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Abstract. This paper explores the locus of butterfly points of a
quadrangle ABCD in the plane. These are the common midpoints
of three segments formed from intersections of a butterfly line with
the lines AB, CD, AD, BC, AC, and BD. The locus is the
nine-point-conic of ABCD that goes through the midpoints of the
segments AB, CD, AD, BC, AC, and BD. We also consider
the problem to determine when two quadrangles share the nine-
point-conic. Our proofs use analytic geometry of the rectangular
Cartesian coordinates.

1. Introduction

The classical Butterfly Theorem claims that whenever chords AB

and CD of a circle γ intersect at the midpoint S of the third chord PQ

then S is also the midpoint of the segments XY and UV formed by
the intersections X, Y , U , and V of the lines AD, BC, AC, and BD

with the line PQ (see Figure 1).

PSfrag replacements

A

B

C

D

P

Q
S

U

V

O

X Y

γ

Figure 1. The point S is the body and the triangles
ADS and BCS are the wings of the butterfly.
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In recent years there has been a considerable activity in improving
this interesting result. First it was observed in [23] that the line PQ

could be replaced by any line ` in the plane of the circle and take for the
point S the projection of the center O of γ onto `. This was extended
by the first author in [2] and [3] where the circle is replaced by any
conic γ, the point S is a point on line of symmetry z of γ and the line `

is the perpendicular to z at S. The reference [24] contains yet another
improvement of this by replacing the line of symmetry z with any line
` and taking for the point S the intersection of ` with the diameter of
the conic γ which is conjugate to the line `.

A further extension is accomplished in the first author’s article [4]
where he introduced the following technical definition in order to get
shorter statements.

A pair (`, S) consisting of a line ` and a point S on it is said to have
the butterfly property with respect to the quadrangle ABCD provided
S is a common midpoint of segments `a`c, `b`d and `e`f , where `a,
`b, `c, `d, `e, and `f are intersections of ` with lines AB, BC, CD,
DA, AC, and BD. In this situation we shall write (`, S) ./ ABCD

or ` ./
S

ABCD and use also the phrase "the line ` has the butterfly

property with respect to ABCD at the point S". Of course, we consider
lines ` and quadrangles ABCD for which all six intersections `a, `b, `c,
`d, `e, and `f are well-defined points in the (finite) plane.

The main results in [4] show that for most points S in the plane of
a conic γ there is a unique line ` such that (`, S) ./ ABCD holds for
every quadrangle ABCD inscribed to γ.

The article [22] explores for a given cyclic quadrangle ABCD what
is the locus of all projections S of the circumcentre O of ABCD on
lines ` with the property that the relation (`, S) ./ ABCD holds.

This locus is shown to be the equilateral hyperbola that goes through
the circumcentre O and the midpoints of segments AB, AC, AD, BC,
BD, and CD. It also goes through the intersection of diagonals (AC

and BD) and the intersections (AB ∩ CD and AD ∩ BC) of opposite
sides.

The goal of this paper is to lift the assumption that ABCD is a cyclic
quadrangle from results in [22]. Our approach is through the analytic
geometry. Perhaps some or all of our results could be proved synthet-
ically (see the last sentence on page 61 of [22]). However, with this
miraculous method in [22] only a very special case of cyclic quadran-
gles was covered. We hope that one can not impose methods of proofs
and discovery in mathematics and that with computers our "heavy cal-
culations" are in fact far easier to follow for an average person than to
master projective or affine geometry.
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2. Butterfly points of strong quadrangles

In order to avoid repetitions of the phrase "without parallel dia-
gonals or parallel opposite sides" we first introduce a broad class of
quadrangles that will be subjects of our investigation.

We shall say that the quadrangle ABCD is strong provided the lines
AB, AC, and AD intersect in the points E, F , and G with the lines
CD, BD, and BC. The triangle EFG is called the diagonal triangle
of ABCD.

Let ABCD be a quadrangle in the plane. A point S from this plane
is called a butterfly point of ABCD or a βABCD-point if there is a line
` through S such that the relation (`, S) ./ ABCD is true.

Let us begin with a technical result which clarifies our definition of
the relation (`, S) ./ ABCD. It shows that it suffices to require that
only midpoints of two among segments `a`c, `b`d and `e`f coincide.

Lemma 1. Let ABCD be a strong quadrangle. Let a line ` intersect
the lines AB, BC, CD, DA, AC and BD in the points `a, `b, `c, `d, `e

and `f . Let Mac, Mbd and Mef be midpoints of the segments `a`c, `b`d

and `e`f . If any two of these midpoints coincide then they all coincide.

Proof (in Cartesian coordinates). We assume that the points A, B, C

and D have the rectangular Cartesian coordinates (0, 0), (1, 0), (u, v)
and (U, V ). Let u0 = u U , v0 = v V , u1 = u V , v1 = v U , u2 = u − U ,
v2 = v − V , w = v1 − u1, W = v1 + u1. Let f x + g y + h = 0 be the
equation of the line `. Note that f 2 + g2 6= 0. Solving linear equations
we easily find coordinates of all points and discover that the distances
|Mac Mbd|, |Mac Mef | and |Mbd Mef | are the absolute values of M K

2 α γ β δ
,

M K
2 α γ εϕ

and M K
2 β δ εϕ

, where α = f , β = (u − 1) f + v g, γ = u2 f + v2 g,

δ = U f + V g, ε = u f + v g, ϕ = (U − 1) f + V g, K =
√

f 2 + g2, M

= f(v2 − w)(u0f
2 + Wf g + v0 g2) + h(Tf 2 + 2 v0 u2 fg + v0 v2 g2) and

T = w − v1 U + u u1. That the lemma holds is now obvious. �

Our first theorem is a version of Theorem 3 in [22] that holds for all
strong quadrangles and not only for the ones inscribed to a circle.

Theorem 1. For any strong quadrangle ABCD the locus of all βABCD-
points is the nine-point-conic c9 = c9(ABCD) that goes through the
vertices of its diagonal triangle EFG and through the midpoints of
segments AB, BC, CD, DA, AC, and BD.

Proof. In this proof we shall use the same assumption and notation
about the points A, B, C and D as we did in the proof of Lemma 1.

Let P (p, q) be a βABCD-point. Let f x + g y − f p − g q = 0 be the
equation of the line ` with the property that P is the common mid-
point of segments `a`c, `b`d, and `e`f . (Note that the real number
f can not be zero because then the lines ` and AB would be par-
allel.) This is true provided the following two conditions Ki hold
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Figure 2. The quadrangle ABCD with its nine-point-conic.

(ai f − 2 bi g) p + (2 Ai f − Bi g) q + Ci = 0, with indices i = 1, 2 and
with coefficients a1 = B1 = −v2, b1 = 0, a2 = B2 = V − W , b2 = v0,
A1 = u, A2 = u0 − U , C1 = w and C2 = f v1 + g v0. Since in each equa-
tion Ki the variable f appears linearly we can solve it easily and get
two quotients Qi for values of f . Hence, it must be Q1 − Q2 = 0. The
difference on the left hand side has the following polynomial

c9 = c9(ABCD) = 2 k1 p2 − 4 k2 p q + 2 k3 q2 − k4 p + k5 q + k6

as the only factor that could be zero, where k1 = v0 v2, k2 = v0 u2,
k3 = w + u u1 − U v1, k4 = v0 (v2 + 2 w), k5 = v2

1 − u2
1 + u1 (V + 2 v)−

v1 (v + 2 V ) and k6 = v0 w. We conclude that the locus of all βABCD-
points is a conic whose equation is c9 = 0. It is now easy to check that
the midpoints A′, B′, C ′, D′, E ′, and F ′ of segments AB, BC, CD,
DA, AC, and BD as well as the vertices E, F , and G of the diagonal
triangle lie on this conic. �

Theorem 2. Let ABCD be a strong quadrangle. The circumcircle O

of the triangle ABC is a βABCD-point if and only if either ABC has a
right angle or ABCD is a cyclic quadrangle.

Proof. This follows immediately from the fact that the value of the
polynomial c9 for p = 1

2
and q = u2+v2

−u
2 v

(the coordinates of the cir-
cumcircle of the triangle ABC) is the quotient

u (u2 + v2 − u) (1 − u) (v(U 2 + V 2 − U) − (u2 + v2 − u)V )

2 v2

and that v(p2 + q2 − p) − (u2 + v2 − u) q = 0 is the equation of the cir-
cumcircle of the triangle ABC. �
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An easy consequence of Theorem 2 is the following corollary which
includes Theorem 3 in [22]. We also describe precisely what are the
lines with the butterfly property in this situation.

Corollary 1. The nine-point conic c9 of a strong cyclic quadrangle
ABCD is an equilateral hyperbola which goes through the center O of
its circumcircle.

For P = O let ` = `P be the normal of the equilateral hyperbola c9

in O and for every point P ∈ c9 \ {O} let ` = `P be the perpendicular
at P to the segment OP . Then the line ` has the property that P is
a common midpoint of segments `a`c, `b`d, and `e`f , where `a, `b, `c,
`d, `e, and `f are intersections of ` with lines AB, BC, CD, DA, AC,
and BD.

Proof. The first part is an easy consequence of Theorem 2 and the fol-
lowing two well-known theorems. A strong quadrangle ABCD is cyclic
if and only if the circumcenter O of the triangle ABC is the orthocenter
of its diagonal triangle EFG. A conic which goes through the vertices
and the orthocenter of a triangle is an equilateral hyperbola.

In order to prove the second part, which describes precisely the posi-
tion of the line with the butterfly property, we must repeat the proof of
Theorem 1 under the assumption that A = T (0), B = T (u), C = T (v),

and D = T (w) are points on the unit circle, where T (x) =
(

1−x2

1+x2 ,
2 x

1+x2

)

.

Let s1 = u + v + w, s2 = v w + w u + u v and s3 = u v w. The equation
of c9 is

(s1 − s3)p
2 + 2(s2 − s3)pq + (s3 − s1)q

2 − (s3 + s1)p + 2 q = 0

and the parameter u is β(2(1−v w)p+(s1−s3)q−2)
(s1−s3)p+2 u(v+w)q−s1−s3

. Since the perpendicular

at P to the line OP is p x + q y − p2 − q2 = 0 we conclude that this line
will agree with the butterfly line f x + g y − f p − g q = 0 if and only
if P satisfies the above equation of the equilateral hyperbola c9. When
P = O, then the normal to c9 at P and the butterfly line of the same
point of course both have the equation 2 x + (s1 + s3) y = 0. �

3. Centers as butterfly points

Our next theorem shows that the center of a conic through the ver-
tices of a triangle ABC will be the butterfly point of a strong quadran-
gle ABCD if and only if the point D is on this conic. It could therefore
be regarded as a converse of Theorem 3 in [4].

Theorem 3. Let ABCD be a strong quadrangle. The center S of a
nondegenerate conic Γ through the vertices of the triangle ABC is a
βABCD-point if and only if D lies on Γ.

Proof. In this proof we shall use the same assumption about the points
A, B, C and D as we did in the proof of Lemma 1 and Theorem 1.



6 ZVONKO ČERIN AND GIAN MARIO GIANELLA

PSfrag replacements

A

B

C

D

Z

`

Γ

Figure 3. The center Z of a conic Γ through the vertices
of ABC is a βABCD-point if and only if D is on Γ.

A conic has the equation

a x2 + 2 b xy + c y2 + 2 d x + 2 e y + f = 0.

When we substitute coordinates of points A, B and C for x and y

and solve these linear equations in d, e and f , we conclude that the
equation of our conic Γ that goes through the vertices of ABC is

Γ(x, y) = v Q(x, y) − Q(u, v) y = 0,

where Q is a function that takes (x, y) into a x2 + 2 b x y + c y2 − a x.
Let T = Q(u, v).

The above conic will have a center (i. e., it will be either an ellipse
or a hyperbola) provided ∆ = a c − b2 6= 0. Then the center S is the

point (a c v−b T
2 v ∆

,
a (T−b v)

2 v ∆
).

Let Sx and Sy denote the coordinates of S. The equation of a line `

through S is f x + g y − f Sx − g Sy = 0, for some real numbers f and
g with f 2 + g2 6= 0.

We can evaluate |MacS| and |MbdS| to find that they are absolute

values of
(f Pj+g Qj) K

4 v ∆ Sj Tj
for j = 1, 2 with with S1 = α, S2 = β, T1 = γ,

T2 = δ, P1 = 2 v w ∆ + %(a, b)T − a v %(b, c), Q1 = a v2(T − b v), P2 =
2 v v1 ∆ + σ(a, b)T − a v σ(b, c), Q2 = 2 v v0 ∆ + τ(a, b)T − a v τ(b, c),
%(a, b) = 2 a u2 + b v2, σ(a, b) = 2 a U(u − 1) + b (W − V ) and τ(a, b)
= a (W − V ) + 2 b v0 (for our notation see the proof of Lemma 1).
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Let us assume for the moment that Q1 6= 0. Then the center S is the
midpoint Mac if and only if g = − f P1

Q1

. Substituted into f P2 + g Q2

this value gives 2 k Γ(U, V )
a v2

, where k = (a(u − 1) + b v)(a u + b v).

When the point D lies on the conic Γ then Γ(U, V ) = 0 so that S is
also the midpoint Mbd. Hence, S is the βABCD-point by Lemma 1.

Conversely, if S is the βABCD-point then k Γ(U, V ) = 0. In other
words, either Γ(U, V ) = 0 (when the point D lies on the conic Γ), or
a u + b v = 0, or a (u − 1) + b v = 0. When a u + b v = 0 then b = − a u

v

so that the center of Γ is the midpoint Ag of the segment BC and
the line ` agrees with the line BC. In this situation the point `b is not
determined which implies that a u + b v = 0 can not happen. Similarly,

when a (u − 1) + b v = 0 then b = a(1−u)
v

so that the center of Γ is the
midpoint Bg of the segment AC and the line ` agrees with the line AC

and we again conclude that a (u − 1) + b v = 0 can not happen.
Note that Q1 is equal to zero provided either a = 0 or v − V = 0 or

T − b v = 0. When T − b v = 0, then c = a u(1−u)+b v(1−2 u)
v2 and S = Cg,

the midpoint of the segment AB. Also, f Pj + g Qj =
f k Fj

v
where F1

and F2 are v2 − 2 w and V + w. It follows that the center Cg is the
βABCD-point if and only if either f = 0 or F1 = 0 and F2 = 0. If f = 0,
then the line ` agrees with the line AB which can not happen for the
similar reason which prevents a u + b v = 0 and a (u − 1) + b v = 0 to
hold. On the other hand, F1 = 0 and F2 = 0 only for U = 1 − u and
V = −v when ABCD is a parallelogram which is ruled out by our
assumption that ABCD is a strong quadrangle.

It remains to consider the case a(v − V ) = 0. Of course, there are
two subcases a = 0 and V = v. Since the ordinate of the vertex C is
also v we infer that the second subcase is impossible because the lines
AB and CD would be parallel.

When a = 0, then the center S of Γ is the point
(

2 b u+c v
2 b

, 0
)

on the
line AB and the conic Γ degenerates into two lines (AB and CS) which
we prohibited with our assumptions. �

Remark 1. One can wonder if the statement of Theorem 3 is completely
true. Like in the particular case formulated in Theorem 2, there should
be an exception, when S is located on a side of the triangle ABC. Then
D can be anywhere provided the quadrangle ABCD is still strong.

The following Figure 4 shows that the last claim is wrong.
On this figure ABCD is a strong quadrangle (its diagonal triangle

EFG is well-defined), the point S is on the side AB of the triangle
ABC and the center of the circumcircle of ABC but it is not the
βABCD-point because for any line through S the point S can not be the
midpoint of the segment `a`c, where `a = S and `c are the intersections
of the line ` with the lines AB and CD.

The above theorem gives the possibility to describe every nondege-
nerate conic through the vertices of a triangle ABC using the butterfly
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property of its center. In particular, we have the following result for
the Feuerbach, Jarabek, and Kiepert equilateral hyperbolas of ABC.
In the statement we use central points from [15].

Recall that the equilateral hyperbola which goes through the points
A, B, C, H (or X4 – the orthocenter), and I (or X1 – the incenter) is
the Feuerbach hyperbola of the triangle ABC. When the fifth point
is G (or X2 – the centroid) we talk of the Kiepert hyperbola and for
O (or X3 – the circumcenter) as the fifth point we have the Jarabek
hyperbola of the triangle ABC.

Corollary 2. Let ABCD be a strong quadrangle. The central points
X11, X115, and X125 of the triangle ABC are βABCD-points if and only
if D lies on the Feuerbach, Kiepert, and Jarabek equilateral hyperbola
of ABC, respectively.

Proof. It is well-known that the centers of the three famous named
hyperbolas of the triangle are the central points X11 (of the Feuerbach
hyperbola), X115 (of the Kiepert hyperbola), and X125 (of the Jarabek
hyperbola) (see [16]) so that we can apply Theorem 3 to obtain the
desired conclusion. �

Another version of Theorem 3 is the following statement which was
formulated for cyclic quadrangles in [22] as Theorem 4.

Theorem 4. Let ABCD be a strong quadrangle. The locus of centers
S of all nondegenerate conics Γ through the vertices of ABCD is the
nine-point-conic c9 of the quadrangle ABCD.

Proof. We shall make the same assumptions about points A, B, C, and
D as in the proof of Theorem 3. Replacing x and y with U and V in
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the polynomial Γ(x, y) we can solve for c to obtain that the equation
of a nondegenerate conic through the vertices of ABCD is

v0 v2 x(a x + 2 b y − a) + [(v1 U − u1 u − w) a − 2 v0 u2 b] y2

+ [(v1 v − u1 V − w W ) a − 2 v0 w b] y = 0.

Its center S is

(

u1 α(u, v) β(V )−v1 α(U, V ) β(v)
2 (% a2+2 σ a b+τ b2)

,
a (V 2 γ(u, v)−v2 γ(U, V ))

2 (% a2+2 σ a b+τ b2)

)

, where

α(u, v) = a(u − 1) + 2 b v, β(V ) = a − b V , % = u1 u − v1 U + w, σ =
u1 v − v1 V , τ = v0 v2 and γ(u, v) = a u(u − 1) + b v(2 u − 1).

In order to obtain the locus of these centers we will eliminate the
real variable b. This could be done as follows.

Let the coordinates of S be x and y. Let H = v2 x − w, G = −%,
F = v2 − 2 w, E = v v1 − V u1 − w W . After the multiplication by the
denominator of x and transfer of terms on the left hand side we get the
following equations (e1) and (e2).

(2 x − 1)G a2 − 2 v0 H b2 + [4 v0 u2 x + E + 2(U v1 − v u1)] a b = 0,

[E + 2 G y]a2 − 2 v0 v2 y b2 − v0 [4 u2 y − F ] a b = 0.

We multiply (e1) by v2 y and (e2) by H, make their difference, and

solve for b. We get b = a (E H+F G y)
M

, where M = Ky − v0FH and K =
u2

1(V +3v)+v2
1(3V +v) − 4u0v0(V +v)+v0(u1(V +2v) − v1(2V +v)).

Substituting this value back into (e1) and (e2) we obtain L H Θ
M2 = 0

and a L y Θ
M2 = 0, where L = a2 v2 w(v − w)(V − w)(v2 − w) and Θ = v0 x

(2 H − 4 u2 y − v2)+2(u u1 − U v1+w) y2+(2vu1 − 2V v1 − E) y+v0w.
It is easy to check that Θ = 0 is in fact the equation of the nine-

point-conic c9 of ABCD because the coordinates of the midpoints of
segments AB, AC, AD, BC, BD, and CD satisfy it.

On the other hand, if a = 0 then the conic degenerates into two lines
and if either v2 = 0, w = 0, v − w = 0, V − w = 0, or v2 − w = 0, then
the quadrangle ABCD is not strong which happens also when H = 0
and y = 0 (i. e., when U = 1 − u and V = −v). �

4. Quadrangles sharing the nine-point-conics

The last Theorem 5 in the reference [22] considers the question if
different quadrangles can share the same nine-point-conic. It shows
that for any cyclic quadrangle ABCD with the circumcenter O and for
any circle with center at O which intersects the lines AB and CD in
points P , R and Q, S the quadrangles ABCD and PQRS have the
same nine-point-hyperbola (see Figure 4, i. e., Figures 6 – 8 in [22]
without honeycombs).

We shall now prove an analogous result for an arbitrary strong quad-
rangle ABCD. We discover that there is a conic ω with the property
that for any of it points there is a simple construction σ that gives a
quadrangle PQRS that shares the nine-point-conic with ABCD.
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Figure 5. Cyclic quadrangles ABCD and PQRS with
the concentric circumcircles and the identical nine-point-
hyperbolas.

The steps of the construction σ go as follows. Let ABCD be a strong
quadrangle. Let A′ and C ′ be midpoints of segments AB and CD.
Let X be a point different from A′ and C ′. Let P be the orthogonal
projection of X on the line AB and let Q denote the intersection of
the line CD and the parallel through X to the line AB. Let R and
S denote the reflections of points P and Q at the points A′ and C ′,
respectively. We shall say that PQRS is obtained from X and ABCD

by the construction σ and write PQRS = σ(X, ABCD).
Of course, when ABCD is a cyclic quadrangle with the circumcen-

ter O and k is any circle with center at O which intersects the lines
AB and CD in points P , R and Q, S then for the intersection X of
the perpendicular at P and the parallel at Q to the line AB we have
PQRS = σ(X, ABCD) so that our construction σ includes the one
from [22] as a special case (see Figure 4).

Theorem 5. Let ABCD be a strong quadrangle. The locus of all points
X with the property that the quadrangles PQRS = σ(X, ABCD) and
ABCD share the nine-point-conic is a conic ω. The conics c9 and ω

are of the same type. The lines of symmetry of the conic ω are the
perpendicular bisector of the segment AB and the parallel to AB at the
midpoint of the segment CD.
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Figure 6. The quadrangles PQRS = σ(X, ABCD)
and ABCD share the nine-point-conic if and only if X

is on the conic ω.

Proof. We shall retain notation from the proofs of Theorems 3 and
4. Let the coordinates of the point X be s and t. Then the ver-
tices of the quadrangle PQRS have coordinates P (s, 0), R(1 − s, 0),

Q
(

w+t u2

v2

, t
)

, and S
(

uv−U V −t u2

v2

, v + V − t
)

. It is clear that the nine-

point-conics of ABCD and PQRS coincide if and only if the midpoints
Q′ and S ′ of the segments QR and SP are on c9 = c9(ABCD). Note
that Q′A′S ′C ′ is a parallelogram (see Figure 5).

Recall that the equation of the conic c9 is Θ = 0. If we substitute
the coordinates of either Q′ or S ′ for x and y in Θ we shall get Ψ

2 v2

,
where

Ψ = v0 v2
2 s (s − 1) + w(v2 − w)(t2 − (v + V ) t + v0).

We conclude that if the coordinates of the point X satisfy the condition
Ψ = 0 then the quadrangles PQRS and ABCD will have the same
nine-point-conic. Hence, the locus of points X is indeed a conic ω.
Since the D-invariants (the expression a c − b2 whose sign determines
the type of the conic) of c9 and ω are 4 v0 w(v2 − w) and v2

2 v0 w(v2 − w)
it follows that c9 and ω are of the same type. The possibility that
D(ω) = 0 and D(c9) 6= 0 (for V = v) is ruled out by the assumption
that ABCD is a strong quadrangle.

The statement about the lines of symmetry of the conic ω is easily
checked by substitution. More precisely, if X is a point on ω then
its reflection (1 − s, t) at the perpendicular bisector of the segment
AB and its reflection (s, v + V − t) at the parallel to AB through the
midpoint of CD are also on ω. �
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