive Fibonacci numbers that improved some results from [6].
The aim of this work is to give similar results for the alternating sums

g:o (_1)i F22k+21'—17 Zgzo (_1)i F2k+2i and Zgzo (_1)i F2k+2i—1 F2k+2z‘-
For Lucas numbers this was done in [2| and [3].

Therefore we shall prove the following three theorems covering each
of these alternating sums. Their proofs are by mathematical induction.

In each theorem we must treat odd and even summations separately.
The results are similar in form and the method of proof. They could be
viewed as examples of situations where the following integer sequences
A049685 and A004178 in [7] appear.

Let the sequence a; be defined by the recurrence relation ay = 1,
a1 =6, and a,, = 7Tap_1 — ax_o, for k > 2. Then a;, = Lakts

For k£ >0, let b, = Zf:o a;. Since aj = b, — b1 we see that the
terms by satisfy the recurrence relations by =1, by =7, by = 48, and
b, =8by_1 —8bp_o+ br_3 for k > 3. Let a = 1+T\/g and 8 = 1_7\/5 We
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easily find that by = u(a, B)*v(a, B) +u(B, @)k v(3, a) for every k > 0,
where u(a, §) =ba+ 23 and v(a, () = 11«11;:4;3. Also, b1 = %

In order to state our theorems we shall also need the following integer
sequences which are not listed in [7].

Let ¢ denote the sequence whose k-th term for £ > 0 is given by
co=Tland ¢, = 1+ 7(3F7) by) for k > 1. The first seven terms of this
sequence are 1, 8 57, 393, 2696, 18481, 126673. In a standard way one
_ 21475 7+:;\/5>k+ 21-7v/5 (7—3\/5 S

can prove that ¢ %0 0 5 5

Let di denote the sequence whose k-th term for k£ > 0 is given by
dp=2and d =2+ 11 (Zf:_ol bi) for k > 1. The first seven terms of
this sequence are 2, 13, 90, 618, 4237, 29042, 199058. In a standard

k k
way one can prove that d = 33“1*[ (7“;\/5) + 33_?}01\/5 (7—2\/5) ~- L

Here are our three theorems on alternating sums.

Theorem 1. (a) For every n>1 and k > 1 the following equality
holds:

2n—1
. Fy,
Fyn + Z (=1) Fppos = % Fortont1 Logyon—3;

(b) For everyn >0 and k > 1 the following equality holds:

n
L
2 2 An—+2
Fypi + E (_ F2k+2z 3 Foxioni1 Fokion_1.

Theorem 2. (a) For every n>1 and k > 1 the following equality
holds:

2n—1
. Ey,
K) —+ Z (1) Fyyni = — ; Fokron—1 Lok y2n-—3;

i=0
(b) For everyn > 0 and k > 1 the following equality holds:

) Ly,
Cn Z (1) F22k+2i—1 = % Forktont1 Fopvon—3-

Theorem 3. (a) For every n > 1 and k > 1 the following equality
holds:

2n—1
Phn

P) —+ Z (=1)" Fapyai1 Forsni = 3 Fopon—2 Lokton-1;
i=0
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(b) For n =0 and every k > 2 and also for everyn > 1 and k > 1
the following equality holds:

2n
Q) d,+ Z (—1)" Fopqoi—1 Fopro = 43+2 Forionio Fopion_3.
i—0

2. LEMMAS FOR THEOREM 1

For the initial step in an inductive proof of the part a) of our first
theorem we shall use the following lemma.

Lemma 1. For every k > 1 the following equality holds:
A) 3+ F — Fpn + Faggs Loy = 0.
Proof. First note that
Fyvo — Fo = (Foro — Fo) (Faggo + For) = Fopr Loky1 = Fliyo
so that it suffices to prove that
Fopys Lok—1 = Faga — 3.

Now using the Binet formulas Fj, = O‘i:gz, Ly = o* + %, (see [4] and
[5]) we have

a2k3 — /62k+3
Foryz Lop—1 = (a——ﬁ) (a2k—1 +ﬁ2k_1) _

QAR _ gk 2K+ G2kl _ (2k—1 32k
a— 3
) = Fippo + (—1)* P Ey = Fjpp0 — 3.
O

Oé4—ﬁ4

Figga + (aB)*! ( P

The above proof was supplied by the referee. The proofs of the other
lemmas are modelled on this example. They all use basic Fibonacci
identities such as can be found in [4] or [8]. The author’s original proofs
used the symbolic computation software Maple V. The following was
the proof of Lemma 1 which explains our method. All other lemmas
in this paper can be easily proved in this way.

Proof. By the Binet formula Fj, is equal to a;%? and Lj is equal to

af + 3% (see [4] and [5]). It follows that the left hand side of A) is
M

equal to W = — P where M denotes the expression

a10+a8—3a7—60{5—3a3—a2—1+a4k+9—

Ak+8 _ (ARt6 _ (AR+S _ —Akts | Ak —Ak2 | k]

(0% (0% «
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The fifteen terms of M can be considered as one group of seven terms
and two groups of four terms that have similar exponents. The first
group is ' + a® —3a”" —60a® —3a® — a? — 1. It is equal to zero be-
cause it factors as (02 —a —1) (a* + ¥+ a2 —a+1) (a2 +1)* and o
is the root of the equation 2 —x — 1 =0. One can prove similarly
that the other two groups are zero. Hence, M = 0 and the proof is
complete.

We shall now describe input for the proof of Lemma 1 in Maple V.

We first use £F and fL as short names for functions of Fibonacci and
Lucas numbers by Binet formula. We make the assumption that k£ and
r are positive integers and that « is positive.
fF:=k->(alpha’k-beta’k)/(alpha-beta): fL:=k->alpha k+beta’k:
assume (k,posint): assume(r,posint): assume(alpha>0):

The following will give us the left hand side W of the relation A).
sumA : =3+fF (2%k) "2-fF (2xk+2) "2+fF (2xk+3) *fL (2%k-1) :
fW:=simplify(factor(subs(beta=-1/alpha,sumh)));

The part M is extracted as follows. In some situations M is not the
first part but second or third.
fM:=collect(op(1,fW),alpha,distributed,factor):

The first group is factored out with the following input. Here it can
happen that these seven terms are not the initial seven so that we pick
up these terms by counting parts in an output of f£M.
simplify(factor(add(op(i,fM),i in [1,2,3,4,5,6,71))); O

For the induction step in the proof of the part a) of Theorem 1 we
shall use the following lemma.

Lemma 2. For everyr > 1 and k > 1 the following equality holds:
B)  Fipisr + b (34 Forgoris Loksor—1)
— S iarp2 — br—1 (34 Forgors1 Lograr—s) = 0.

Proof. First note that, by the formulas (Ig) and (I7) in [4],

2 2
Fopiarvo = Foprar = (Forgart2 — Foryar) (Forgarta + Foryar)

= Fopyar1 Loktar+1 = Fapygryo.
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Also, using the Binet formulas we have

Oé2n+3 _ A2n+43
F2TL+3 L2n—1 - <Tg) (Oé2n_1 _ 62n—1)

Qint2 2=l G203 | o043 g1 4 gind2
a—3
= Fipio + ( 5)%_1 (

Oé4—ﬁ4
a—p

sinceaﬂz—landoi—:gl:F(4):3. Forn=k+randn=~k+r—1
we get

):F4n+2_37

3+ Fopgorts Logtor—1 = Fapqario
and
3+ Forgors1 Logtor—3 = Fapqar—o.

. Fy, .
Hence, if we use b, = =2, it suffices to prove

F4r+4 F4k+4r+2 - F4r F4k+4r—2 =3 F4k+87‘+2-

This is the special case of the formula

Fm+4 Fm+n+2 - Fm Fm+n—2 =3 F2m+n+27

that is proved using Binet formulas as follows.

Fm+4 Fm+n+2 — By Fm+n—2 =
(am+4 _ ﬁm+4) (am+n+2 _ ﬁm+n+2) _ (am _ ﬁm) (am+n—2 _ ﬁm+n—2)
(o = 5)?
— (a _1/6)2 [a2m+n+6 + ﬁ2m+n+6 _ (Oé ﬁ)m+2 /62 o — (Oé ﬁ)m+2 ﬁn Oé2
—I—(Oé ﬂ)m—2 ﬂn a2 + (a 6)m_2 62 o — a2m+n—2 4 ﬂ2m+n—2}

B 044 a2m+n+2 + 54 62m+n+2 _ 04_4 a2m+n+2 _ 6—4 ﬂ2m+n+2
(a—p5)
4 —4 4 —4
_® T oming2 & 2m+4n+2
= 5 aQ + R
(=) (a = B)
a2m+n+2 _ 62m+n+2
=3 =3 F2 m+n+2-
a—p

O

For the induction step in the proof of the part b) of our first theorem
we shall use the following lemma.
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Lemma 3. For everyr >0 and k > 1 the following equality holds:

2 2 2 2
C) 3 [FQ r+3 F2 r+1 + F2 k+dr+4 F2 k+47‘+2]_
F2k:+27“+1 [L47“+6 F2 k+2r4+3 — L4T+2 F2 k+27”—1] = 0.

Proof. Representing differences of squares as products in the same way
as in the proofs of Lemmas 1 and 2 and applying the formula (13) in |8,
p. 176] we conclude that the first square bracket is Fy..4 + Firisri6-
The application of the formula (10a) in [8, p. 176] to each product in the
second square bracket implies that it is equal to Forigr10 — Forrerit-
Hence, it suffices to prove that

Fopiori1(Fokver+9 — Fortori1) = 3 (Faria + Fapisri6)-

Then we again use the Binet formula on the left hand side and reduce
terms containing powers of both a and 3 to infer that

Foriori1(Foks6r+9 — Fortori1) =
1
5 [Lag+sr+10 + Lar+s — Lagrsr+2 — Lay] -

But, by the formula (17b) in [8, p. 177]

Lipssr+10 — Lakysro = 5 Fy Fipqgrte
and
Liyys — Lyy =5 Fy Fapia,

so that the left hand side of the above alleged equality is indeed equal
to the right hand side because F = 3. U

3. PROOF OF THE FIRST THEOREM

Proof of Theorem 1. a). The proof is by induction on n. For n = 1 the
relation D) is 3+ F3, leC+2 = —Fyi3 Lop—1 (i. e., the relation A))
which is true by Lemma 1. Assume that the relation D) is true for
n =r. Then

2(r+1)—1
3br + Z ( 1) F2k+22
=0
2r—1
3b,. + Z 2k+2z Fk+4r F22k+4r+2 =

3 br -3 br—l + F2k+4r - F2k+47’+2 - br—l F2k+2r+1 L2k+27’—3 =

—br Fopyari1)+1 Lok yari1)—3
where the last step uses Lemma 2. Hence, D) is true for n = r + 1.
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b). The proof is also by induction on n. For n = 0 the relation E)
is 14+ F2, = Fyy1 Fo,_1 which is the special case (for n = 2k) of the
formula (29) in [8].

Assume that the relation E) is true for n = r. Then

2(r+1)
F22(r+1)+1 + Z (=1’ F22k+2i =
i=0

2r
2 i 2 2 2 _
F2(r+1)+1 + § (—1) Fopqoi = Fopyarso T Fopparga =
=0

2 2 2 2 _
ar Foorin Forror—1 + Foppg — Fopy — Fopiaryo T Fopyarpa =
Ari1 Foproprr1)41 Foarvarr1)-1,

where the last step uses Lemma 3. Hence, E) is true forn =r+ 1. O

4. LEMMAS FOR THEOREM 2

For the initial step in an inductive proof of the part a) of our second
theorem we shall use the following lemma.

Lemma 4. For every k > 1 the following equality holds:
F) 14 Fj,_ = F5 1+ Fap1 Lo = 0.
Proof. First note that, by the formulas (1) and (6) in [8, p. 176],
Fioir — Fo = (Parpr — Fouo1) Fongr + Fop—1) = Fog, Loy,
so that it suffices to prove that
Fopy1 Log—1 — Fop, Loy = —1.

But, this is the special case of the formula (19b) in [8, p. 177] for
n=2k,h=1and k= —1since Fy =1and L_; = —1. O

For the induction step in the proof of the part a) of our second
theorem we shall use the following lemma.

Lemma 5. For everyr > 1 and k > 1 the following equality holds:
G) b(1+ Fopyorta Logyar—1)—

bT—l(l + F2k+27“—1 L2k+27‘—3) + F22k+47“—1 - F22k+4r+1 = 0.

Proof. First we apply the formula (19b) in [8, p. 177| for n = 2k + 2r,
h=1and k= —1 to get

o 2k+2r -
Foktori1 Logyor—1 — Fopior Logror = (—1) L, =-1.
Hence,

1+ Foktors1 Logtor—1 = Foptor Logtor = Fiptar,
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by the formula (13) in [8, p. 177]. In a similar way we obtain

14+ Fokvor—1 Logtor—s = Foryor Logtor—a — 3.

On the other hand, from the formulas (1), (6) and (13) in [8], we have

2 2 _
F2k+4r+1 - F2k+47’+1 -
(F2k+47’+1 - F2k+4r—1)(F2k+4r+1 + F2k+47’—1) = F2k+47’ L2k+4r = F4k+8r-

Since b,_; = % and b, = % the equality G) is equivalent with

F2k+2r [F47’+4 L2k+2r - F47’ L2k+2r—4] =3 [F4k+8r - F4r] .

Appling the formula (10a) on each product in the square bracket on
the left hand side we get further simplification

Fopsvor [Foprer+a — Forvor—a] = 3 [Fagysr — Fur -

Then we again use the Binet formula on the left hand side and reduce
terms containing powers of both a and 3 to infer that

F2k+2r (F2k+6r+4 - F2k+6r—4) =

1

5 [Lagrsr+a + Lar—a — Lagygr—a — Layia] -

But, by the formula (17b) in [8, p. 177]
Lapysra — Lagysr—a = 5 Fy Fapys,

and
Layya — Lyp—y = 5 Fy Fyy,

so that the left hand side of the last alleged equality is indeed equal to
its right hand side because F; = 3. U

For the induction step in the proof of the part b) of our second
theorem we shall use the following lemma.

Lemma 6. For every r > 1 and k > 1 the following equality holds:

H) 21 br+3F22k+4r+3 _3F22k+47“+1_

Lavie Forvor—1 Foryorss + Lario Fopyor—3 Fogqoryr = 0.

Proof. From the formulas (1), (6) and (13) in [8], we have

2 2 _
3 [Fierarss — Fonparir] = 3 (Forparss — Farrarsr):

(Fokrarss + Foktar1) = 3 Foktarto Lokt arto = 3 Fiigrta.
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Since b, = % the relation H) is equivalent with

3Fupigraa+ T Fyiy =
Lari6 Fopror—1 Forgorss — Lario Foryor—3 Fopyoryr.

Then we again use the Binet formula on the right hand side and reduce
terms containing powers of both a and (3 to conclude that

Liri6 Fopror—1 Fopqorss — Layqo Fopqor—3 Foryorir =
1
5 [Lag+sr+s + Lart10 + Lars2 — Lagysr — Lapy6 — Lar—2] -

But, by the formula (17b) in [8, p. 177]

Lpssr+s — Lagssr = 5 Fy Fyjpgrqa,
Lyry10 — Lap—2 = 5 Fg Fypyy,
and
Layyo — Lypy6 = =D Fo Fapya,

so that the right hand side of the last alleged equality is indeed equal
to its left hand side because F5, = 1 and Fg = 8. L]

5. PROOF OF THE SECOND THEOREM

Proof of Theorem 2. a). The proof is by induction on n. For n = 0 the
relation K) is 1 + F3,_ — F3 1 = —Fbi1 Log—1 (i e., the relation F))
which is true by Lemma 4. Assume that the relation K) is true for

n = r. Then
2(r+1)—-1

F4 r+1 i
% + Z (1) Finig =
=0

2r—1

F47‘+4 7
3 T Z (=) Faraio1 + Fovsar—1 = Foriarpr =
i=0

Fye  Fu
3 3

F
2 2 4r .
+ F2k+47‘—1 - F2k+47"+1 - 3 F2k+27“—1 L2k+27‘—3 -

_ Fagqy
3
where the last step uses Lemma 5. Hence, K) is true for n = r + 1.

b). The proof is also by induction on n. For n = 0 the relation L) is
1+ ng_1 = Foy1 Fop_3 that we prove as follows.

For m =2k +1 and n =2k — 3 the formula (17b) in [8] says that
L4k_2 - (—1)2k+1 L4 =95 ng_g F2k+1 and since L4 =7 we get L4k_2 + 7
=5 Fyp_3 Fyk11. On the other hand, the formula (23) in [8] implies the
relation Ly o+ 2=>5F}, , so that 1+ F} | = Fopy1 For_s.

Fopyoir+1)—1 Lokyo(r41)—3,
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Assume that the relation L) is true for n = r. Then

2(r+1)
Cry1 + Z (_1)2F22k+2i—1 =
=0

2r

7 2 2 _

Cry1 T E (=1)" Forqoi1 — Fopyarn + Fopyaris =
=0

2 2
ar Fopqor—3 Forqori1 + Crpr — G — Fop gy + Fopiypis =

ari1 Fopror—1 Foktoris,
where the last step uses Lemma 6. Hence, L) is true for n = r + 1 and
the proof is completed. O

6. LEMMAS FOR THEOREM 3

For the initial step in an inductive proof of the part a) of our third
theorem we shall use the following lemma.

Lemma 7. For every k > 1 the following equality holds:
M) 1+ Fap (Fogp—1+ Logy1) — Fopyr Fopa = 0.

Proof. First we look into the bracket and use the formula (6) in [8]
to write Logy1 = Foy + Forio and then note that Fop_ 1 + For = Fory
so that after the multiplication and factoring out terms that contain
Fy1q we get that the left hand side is equal to

1 — Fopi1(Fopro — For) + Fop Foppo

and thus to

1— F5 oy + Fop Fopo,
since Fypio — Fop = Fyr11. This is indeed zero by the famous Cassini
formula (i. e., the formula (29) in [8]). O

For the induction step in the proof of the part a) of our third theorem
we shall use the following lemma.

Lemma 8. For everyr > 1 and k > 1 the following equality holds:
N) b (14 Farqor Logsors1) — b1 (14 Fopqor—2 Logior—1)—
Farvrarvi Fokrareo + Fogprar—1 Fograr = 0.
Proof. The formula (15b) in [8, p. 177] implies that

1+ Fopqor Logsore1 = Fapraria
and
1+ Fopqor—2 Logior—1 = Fipqar—s.
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On the other hand, since Fopy4r10 = Fopyari1 + Fopyar and

Forvar = Fopypars1 — Fopgar—i

we see that

2 2
Forqars1i Forqarso — Fopyar—1 Fopyar = Fopypiq + Fopiyy

This sum of squares is Fjig-+1 by the formula (11) in [8]. Since
by_1 = % and b, = %, it follows that the equality N) is equivalent
with

Furva Fagyart1 — Far Fagyar—3 = 3 Faprsr1-
We now apply the formula (17b) trice to get

5 Fyria Fiaryarv1 = Lagysrys — Lag—3,
5 Fyr Fuagvar—3 = Lagysr—3 — Lag—3,
and
5 Fy Fukrsri1 = Lakrsr+s — Lagsr—3-
This obviously completes the proof because F, = 3. U

For the induction step in the proof of the part b) of our third theorem
we shall use the following lemma.

Lemma 9. For everyr > 1 and k > 1 the following equality holds:

O) 33b, + 3 Fapraris Forgarea — 3 Foryarsa Forrariot
Lyryo Forror—s Foptrorta — Lario Fogror—1 Fopyorta = 0.
Proof. Let us multiply the left hand side of O) by number 5 and use
the formula (17b) from [8, p. 177| four times to get
5 Foktarys Fograrta = Laprgrir + 1,

5Fypiarst Foryars2 = Lapygrqs + 1,

5Foky2r—3 Foksoria = Lagyar— + 11,
and

5 Foktor—1 Foryoria = Lapyaris + 11

Since b, = F4g+4, the five times the left hand side of O) is equal to

55 Fypia — 11(Lary6 — Lays2)+

3(L4k+87’+7 - L4k+8r+3) - (L4r+6 L4k+4r+3 - L4r+2 L4k+4r—1)-

Once again the formula (17b) in [8] implies Ly16 — Lapro = 5 Fypyq 80
that the second term is the opposite of the first term. The third term,
by the same formula, is equal to 15 Fyxyg-15. The first product of Lucas
numbers in the last term is, by the formula (17a) in [8], equal to

Lari6 Lagtar+s = Lagygr+o + Lag—3,
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while the second is

Lario Lajyar—1 = Lagygr+1 + Lag—3.

Another application of the formula (17b) on the difference of these
products shows that the last term is the opposite of the third term so
that the relation O) holds. O

7. PROOF OF THE THIRD THEOREM

Proof of Theorem 3. a). The proof is by induction on n. For n =1
the relation P) is 1+ F2k—1 ng - F2k+1 F2k+2 = —ng L2k+1 (1 e., the
relation M)) which we already proved in Lemma 7. Assume that the
relation P) is true for n = r. Then
2(r+1)—1
b+ Y (—1) Farsaics Fopgai =
=0
27r—1
br + Z (=1)" Faky2i1Fokyoi + Forgar—1Forrar — Foprari1 Fokyara =
i=0

—br—1 Fopyor—oLokyor—14br — b1+ Fopyar—1 Foprar — Fopari1 Fopyarso

= —by Fopyorr1)—2 Lorrorr1)-1,
where the last step uses Lemma 8. Hence, P) is true for n = r + 1 and
the proof is completed.
b). The proof is also by induction on n. For n =0 and k > 2 the
relation Q) is
2+ Fopy o = Fop_3 Fopyo.
This identity follows immediately from the formula (20a) in [8] for
n=2k, h=-3and k = 2.
Assume that the relation Q) is true for n =r with » > 1. Let
U =2k + 4r. Then
r+1

2(r+1)
dry1 + Z (—1)" Fopqoi—1 Foproi =
i=0

2r
drp1 + Y (=1) Fopraict Porsai — Furgt Fugo + Fugs Frga =
i=0

Ay Fopvor—3 Fopyoryo +drp1 — dp — Fypq Fyso + Fyis Fyya =

Qr41 F2k+2(r+1)—3 F2k+2(r+1)+2a
where we get the last line from the previous using Lemma 9. Hence,
Q) is true for n =r + 1. O
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