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1. Introduction

The Fibonacci and Lucas sequences Fn and Ln are defined by the
recurrence relations

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for n > 3,

and

L1 = 1, L2 = 3, Ln = Ln−1 + Ln−2 for n > 3.

We consider sums of squares of odd and even terms of the Lucas
sequence and sums of their products. These sums have nice represen-
tations as products of appropriate Fibonacci and Lucas numbers.

Let uk = F2k−1, sk = L2k−1, vk = F2k, tk = L2k, Uk = u2
k, Sk = s2

k,
Vk = v2

k and Tk = t2k denote odd and even terms of the Fibonacci and
Lucas sequences and their squares. The note [1] includes formulas

for the sums
∑j

i=0 Uk+i,
∑j

i=0 Vk+i and
∑j

i=0 uk+i vk+i that improved
some results from [4]. The purpose of this paper is to establish similar

results for the sums
∑j

i=0 Sk+i,
∑j

i=0 Tk+i and
∑j

i=0 sk+i tk+i.

2. Lucas even squares

The following lemma is needed to accomplish the inductive step in
the proof of our first theorem.

Lemma 1. For every m > 0 and k > 1 the following equality holds:

Sm+1 + Tk+m + 5 vm uk uk+m = 5 vm+1 uk uk+m+1. (2.1)

Proof. In terms of the Fibonacci and Lucas sequences the relation (2.1)
becomes

L2
2m+1 + L2

2k+2m + 5 F2k−1 [F2k+2m−1 F2m − F2m+2 F2k+2m+1] = 0. (2.2)
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When we apply the formula (I12) from [2] which says that L2
n is equal

to 5 F 2
n + 4 (−1)n the relation (2.2) transforms into

F 2
2m+1 + F 2

2k+2m + F2k−1 [F2k+2m−1 F2m − F2m+2 F2k+2m+1] = 0. (2.3)

Let α = 1+
√

5
2

and β = 1−
√

5
2

. Note that β = −

1
α
. By the Binet formula

Fk is equal to αk−βk

α−β
(see [2] and [3]). It follows that the left hand side

of (2.3) is equal to α3 M
(α2+1)3

, where M is the expression

α4m+3 + α4 m+1 + α−4m−1 + α−4 m−3 + α4 k+4m+1 + α4 k+4m−1+

α−4 k−4m+1 + α−4 k−4m−1 + α4 m+4 k−2 + α4 m
− α−4 m

−

α−4 k−4m+2
− α4m+2+4 k

− α4 m+4 + α−4 m−4 + α−4 k−4 m−2.

The sixteen terms of M can be considered as four groups of four terms
that have similar exponents. The first group is

α4m+3 + α4 m+1 + α4 m
− α4 m+4 = −α4 m

(

α2
− α − 1

) (

α2 + 1
)

= 0

because α is the root of the equation x2
− x − 1 = 0. One can see

similarly that the other three groups are zero. Hence, M = 0 and the
proof is complete. �

Theorem 1. For every m > 0 and k > 1 the following equality holds:

αm +

m
∑

i=0

Tk+i = 5 vm+1 uk uk+m+1, (2.4)

where the sequence αm is defined as follows:

αm =

{

1, if m = 0;

αm−1 + Sm+1, if m > 1.

Proof. The proof is by induction on m. For m = 0 the relation (2.4) is
1 + L2

2k = 5 F2k−1 F2k+1 which is true by formulas (I12) and (I13) in [2].
Assume that the relation (2.4) is true for m = r. Then

αr+1 +

r+1
∑

i=0

Tk+i = αr + Sr+2 + Tk+r+1 +

r
∑

i=0

Tk+i =

Sr+2 + Tk+r+1 + 5 vr+1 uk uk+r+1 = 5 v(r+1)+1 uk uk+(r+1)+1,

where the last step uses Lemma 1 for m = r + 1. Hence, (2.4) is true
for m = r + 1 and the proof is completed. �
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Remark 1. In a similar way it is possible to prove also: For every m > 0
and k > 1 the following equality holds:

α′
m +

m
∑

i=0

Tk+i = 5 vm+1 uk+1 uk+m, (2.5)

where the sequence α′
m is defined as follows:

α′
m =

{

1, if m = 0;

1 + αm−1, if m > 1.

Indeed, this follows easily from Theorem 1 with the help of the relation:

Sm+1 − 1 = 5 vm+1 [uk uk+m+1 − uk+1 uk+m].

3. Lucas odd squares

The following lemma is needed to accomplish the inductive step in
the proof of our second theorem.

Lemma 2. For every m > 0 and k > 1 the following equality holds:

Sk+m+1 + Tm+1 + 5 vm+1 uk uk+m = 5 vm+2 uk uk+m+1. (3.1)

Proof. In terms of the Fibonacci and Lucas sequences the left hand
side Q of the relation (3.1) is

L2
2k+2m+1 + L2

2m+2 + 5 F2k−1 [F2k+2m−1 F2m+2 − F2m+4 F2k+2m+1].

When we apply the formula (I12) from [2] to Q it becomes 5 Q∗ with

Q∗ = F 2
2m+2 + F 2

2k+2m+1 + F2k−1 [F2k+2m−1 F2m+2 − F2m+4 F2k+2m+1].

It follows that Q∗ is equal to
(α2−α−1)(α2−4 α−1)(A4+α2)(α6 A4 B8+1)

(α2+1)2α4 A4 B4
, where

A = αk and B = αm. Hence, Q∗ = 0 because α is the root of the equa-
tion x2

− x − 1 = 0. �

Theorem 2. For every m > 0 and k > 1 the following equality holds:

βm +
m

∑

i=0

Sk+i = 5 vm+1 uk uk+m, (3.2)

where the sequence βm is defined as follows:

βm =

{

4, if m = 0;

βm−1 + Tm, if m > 1,
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Proof. The proof is by induction on m. For m = 0 the relation (3.2) is
4 + L2

2k−1 = 5 F 2
2k−1 which is true by the formula (I12) in [2]. Assume

that the relation (3.2) is true for m = r. Then

βr+1 +

r+1
∑

i=0

Sk+i = βr + Tr+1 + Sk+r+1 +

r
∑

i=0

Sk+i =

Tr+1 + Sk+r+1 + 5 vr+1 uk uk+r = 5 v(r+1)+1 uk uk+(r+1),

where the last step uses Lemma 2. Hence, (3.2) is true also for m = r + 1
and the proof is complete. �

Remark 2. The alternative result to Theorem 2 is the following state-
ment: For every m > 0 and k > 1 the following equality holds:

β ′
m +

m
∑

i=0

Sk+i = 5 vm+1 uk+1 uk+m−1, (3.3)

where the sequence β ′
m is defined as follows:

β ′
m =

{

9, if m = 0;

β ′
m−1 + Tm, if m > 1.

4. Lucas products

With the following lemma we shall make the inductive step in the
proof of the third theorem.

Lemma 3. For every m > 0 and k > 1 the following equality holds:

sm+2 tm+2 + sk+m+1 tk+m+1 + 5 vm+1 uk vk+m = 5 vm+2 uk vk+m+1. (4.1)

Proof. In terms of the Fibonacci and Lucas sequences the relation (4.1)
is equivalent to R = 0, where R is L2k+2m L2k+2m+1 + L2m+2 L2m+3+
5 F2k−1 [F2k+2m F2m+2 − F2m+4 F2k+2m+2]. It follows that R is equal to
(α2−α−1)(α2−4 α−1)(α2+A4)(α2AB2−1)(α2AB2+1)(α4A2B4+1)

(α2+1)2α5A4B4
, with A = αk and

B = αm. Hence, R = 0 since α2
− α − 1 = 0. �

Theorem 3. For every m > 0 and k > 1 the following equality holds:

γm +
m

∑

i=0

sk+i tk+i = 5 vm+1 uk vk+m, (4.2)

where the sequence γm is defined as follows:

γm =

{

2, if m = 0;

γm−1 + sm+1 tm, if m > 1.
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Proof. The proof is by induction on m. For m = 0 the relation (4.2)
is 2 + L2k−1 L2k = 5 F2k−1 F2k which is true. Indeed, if A = αk and
B = βk, then the difference 2 + L2k−1 L2k − 5 F2k−1 F2k is zero since it
reduces to 10 (AB − 1) (AB + 1) and α β = −1.

Assume that the relation (4.2) is true for m = r. Then

γr+1 +

r+1
∑

i=0

sk+i tk+i = γr + sr+2 tr+1 + sk+r+1 tk+r+1 +

r
∑

i=0

sk+i tk+i =

sr+2 tr+1 + sk+r+1 tk+r+1 + 5 vr+1 uk vk+r = 5 v(r+1)+1 uk vk+(r+1),

where the last step uses Lemma 3. Hence, (4.2) is true also for m = r + 1.
�

Remark 3. The alternative result to Theorem 3 is the following state-
ment: For every m > 0 and k > 1 the following equality holds:

γ′
m +

m
∑

i=0

sk+i tk+i = 5 vm+1 vk+2 uk+m−2, (4.3)

where the sequence γ ′
m is defined as follows:

γ′
m =

{

77, 89, 91, if m = 0, 1, 2;

γ′
m−1 − sm−2 tm−2, if m > 3.

5. Computer experimental solutions

In the rest of this note we describe how one can discover these re-
sults and check the above proofs with the help of the computer. The
presentation is for the software Maple V.

The input with(combinat): calls the package that contains the func-
tion fibonacci that computes the terms of the Fibonacci sequence. We
first define functions fF, fL, fu, fv, fU, fV, fs, ft, fS, fT, and fT1

that give terms of the sequences Fk, Lk, uk, vk, Uk, Vk, sk, tk, Sk, Tk

and the left hand side of (2.4).

fF:=x->fibonacci(x): fL:=x->fF(2*x)/fF(x): fu:=x->fF(2*x-1):

fv:=x->fF(2*x): fU:=x->fu(x)ˆ2: fV:=x->fv(x)ˆ2:

fs:=x->fL(2*x-1):ft:=x->fL(2*x): fS:=x->fs(x)ˆ2:

fT:=x->ft(x)ˆ2: fT1:=(a,m,k)->a+sum(fT(k+i),i=0..m):

The following procedure tests for values a and k between a0 and a1 and

k0 and k1 and for given values m and n if the quotient q = fT1(a, m, k)
fu(k+n)

is an integer and prints out a, k, and q (factored into primes).

gT1:=proc(a0,a1,m,k0,k1,n) local a,k,q;for a from a0 to

a1 do for k from k0 to k1 do q:=fT1(a,m,k)/fu(k+n):
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if denom(q)=1 then print([a,k,ifactor(q)]);fi:od;od;end:

The input gT1(1,1000,2,17,17,n); for n = 0 and n = 3 is asking to
determine among first thousand integers the number α3 that makes the
quotient q of the left hand side of the formula (2.4) for m = 2 by uk+n

an integer for k = 17. The outputs [138, 17, (2)4(5)(233)(135721)] and
[138, 17, (2)4(5)(89)(19801)] indicate that α3 = 138 is a good candi-
date. This is "confirmed" when we input gT1(138,138,2,1,100,0);

and gT1(138,138,2,1,100,3); whose outputs are all integers as the
third term in each of the hundred triples. All this suggests to modify
gT1 as follows:

gT1:=proc(a0,a1,m,k0,k1) local a,k,q;for a from a0 to a1

do for k from k0 to k1 do q:=fT1(a,m,k)/fu(k)/fu(k+3)/5:

if denom(q)=1 then print([a,k,ifactor(q)]);fi:od;od;end:

With the new function the command gT1(138,138,2,1,100); has for
output the same number 8 as the third term in each of the hundred
triples.

When we repeat this for values of m between 0 and 4 we discover
that numbers αm and the third terms are 1, 17, 138, 979, 6755 and 1, 3,
8, 21, 55 (i. e., F2, F4, F6, F8, F10). Of course, some experimentation is
needed to figure out the correct indices of u’s on the right sides. These
five values are sufficient to discover the rule by which αm’s are built.
All other formulas in this paper are discovered by similar procedures.

It remains to explain how to invoke the help of the computer in the
proof of Lemmas 1 – 3. We shall prove only Lemma 1 because the
proofs for Lemmas 2 and 3 are analogous.

We first define the function that expresses the Binet formula and
make the assumption that α > 0 and that m and k are positive integers.

a:=alpha:b:=-1/a:f:=x->(1/(a-b))*(aˆx-bˆx):

assume(alpha>0):assume(m,posint):assume(k,posint):

The numerator of the left hand side of (2.3) is evaluated by the the
following input.

N:=numer(simplify(f(2*m+1)ˆ2+f(2*k+2*m)ˆ2+

f(2*k-1)*(f(2*k+2*m-1)*f(2*m)-f(2*k+2*m+1)*f(2*m+2))));
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The output is the expression:

α6+4 m + α4 m+4 + α2−4 m + α−4 m + α4 k+4+4m + α4 k+4m+2+

α−4 k+4−4m + α−4 k−4m+2 + α1+4 k+4m
− α3−4 m

− α5+4 k+4m+

α−1−4 m + α3+4 m
− α5−4 k−4m

− α4m+7 + α1−4 k−4 m.

The first group of four terms with similar exponents consists of the
first, the second, the thirteenth and the fifteenth term.

fG:=factor(expand((op(1,N)+op(2,N)+

op(13,N)+op(15,N))/alphaˆ(4*m)));

The output −α3 (α2 + 1) (α2
− α − 1) is zero because α is the root of

the equation x2
− x − 1 = 0.

In the same fashion we argue that the other three groups are zero so
that N = 0 and the relation (2.3) has been proved.
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