CONFIGURATIONS ON CENTERS OF BANKOFF CIRCLES

ZVONKO ČERIN

Abstract

We study configurations built from centers of Bankoff circles of arbelos erected on sides of a given triangle or on sides of various related triangles.

1. Introduction

For points X and Y in the plane and a positive real number λ, let Z be the point on the segment $X Y$ such that $|X Z|:|Z Y|=\lambda$ and let $\zeta=\zeta(X, Y, \lambda)$ be the figure formed by three mutually tangent semicircles σ, σ_{1}, and σ_{2} on the same side of segments $X Y, X Z$, and $Z Y$ respectively. Let S, S_{1}, S_{2} be centers of $\sigma, \sigma_{1}, \sigma_{2}$. Let W denote the intersection of σ with the perpendicular to $X Y$ at the point Z. The figure ζ is called the arbelos or the shoemaker's knife (see Fig. 1).

Figure 1. The $\operatorname{arbelos} \zeta=\zeta(X, Y, \lambda)$, where $\lambda=\frac{|X Z|}{|Z Y|}$.

It has been the subject of studies since Greek times when Archimedes proved the existence of the circles $\omega_{1}=\omega_{1}(\zeta)$ and $\omega_{2}=\omega_{2}(\zeta)$ of equal radius such that ω_{1} touches σ, σ_{1}, and $Z W$ while ω_{2} touches σ, σ_{2}, and $Z W$ (see Fig. 2).

[^0]

Figure 2. The Archimedean circles ω_{1} and ω_{2} together.
In [1] Bankoff discovered that the circumcircle $\omega_{3}=\omega_{3}(\zeta)$ of the triangle $M N Z$ has the same radius as the Archimedean twin circles ω_{1} and ω_{2}, where $M=\sigma_{3} \cap \sigma_{1}$ and $N=\sigma_{3} \cap \sigma_{2}$ and σ_{3} is the circle that touches σ from inside and σ_{1} and σ_{2} from outside (see Fig. 3).

Figure 3. The Bankoff circle ω_{3} and the circle σ_{3}.
The purpose of this paper is to study triangles on centers of the Bankoff circles of arbelos either on sides of an arbitrary triangle $A B C$ or on sides of some of its associated triangles.

More precisely, our first goal is to prove the following theorem (see Fig. 4). All other results in this paper are similar.

Let τ denote the base triangle $A B C$. Then τ_{b} is a short notation for its first Brocard triangle $A_{b} B_{b} C_{b}$. Its vertices are the orthogonal projections of the symmedian point K onto the perpendicular bisectors of sides (see [6]). Let $\zeta_{a}=\zeta_{a}(\tau)=\zeta(B, C, \lambda), \zeta_{b}=\zeta_{b}(\tau)=\zeta(C, A, \lambda)$
and $\zeta_{c}=\zeta_{c}(\tau)=\zeta(A, B, \lambda)$. Let W^{a}, W^{b}, W^{c} denote centers of $\omega_{3}\left(\zeta_{a}\right)$, $\omega_{3}\left(\zeta_{b}\right), \omega_{3}\left(\zeta_{c}\right)$, respectively.

Recall that triangles τ and $\theta=X Y Z$ are homologic and we write $\tau\rangle \theta$ provided lines $A X, B Y$, and $C Z$ are concurrent. The point Q in which they concur is their homology center and the line ℓ containing intersections of pairs of lines $(B C, Y Z),(C A, Z X)$, and $(A B, X Y)$ is their homology axis. In this situation we also use the notation $\tau\langle Q ; \ell\rangle \theta$ where ℓ and/or Q can be omitted. For Q and ℓ sometimes we use $\langle\tau, \theta\rangle$ and $\langle\langle\tau, \theta\rangle\rangle$. In stead of homologic, homology center, and homology axis many authors use perspective, perspector, and perspectrix.
Theorem 1. For every $\lambda \geq 0$ the triangle $W^{a} W^{b} W^{c}$ on the centers of Bankoff circles of arbelos on sides of a triangle τ is homologic to its Brocard triangle τ_{b}. The centre of this homology lies on the Brocard circle of τ (i.e., on the circumcircle of τ_{b}). The triangles τ, τ_{b}, and $W^{a} W^{b} W^{c}$ have the same centroid.

Figure 4. The triangle $W^{a} W^{b} W^{c}$ and the first Brocard triangle $A_{b} B_{b} C_{b}$ are homologic.

2. Bankoff circle ω_{3}

Let $X(x, a)$ and $Y(y, b)$. Then $S\left(\frac{x+y}{2}, \frac{a+b}{2}\right)$ is the midpoint of the segment $X Y$. Since $\frac{|X Z|}{|Z Y|}=\lambda$, the point Z is $\left(\frac{x+\lambda y}{\lambda+1}, \frac{a+\lambda b}{\lambda+1}\right)$. Moreover, semicircles σ_{1} and σ_{2} have centres at $\left(\frac{(\lambda+2) x+\lambda y}{2(\lambda+1)}, \frac{(\lambda+2) a+\lambda b}{2(\lambda+1)}\right)$ and $\left(\frac{x+(2 \lambda+1) y}{2(\lambda+1)}, \frac{a+(2 \lambda+1) b}{2(\lambda+1)}\right)$ (the midpoints of segments $X Z$ and $\left.Z Y\right)$.

Our goal now is to find the center and the radius of the unique circle ω_{3} in the arbelos ζ which touches the semicircles σ_{1} and σ_{2} from outside and the semicircle σ from inside.

Let its centre be the point $S_{3}(p, q)$ and the radius a positive real number ϱ. Let $A=x-y$ and $B=a-b$.

Since σ_{3} touches σ from inside, the distance $\left|S_{3} S\right|$ is equal to the difference $\frac{1}{2} \sqrt{A^{2}+B^{2}}-\varrho$ of their radii. This condition leads to the relation

$$
\begin{equation*}
\left(p-\frac{x+y}{2}\right)^{2}+\left(q-\frac{a+b}{2}\right)^{2}=\left(\frac{\sqrt{A^{2}+B^{2}}}{2}-\varrho\right)^{2} . \tag{1}
\end{equation*}
$$

Since σ_{3} touches σ_{1} and σ_{2} from outside, the distances $\left|S_{3} S_{1}\right|$ and $\left|S_{3} S_{2}\right|$ are equal to the sums $\varrho+\frac{\lambda \sqrt{A^{2}+B^{2}}}{2(\lambda+1)}$ and $\varrho+\frac{\sqrt{A^{2}+B^{2}}}{2(\lambda+1)}$ of their radii. It follows that

$$
\begin{align*}
& \left(p-\frac{(\lambda+2) x+\lambda y}{2(\lambda+1)}\right)^{2}+\left(q-\frac{(\lambda+2) a+\lambda b}{2(\lambda+1)}\right)^{2}=\left(\varrho+\frac{\lambda \sqrt{A^{2}+B^{2}}}{2(\lambda+1)}\right)^{2}, \tag{2}\\
& \left(p-\frac{x+(2 \lambda+1) y}{2(\lambda+1)}\right)^{2}+\left(q-\frac{a+(2 \lambda+1) b}{2(\lambda+1)}\right)^{2}=\left(\varrho+\frac{\sqrt{A^{2}+B^{2}}}{2(\lambda+1)}\right)^{2} .
\end{align*}
$$

These equations have two solutions in p, q, and ϱ. We shall use the solution $\varrho=\frac{\lambda \sqrt{A^{2}+B^{2}}}{2\left(\lambda^{2}+\lambda+1\right)}$ and

$$
S_{3}\left(\frac{(\lambda+2) x+\lambda(2 \lambda+1) y-2 \lambda(a-b)}{2\left(\lambda^{2}+\lambda+1\right)}, \frac{(\lambda+2) a+\lambda(2 \lambda+1) b+2 \lambda(x-y)}{2\left(\lambda^{2}+\lambda+1\right)}\right)
$$

It is now easy to find the coordinates of the points M and N because we know that they divide the segments $S_{1} S_{3}$ and $S_{2} S_{3}$ in the ratio of the radii of the circles σ_{1}, σ_{3} and σ_{2}, σ_{3}. Hence,

$$
\begin{aligned}
& M\left(\frac{(\lambda+2) x+\lambda(\lambda+1) y-\lambda(a-b)}{\lambda^{2}+2 \lambda+2}, \frac{(\lambda+2) a+\lambda(\lambda+1) b+\lambda(x-y)}{\lambda^{2}+2 \lambda+2}\right) \\
& N\left(\frac{(\lambda+1) x+\lambda(2 \lambda+1) y-\lambda(a-b)}{2 \lambda^{2}+2 \lambda+1}, \frac{(\lambda+1) a+\lambda(2 \lambda+1) b+\lambda(x-y)}{2 \lambda^{2}+2 \lambda+1}\right)
\end{aligned}
$$

The circumcircle ω_{3} of the triangle $M N Z$ has the radius $\frac{\lambda \sqrt{A^{2}+B^{2}}}{2(\lambda+1)^{2}}$ (of the Archimedean twin circles) and its center is at the point

$$
W_{3}\left(\frac{x+\lambda y}{\lambda+1}-\frac{\lambda(a-b)}{2(\lambda+1)^{2}}, \frac{a+\lambda b}{\lambda+1}+\frac{\lambda(x-y)}{2(\lambda+1)^{2}}\right) .
$$

Remark 1. It is possible to prove the above by inversion (see [9, p. 224]). But, since in this paper we use analytic approach, we need functions that describe coordinates of the center of the Bankoff's circle. Behind the scene we work in rectangular coordinates with complicated expressions and then transfer the results into trilinear coordinates where the expressions are often much simpler.

3. Proof of Theorem 1

In our proofs we shall use trilinear coordinates. Recall that the actual trilinear coordinates of a point P with respect to the triangle $A B C$ are signed distances f, g, and h of P from the lines $B C, C A$, and $A B$. We shall regard P as lying on the positive side of $B C$ if P lies on the same side of $B C$ as A. Similarly, we shall regard P as lying on the positive side of $C A$ if it lies on the same side of $C A$ as B, and similarly with regard to the side $A B$. Ordered triples $x: y: z$ of real numbers proportional to (f, g, h) (that is such that $x=\mu f, y=\mu g$, and $z=\mu h$, for some real number μ different from zero) are called trilinear coordinates of P. The advantage of their use is that a high degree of symmetry is present so that it usually suffices to describe part of the information and the rest is self evident. For example, when we write $X_{1}(1)$ or $I(1)$ or simply say I is 1 this indicates that the incenter has trilinear coordinates $1: 1: 1$. We gave only the first coordinate while the other two are cyclic permutations of the first. Similarly, $X_{2}\left(\frac{1}{a}\right)$ or $G\left(\frac{1}{a}\right)$ say that the centroid has has trilinears $\frac{1}{a}: \frac{1}{b}: \frac{1}{c}$, where a, b, c are lengths of sides of $A B C$. We use X_{n} to denote the n-th central point of the triangle $A B C$ (see [8]). The expressions in terms of sides a, b, and c can be shortened using the following notation.

$$
\begin{gathered}
d_{a}=b-c, \quad d_{b}=c-a, \quad d_{c}=a-b, \quad z_{a}=b+c, \quad z_{b}=c+a, \quad z_{c}=a+b, \\
t=a+b+c, \quad t_{a}=b+c-a, \quad t_{b}=c+a-b, \quad t_{c}=a+b-c, \\
m=a b c, \quad m_{a}=b c, \quad m_{b}=c a, \quad m_{c}=a b, \quad T=\frac{1}{4} \sqrt{t t_{a} t_{b} t_{c}}
\end{gathered}
$$

For an integer n, let $t_{n}=a^{n}+b^{n}+c^{n}$ and $d_{n a}=b^{n}-c^{n}$ and similarly for other cases.

In order to achieve even greater economy in our presentation, we shall describe coordinates or equations of only one object from triples of related objects and use cyclic permutations φ and ψ to obtain the rest. For example, the first vertex A_{b} of the first Brocard triangle τ_{b} of τ has trilinears $a b c: c^{3}: b^{3}$. Then the trilinears of B_{b} and C_{b} need not be described because they are easily figured out and memorized by relations $B_{b}=\varphi\left(A_{b}\right)$ and $C_{b}=\psi\left(A_{b}\right)$. One must remember always that transformations φ and ψ are not only permutations of letters but also of positions, i. e., if P has trilinear coordinates $f_{1}(a, b, c): f_{2}(a, b, c): f_{3}(a, b, c)$, then the associated points $Q=\varphi(P)$ and $R=\psi(P)$ have $f_{3}(b, c, a): f_{1}(b, c, a): f_{2}(b, c, a)$ and $f_{2}(c, a, b): f_{3}(c, a, b): f_{1}(c, a, b)$ for trilinear coordinates. Note that $\psi=\varphi^{-1}$. Therefore, the trilinears of B_{b} and C_{b} are $c^{3}: a b c: a^{3}$ and $b^{3}: a^{3}: a b c$.

The trilinear coordinates of W^{a} are

$$
-2 \lambda a: \frac{\left(t_{2 c}+8 T\right) \lambda+8 T}{b}: \frac{\left(t_{2 b}+8 T\right) \lambda+8 T \lambda^{2}}{c} .
$$

The equation of the line $W^{a} A_{b}$ is

$$
\left(8 c^{2} T \lambda^{2}-d_{2 a}\left(t_{2}+8 T\right) \lambda-8 b^{2} T\right) x-a b \lambda\left(8 T \lambda+t_{2}+8 T\right) y+a c\left(\left(t_{2}+8 T\right) \lambda+8 T\right) z=0
$$

It is now easy to check that the determinant from the coefficients of the lines $W^{a} A_{b}, W^{b} B_{b}$, and $W^{c} C_{b}$ is zero. Hence, $W^{a} W^{b} W^{c}\langle \rangle \tau_{b}$.

The first trilinear coordinate of $\left\langle W^{a} W^{b} W^{c}, \tau_{b}\right\rangle$ is

$$
a\left(64 b^{2} T^{2} \lambda^{4}-8 T\left(a^{2}-2 b^{2}\right)\left(t_{2}+8 T\right) \lambda^{3}+U \lambda^{2}-8 T\left(a^{2}-2 c^{2}\right)\left(t_{2}+8 T\right) \lambda+64 c^{2} T^{2}\right),
$$

where $U=16 t_{2} t_{2 a} T+7 a^{6}-21 z_{2 a} a^{4}+\left(17 z_{4 a}+2 m_{a}^{2}\right) a^{2}+\left(b^{2}-3 c^{2}\right)\left(c^{2}-3 b^{2}\right) z_{2 a}$. By simple substitution we can check that this point lies on the Brocard circle of τ whose equation is $m \sum x^{2}-\sum a^{3} y z=0$. Of course, the same could be proved by eliminating the parameter λ. Finally, the verification of the statement about the centroids is easily accomplished in rectangular coordinates.

4. The dual of Theorem 1

It is interesting that in Theorem 1 we can interchange triangles τ and τ_{b}. Let W_{b}^{a} denote the center of the Bankoff circle for the arbelos $\zeta\left(B_{b}, C_{b}, \lambda\right)$. The points W_{b}^{b} and W_{b}^{c} are defined similarly.

Theorem 2. For every $\lambda \geq 0$ the triangle $W_{b}^{a} W_{b}^{b} W_{b}^{c}$ is homologic with the triangle τ. The locus of the homology center $\left\langle W_{b}^{a} W_{b}^{b} W_{b}^{c}, \tau\right\rangle$ is a part of a quartic that goes through the vertices of τ and its Tarry point X_{98}. The triangles τ, τ_{b}, and $W_{b}^{a} W_{b}^{b} W_{b}^{c}$ have the same centroid.

Proof. The trilinear coordinates of W_{b}^{a} are

$$
\frac{8 T\left(b^{2} \lambda^{2}+c^{2}\right)+\lambda U}{a}: \frac{8 T\left(a^{2} \lambda^{2}+b^{2}\right)+\lambda V}{b}: \frac{8 T\left(c^{2} \lambda^{2}+a^{2}\right)+\lambda W}{c}
$$

with $U=8 T z_{2 a}+2 a^{4}-z_{2 a} a^{2}+d_{2 a}^{2}, V=8 T z_{2 a}-a^{4}+a^{2} c^{2}-b^{2} d_{2 a}$, $W=8 T z_{2 b}-a^{4}+a^{2} b^{2}+c^{2} d_{2 a}$. The equation of the line joining A with W_{b}^{a} is

$$
b\left[8 T\left(c^{2} \lambda^{2}+a^{2}\right)+\lambda W\right] y-c\left[8 T\left(a^{2} \lambda^{2}+b^{2}\right)+\lambda V\right] z=0
$$

It is now easy to check that the determinant from the coefficients of the lines $W_{b}^{a} A, W_{b}^{b} B$, and $W_{b}^{c} C$ is zero. Hence, $W_{b}^{a} W_{b}^{b} W_{b}^{c}\langle \rangle \tau$.

The first trilinear coordinate of $D=\left\langle W_{b}^{a} W_{b}^{b} W_{b}^{c}, \tau\right\rangle$ is

$$
\frac{1}{a\left[8 T\left(b^{2} \lambda^{2}+c^{2}\right)+\lambda\left(z_{2 a}\left(8 T+a^{2}\right)-z_{4 a}\right)\right]}
$$

By simple substitution we can check that this point lies on the quartic Γ whose equation is

$$
\sum b c y z\left[2 a^{2} x^{2} P+b c y z Q\right]=0
$$

with $P=8 P_{1} P_{2} T+P_{3}$ and $Q=Q_{1} Q_{2}-16 T a^{2}\left(a^{4}-m_{2 a}\right) P_{2}$, where $P_{1}=z_{4 a} a^{2}-m_{2 a} z_{2 a}, P_{2}=a^{4}-z_{2 a} a^{2}+z_{4 a}-m_{2 a}$,

$$
\begin{gathered}
P_{3}=\left(z_{4 a}+3 m_{2 a}\right) a^{8}-z_{2 a}^{3} a^{6}+m_{2 a}\left(2 z_{4 a}-m_{2 a}\right) a^{4}- \\
m_{2 a} z_{2 a}\left(2 z_{4 a}-3 m_{2 a}\right) a^{2}+m_{2 a}\left(\left(z_{4 a}-m_{2 a}\right)^{2}+m_{4 a}\right), \\
Q_{1}=a^{6}-z_{2 a} a^{4}-c^{2}\left(b^{2}-2 c^{2}\right) a^{2}-m_{2 a} d_{2 a}
\end{gathered}
$$

and

$$
Q_{2}=a^{6}-z_{2 a} a^{4}-b^{2}\left(c^{2}-2 b^{2}\right) a^{2}+m_{2 a} d_{2 a} .
$$

Of course, the same could be proved by eliminating the parameters λ and μ from the equations $D_{x}=\mu x, D_{y}=\mu y, D_{z}=\mu z$, where D_{x}, D_{y}, D_{z} are trilinear coordinates of the homology center D. It is easy to check that the quartic Γ goes through the vertices of τ and through its Tarry point X_{98} whose first trilinear coordinate is $\frac{1}{a\left(z_{2 a} a^{2}-z_{4 a}\right)}$. Finally, the verification of the statement about the centroids is easily accomplished in rectangular coordinates.

Theorem 3. For every $\lambda \geq 0$ the triangles $W^{a} W^{b} W^{c}$ and $W_{b}^{a} W_{b}^{b} W_{b}^{c}$ are homologic.

Proof. Since we know the trilinear coordinates for the vertices of both triangles $W^{a} W^{b} W^{c}$ and $W_{b}^{a} W_{b}^{b} W_{b}^{c}$ it is easy to write down the equations joining their corresponding vertices and verify that they concur again by calculating the determinant from the coefficients of these linear equations.

In this way, it is possible also to show the following homology relations: $W_{a}^{a} W_{a}^{b} W_{a}^{c}\langle \rangle \tau_{b}, W_{b}^{a} W_{b}^{b} W_{b}^{c}\langle \rangle \tau_{a}, W_{g}^{a} W_{g}^{b} W_{g}^{c}\langle \rangle \tau_{b}, W_{b}^{a} W_{b}^{b} W_{b}^{c}\langle \rangle \tau_{g}$, $W_{x}^{a} W_{x}^{b} W_{x}^{c}\langle \rangle \tau_{y}, W_{y}^{a} W_{y}^{b} W_{y}^{c}\langle \rangle \tau_{x}$, where $\tau_{a}, \tau_{g}, \tau_{x}$, and τ_{y} denote the anticomplementary, the complementary, and the two Napoleon triangles of τ. The loci of their homology centers are quartics that go through few points related to τ.

Another group of interesting homology relations appears when we consider two triangles and we build an arbelos with the same parameter λ on each side of both.

Let $\tau_{0}=\tau$. Let τ_{u} and τ_{v} be Torricelli triangles of τ (whose vertices are apexes of equilateral triangles erected on sidelines towards either all inwards or all outwards). For the following pairs: $(0, u),(0, v),(0, x)$, $(0, y),(a, b),(a, u),(a, v),(a, x),(a, y),(b, g),(b, u),(b, v),(b, x)$, $(b, y),(g, u),(g, v),(g, x),(g, y),(u, v),(u, x),(u, y),(v, x),(v, y)$, and (x, y), the relation $W_{p}^{a} W_{p}^{b} W_{p}^{c}\langle \rangle W_{q}^{a} W_{q}^{b} W_{q}^{c}$ holds, where p is the first and q is the second member of the pair. The loci of the centers of these homologies are curves of order six. Moreover, if τ_{m} and τ_{n} are homothetic triangles, then $W_{m}^{a} W_{m}^{b} W_{m}^{c}\langle \rangle W_{n}^{a} W_{n}^{b} W_{n}^{c}$. The homology center agrees with the center of the homothety.

5. Arbelos on Apollonian segments

Let U and V be the points on sideline $B C$ met by the interior and exterior bisectors of angle A. The circle having diameter $U V$ is the A-Apollonian circle and its center the midpoint A_{π} of $U V$ is the A Apollonian point. The B - and C - Apollonian circles and points are similarly constructed. Each circle passes through one vertex and both isodynamic points X_{15} and X_{16}. The Apollonian points $A_{\pi}, B_{\pi}, C_{\pi}$ are collinear and we regard them as vertices of degenerate triangle τ_{π}. The trilinear coordinates of A_{π} are $0: b:-c$.

It is known $[6, \mathrm{p} .118]$ that the midpoints A_{c}, B_{c}, C_{c} of the chords of the circumcircle containing the vertex and the symmedian point K are vertices of the second Brocard triangle τ_{c} of τ. The trilinear coordinates of A_{c} are $\frac{t_{2 a}}{a}: b: c$.
Theorem 4. For every $\lambda \geq 0$ the second Brocard triangle τ_{c} of τ is homologic to the triangle $W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}$. The locus of the homology center $\left\langle W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}, \tau_{c}\right\rangle$ for a scalene triangle τ is a part of a parabola.

Proof. The trilinear coordinates of W_{π}^{a} are $k_{1}: k_{2}: k_{3}$ with

$$
\begin{gathered}
k_{1}=a\left(8 T\left(d_{2 b} \lambda^{2}-d_{2 c}\right)+\left(8 T\left(z_{2 a}-2 a^{2}\right)+a^{2} z_{2 a}-z_{4 a}\right) \lambda\right), \\
k_{2}=\lambda b\left(8 T d_{2 b}(\lambda+1)-b^{2} z_{2 b}+z_{4 b}\right) \\
k_{3}=c\left(\left(8 T d_{2 c}+c^{2} z_{2 c}-z_{4 c}\right) \lambda+8 T d_{2 c}\right) .
\end{gathered}
$$

The equation of the line joining A_{c} with W_{π}^{a} is

$$
a b c E x+c F y+b G z=0
$$

where $E=8 T\left(d_{2 b} \lambda^{2}+d_{2 c}\right)-\lambda E_{1}, E_{1}=d_{2 a}\left(t_{2}+8 T\right), F=8 T\left(a^{2} d_{2 b}\right.$ $\left.\lambda^{2}-d_{2 c} z_{2 a}\right)-\lambda F_{1}, F_{1}=F_{2}+8 T F_{3}, F_{2}=a^{6}-\left(2 z_{2 a}+c^{2}\right) a^{4}+2 z_{4 a} a^{2}$ $-b^{2} d_{2 a} z_{2 a}, F_{3}=a^{4}-b^{2} t_{2 a}, G=8 T\left(d_{2 b} z_{2 a} \lambda^{2}+a^{2} d_{2 c}\right)-\lambda G_{1}, G_{1}=$ $G_{2}+8 T G_{3}, G_{2}=a^{6}-\left(2 z_{2 a}+b^{2}\right) a^{4}+2 z_{4 a} a^{2}+c^{2} d_{2 a} z_{2 a}$, and $G_{3}=$ $a^{4}+c^{2} t_{2 a}$. It is now simple to check that the determinant from the coefficients of the lines joining the corresponding vertices of the triangles $W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}$ and τ_{c} is zero. Hence, $W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}\langle \rangle \tau_{c}$.

The first trilinear coordinate of $D=\left\langle W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}, \tau_{c}\right\rangle$ is

$$
a\left[8 T\left(b^{2} \lambda^{2}+c^{2}\right)+\lambda\left(z_{2 a}\left(8 T-a^{2}\right)+z_{4 a}\right)\right] .
$$

By simple substitution we can check that this point lies on the parabola Γ whose equation is

$$
\sum_{\text {cyclic }}\left[b c P x^{2}+2 a^{2} Q y z\right]=0,
$$

with $P=Q_{2} Q_{3}+16 a^{2}\left(a^{4}-m_{a}^{2}\right) T P_{2}$ and $Q=P_{3}-8 T P_{1} P_{2}$, where $P_{1}, P_{2}, P_{3}, Q_{2}$, and Q_{3} have been defined in the proof of Theorem 2. Of course, the same could be proved by eliminating the parameters λ and μ from the equations $D_{x}=\mu x, D_{y}=\mu y, D_{z}=\mu z$, where D_{x}, D_{y}, D_{z} are trilinear coordinates of the homology center D. It is easy to check
that the focus of the parabola Γ is at the central point with the first trilinear coordinate $a\left(16 T z_{2 a}+3\left(a^{2} z_{2 a}-z_{4 a}\right)\right)$ and that its directrix has the equation

$$
\sum_{\text {cyclic }} b c\left[16\left(a^{4}-m_{a}^{2}\right) T+5 a^{2} P_{2}\right] x=0 .
$$

Theorem 5. For every real number $\lambda \geq 0$, the triangles $W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}$ and τ_{π} are homologic. For a scalene triangle τ, the locus of the homology center $\left\langle W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}, \tau_{\pi}\right\rangle$ is a part of a parabola.

Figure 5. The triangle $W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}$ and the triangle $A_{\pi} B_{\pi} C_{\pi}$ on Apollonian points are homologic.

Proof. The equation of the line joining A_{π} with W_{π}^{a} is

$$
b c U x+c a V y+a b V z=0,
$$

with U and V equal to $8(\lambda+1)\left(\lambda d_{2 b}+d_{2 c}\right) T+\lambda\left(2 a^{4}-z_{2 a} a^{2}+d_{2 a}^{2}\right)$ and $8(\lambda+1)\left(\lambda d_{2 b}+d_{2 c}\right) T+\lambda\left(z_{2 a} a^{2}-z_{4 a}\right)$, respectively. It is now easy to check that the determinant from the coefficients of the lines joining the corresponding vertices of the triangles $W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}$ and τ_{π} is zero. Hence, $W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}\langle \rangle \tau_{\pi}$.

The first trilinear coordinate of $D=\left\langle W_{\pi}^{a} W_{\pi}^{b} W_{\pi}^{c}, \tau_{\pi}\right\rangle$ is

$$
a\left[8 T\left(d_{2 b} \lambda^{2}-d_{2 c}\right)+\lambda\left(8 T\left(z_{2 a}-2 a^{2}\right)+a^{2} z_{2 a}-z_{4 a}\right)\right] .
$$

By direct substitution we can check that this point lies on the parabola Γ whose equation is

$$
\sum_{c y c l i c}\left[b c\left(t_{2 b} t_{2 c}-16 a^{2} T\right) x^{2}+2 a^{2}\left(2 m_{2 a}-a^{2} t_{2 a}-8 z_{2 a} T\right) y z\right]=0
$$

It is easy to check that the focus of the parabola Γ is at the central point with the first trilinear coordinate $a\left(3\left(z_{4 a}-a^{2} z_{2 a}\right)+16 T\left(z_{2 a}-2 a^{2}\right)\right)$ and that its directrix has the equation

$$
\sum_{\text {cyclic }} b c\left[8 T(\lambda+1)\left(\lambda d_{2 b}+d_{2 c}\right)+\lambda\left(2 a^{4}-z_{2 a} a^{2}+d_{2 a}^{2}\right)\right] x=0 .
$$

In a similar way one can prove the following theorem for the triangle τ_{ε} whose vertices are points of intersection of external angle bisectors with the corresponding sidelines. These points are collinear so that τ_{ε} is also a degenerate triangle.

Theorem 6. The triangles τ_{ε} and $W_{\varepsilon}^{a} W_{\varepsilon}^{b} W_{\varepsilon}^{c}$ are homologic for every real number $\lambda \geq 0$. For a scalene triangle τ, the locus of the homology center $\left\langle W_{\varepsilon}^{a} W_{\varepsilon}^{b} W_{\varepsilon}^{c}, \tau_{\varepsilon}\right\rangle$ is a part of a parabola.

Remark 2. In the above results we have always build arbelos outwards. Of course, it is possible to build them inwards with similar conclusions. For example, in Theorem 1 in stead of the points W^{a}, W^{b}, W^{c} we can take the centers of the Bankoff circles of arbelos $\zeta\left(C, B, \frac{1}{\lambda}\right), \zeta\left(A, C, \frac{1}{\lambda}\right)$, $\zeta\left(B, A, \frac{1}{\lambda}\right)$. With these extended concept of building arbelos on sides of triangles our statements about loci are true without the words "part of". Another possibility is to allow negative values for the parameter λ and drop out arbelos altogether by considering vertices P, Q, R of three similar triangles $B C P, C A Q, A B R$ build on sides of a triangle. In this form our results are closely related to the following 19th century results:
(1) The centers of similitude of each pair of these triangles are the vertices of the Brocard's second triangle.
(The center of similitude of two similar figures is the unique point such that a suitable rotation and a dilatation with that point as center transforms one figure into the other.)
(2) Three homologous lines through the vertices of the Brocard's first triangle meet on the Brocard's circle.
(3) If a triangle is formed by three homologous lines its symmedians pass through the vertices of the Brocard's second triangle and meet at a point on the Brocard's circle.
(see [4, pp. 189-204] and [7, pp. 302-312]).

References

[1] Bankoff, L. Are the Twin Circles of Archimedes Really Twins? Math. Mag. 47, 214-218, 1974.
[2] Bankoff, L. How Did Pappus Do It? In The Mathematical Gardner (Ed. D. Klarner). Boston, MA: Prindle, Weber, and Schmidt, pp. 112-118, 1981.
[3] Bankoff, L. The Marvelous Arbelos, In The Lighter Side of Mathematics (Ed. R. K. Guy and R. E. Woodrow). Washington, DC: Math. Assoc. Amer., 1994
[4] J. Casey, A sequel to Euclid, Hodges, Figgis and Co. (Dublin), 5th ed., 1888.
[5] C. W. Dodge, T. Schoch, P. Y. Woo, and P. Yiu, Those Ubiquitous Archimedean Circles, Math. Mag. 72 (1999), 202-213.
[6] Ross Honsberger, Episodes in nineteenth and twentieth century Euclidean geometry, The Mathematical Association of America, New Mathematical Library no. 37 Washington, 1995.
[7] R. A. Johnson, Advanced Euclidean Geometry, Dover Publications (New York), 1960.
[8] Clark Kimberling, Central points and central lines in the plane of a triangle, Mathematics Magazine, 67 (1994), 163-187.
[9] I. D'Ignacio and E. Suppa, Il problema geometrico, Interlinea Editrice (Teramo), 2001.
[10] Woo, P. The Arbelos, http://www.woopy.woo.org/math/arbelos.htm.
[11] Woo, P. Y. Simple Construction for the Incircle of an Arbelos, Forum Geom. 1, 133-136, 2001. http://forumgeom.fau.edu/FG2001volume1/FG200119index.html.
[12] Yiu, P. The Archimedean Circles in the Shoemaker's Knife, Lecture at the 31st Annual Meeting of the Florida Section of the Math. Assoc. Amer., Boca Raton, FL, March 6-7, 1998

Kopernikova 7, 10010 Zagreb, CROATIA, Europe
E-mail address: cerin@math.hr

[^0]: 1991 Mathematics Subject Classification. Primary 51N20, 51M04, Secondary 14A25, 14Q05.

 Key words and phrases. arbelos, Bankoff circle, triangle, central point, Brocard triangle, homologic.

