
CONFIGURATIONS ON CENTERS

OF BANKOFF CIRCLES

ZVONKO ČERIN

Abstract. We study configurations built from centers of Bankoff
circles of arbelos erected on sides of a given triangle or on sides of
various related triangles.

1. Introduction

For points X and Y in the plane and a positive real number λ,
let Z be the point on the segment XY such that |XZ| : |ZY | = λ

and let ζ = ζ(X, Y, λ) be the figure formed by three mutually tangent
semicircles σ, σ1, and σ2 on the same side of segments XY , XZ, and
ZY respectively. Let S, S1, S2 be centers of σ, σ1, σ2. Let W denote
the intersection of σ with the perpendicular to XY at the point Z. The
figure ζ is called the arbelos or the shoemaker’s knife (see Fig. 1).

PSfrag replacements

X YZS1
S S2

σ1

σ2

σ

Figure 1. The arbelos ζ = ζ(X, Y, λ), where λ = |XZ|
|ZY | .

It has been the subject of studies since Greek times when Archimedes
proved the existence of the circles ω1 = ω1(ζ) and ω2 = ω2(ζ) of equal
radius such that ω1 touches σ, σ1, and ZW while ω2 touches σ, σ2, and
ZW (see Fig. 2).
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Figure 2. The Archimedean circles ω1 and ω2 together.

In [1] Bankoff discovered that the circumcircle ω3 = ω3(ζ) of the
triangle MNZ has the same radius as the Archimedean twin circles ω1

and ω2, where M = σ3 ∩ σ1 and N = σ3 ∩ σ2 and σ3 is the circle that
touches σ from inside and σ1 and σ2 from outside (see Fig. 3).
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Figure 3. The Bankoff circle ω3 and the circle σ3.

The purpose of this paper is to study triangles on centers of the
Bankoff circles of arbelos either on sides of an arbitrary triangle ABC
or on sides of some of its associated triangles.

More precisely, our first goal is to prove the following theorem (see
Fig. 4). All other results in this paper are similar.

Let τ denote the base triangle ABC. Then τb is a short notation
for its first Brocard triangle AbBbCb. Its vertices are the orthogonal
projections of the symmedian point K onto the perpendicular bisectors
of sides (see [6]). Let ζa = ζa(τ) = ζ(B, C, λ), ζb = ζb(τ) = ζ(C, A, λ)
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and ζc = ζc(τ) = ζ(A, B, λ). Let W a, W b, W c denote centers of ω3(ζa),
ω3(ζb), ω3(ζc), respectively.

Recall that triangles τ and θ = XY Z are homologic and we write
τ 〈〉 θ provided lines AX, BY , and CZ are concurrent. The point Q in
which they concur is their homology center and the line ` containing
intersections of pairs of lines (BC, Y Z), (CA, ZX), and (AB, XY ) is
their homology axis. In this situation we also use the notation τ 〈Q; `〉 θ
where ` and/or Q can be omitted. For Q and ` sometimes we use 〈τ, θ〉
and 〈〈τ, θ〉〉. In stead of homologic, homology center, and homology
axis many authors use perspective, perspector, and perspectrix.

Theorem 1. For every λ ≥ 0 the triangle W aW bW c on the centers of
Bankoff circles of arbelos on sides of a triangle τ is homologic to its
Brocard triangle τb. The centre of this homology lies on the Brocard
circle of τ (i.e., on the circumcircle of τb). The triangles τ , τb, and
W aW bW c have the same centroid.
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Figure 4. The triangle W aW bW c and the first Brocard
triangle AbBbCb are homologic.

2. Bankoff circle ω3

Let X(x, a) and Y (y, b). Then S(x+y

2
, a+b

2
) is the midpoint of the

segment XY . Since |XZ|
|ZY | = λ, the point Z is

(

x+λy

λ+1
, a+λ b

λ+1

)

. More-

over, semicircles σ1 and σ2 have centres at
(

(λ+2) x+λ y

2(λ+1)
,

(λ+2) a+λ b

2(λ+1)

)

and
(

x+(2 λ+1) y

2(λ+1)
,

a+(2 λ+1) b

2(λ+1)

)

(the midpoints of segments XZ and ZY ).
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Our goal now is to find the center and the radius of the unique circle
ω3 in the arbelos ζ which touches the semicircles σ1 and σ2 from outside
and the semicircle σ from inside.

Let its centre be the point S3(p, q) and the radius a positive real
number %. Let A = x− y and B = a− b.

Since σ3 touches σ from inside, the distance |S3S| is equal to the
difference 1

2

√
A2 +B2 − % of their radii. This condition leads to the

relation

(1)
(

p −
x + y

2

)2

+

(

q −
a + b

2

)

2

=

(
√

A2 + B2

2
− %

)2

.

Since σ3 touches σ1 and σ2 from outside, the distances |S3S1| and |S3S2|
are equal to the sums % + λ

√
A2+B2

2 (λ+1)
and % +

√
A2+B2

2 (λ+1)
of their radii. It

follows that

(2)

(

p −
(λ + 2) x + λy

2 (λ + 1)

)

2

+

(

q −
(λ + 2) a + λ b

2 (λ + 1)

)

2

=

(

% +
λ
√

A2 + B2

2 (λ + 1)

)2

,

(3)

(

p −
x + (2 λ + 1) y

2 (λ + 1)

)

2

+

(

q −
a + (2 λ + 1) b

2 (λ + 1)

)

2

=

(

% +

√

A2 + B2

2 (λ + 1)

)2

.

These equations have two solutions in p, q, and %. We shall use the

solution % = λ
√

A2+B2

2 (λ2+λ+1)
and

S3

(

(λ + 2) x + λ (2 λ + 1) y − 2 λ (a − b)

2 (λ2 + λ + 1)
,

(λ + 2) a + λ (2 λ + 1) b + 2 λ (x − y)

2 (λ2 + λ + 1)

)

.

It is now easy to find the coordinates of the points M and N because
we know that they divide the segments S1S3 and S2S3 in the ratio of
the radii of the circles σ1, σ3 and σ2, σ3. Hence,

M

(

(λ + 2) x + λ (λ + 1) y − λ (a − b)

λ2 + 2 λ + 2
,

(λ + 2) a + λ (λ + 1) b + λ (x − y)

λ2 + 2 λ + 2

)

,

N

(

(λ + 1) x + λ (2 λ + 1) y − λ (a − b)

2 λ2 + 2 λ + 1
,

(λ + 1) a + λ (2 λ + 1) b + λ (x − y)

2 λ2 + 2 λ + 1

)

.

The circumcircle ω3 of the triangle MNZ has the radius λ
√

A2+B2

2 (λ+1)2
(of

the Archimedean twin circles) and its center is at the point

W3

(

x+ λ y

λ+ 1
− λ (a− b)

2 (λ+ 1)2
,
a + λ b

λ+ 1
+
λ (x− y)

2 (λ+ 1)2

)

.

Remark 1. It is possible to prove the above by inversion (see [9, p.
224]). But, since in this paper we use analytic approach, we need
functions that describe coordinates of the center of the Bankoff’s cir-
cle. Behind the scene we work in rectangular coordinates with compli-
cated expressions and then transfer the results into trilinear coordinates
where the expressions are often much simpler.
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3. Proof of Theorem 1

In our proofs we shall use trilinear coordinates. Recall that the actual
trilinear coordinates of a point P with respect to the triangle ABC are
signed distances f , g, and h of P from the lines BC, CA, and AB.
We shall regard P as lying on the positive side of BC if P lies on
the same side of BC as A. Similarly, we shall regard P as lying on
the positive side of CA if it lies on the same side of CA as B, and
similarly with regard to the side AB. Ordered triples x : y : z of real
numbers proportional to (f, g, h) (that is such that x = µf , y = µg,
and z = µh, for some real number µ different from zero) are called
trilinear coordinates of P . The advantage of their use is that a high
degree of symmetry is present so that it usually suffices to describe part
of the information and the rest is self evident. For example, when we
write X1(1) or I(1) or simply say I is 1 this indicates that the incenter
has trilinear coordinates 1 : 1 : 1. We gave only the first coordinate
while the other two are cyclic permutations of the first. Similarly,
X2(

1
a
) or G( 1

a
) say that the centroid has has trilinears 1

a
: 1

b
: 1

c
, where

a, b, c are lengths of sides of ABC. We use Xn to denote the n-th
central point of the triangle ABC (see [8]). The expressions in terms
of sides a, b, and c can be shortened using the following notation.

da = b− c, db = c− a, dc = a− b, za = b+ c, zb = c+ a, zc = a+ b,

t = a+ b + c, ta = b + c− a, tb = c+ a− b, tc = a+ b− c,

m = abc, ma = bc, mb = ca, mc = ab, T = 1
4

√
ttatbtc,

For an integer n, let tn = an + bn + cn and dna = bn − cn and similarly
for other cases.

In order to achieve even greater economy in our presentation, we
shall describe coordinates or equations of only one object from triples
of related objects and use cyclic permutations ϕ and ψ to obtain
the rest. For example, the first vertex Ab of the first Brocard trian-
gle τb of τ has trilinears abc : c3 : b3. Then the trilinears of Bb and
Cb need not be described because they are easily figured out and
memorized by relations Bb = ϕ(Ab) and Cb = ψ(Ab). One must re-
member always that transformations ϕ and ψ are not only permuta-
tions of letters but also of positions, i. e., if P has trilinear coor-
dinates f1(a, b, c) : f2(a, b, c) : f3(a, b, c), then the associated points
Q = ϕ(P ) and R = ψ(P ) have f3(b, c, a) : f1(b, c, a) : f2(b, c, a) and
f2(c, a, b) : f3(c, a, b) : f1(c, a, b) for trilinear coordinates. Note that
ψ = ϕ−1. Therefore, the trilinears of Bb and Cb are c3 : abc : a3 and
b3 : a3 : abc.

The trilinear coordinates of W a are

−2λ a :
(t2 c + 8T )λ+ 8T

b
:

(t2 b + 8T )λ+ 8T λ2

c
.
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The equation of the line W aAb is

(8 c2 T λ2 − d2a(t2 + 8 T ) λ − 8 b2 T ) x − a b λ (8 T λ + t2 + 8 T ) y + a c ((t2 + 8 T ) λ + 8 T ) z = 0.

It is now easy to check that the determinant from the coefficients of
the lines W aAb, W

bBb, and W cCb is zero. Hence, W aW bW c 〈〉 τb.
The first trilinear coordinate of 〈W aW bW c, τb〉 is

a (64 b2 T 2 λ4 − 8 T (a2 − 2 b2)(t2 + 8 T ) λ3 + U λ2 − 8 T (a2 − 2 c2)(t2 + 8 T ) λ + 64 c2 T 2),

where U = 16 t2 t2a T + 7 a6 − 21 z2a a4 + (17 z4a + 2 m2
a
) a2 + (b2 − 3 c2)(c2 − 3 b2) z2a . By

simple substitution we can check that this point lies on the Brocard
circle of τ whose equation is m

∑

x2 −
∑

a3 y z = 0. Of course, the
same could be proved by eliminating the parameter λ. Finally, the
verification of the statement about the centroids is easily accomplished
in rectangular coordinates.

4. The dual of Theorem 1

It is interesting that in Theorem 1 we can interchange triangles τ
and τb. Let W a

b denote the center of the Bankoff circle for the arbelos
ζ(Bb, Cb, λ). The points W b

b and W c
b are defined similarly.

Theorem 2. For every λ ≥ 0 the triangle W a
b W

b
bW

c
b is homologic with

the triangle τ . The locus of the homology center 〈W a
b W

b
bW

c
b , τ〉 is a

part of a quartic that goes through the vertices of τ and its Tarry point
X98. The triangles τ , τb, and W a

b W
b
bW

c
b have the same centroid.

Proof. The trilinear coordinates of W a
b are

8T (b2λ2 + c2) + λU

a
:

8T (a2λ2 + b2) + λV

b
:

8T (c2λ2 + a2) + λW

c
,

with U = 8T z2a + 2 a4 − z2a a
2 + d2

2a, V = 8T z2a − a4 + a2 c2 − b2 d2a,
W = 8T z2b − a4 + a2 b2 + c2 d2a. The equation of the line joining A

with W a
b is

b [8T (c2λ2 + a2) + λW ] y − c [8T (a2λ2 + b2) + λV ] z = 0.

It is now easy to check that the determinant from the coefficients of
the lines W a

b A, W b
bB, and W c

bC is zero. Hence, W a
b W

b
bW

c
b 〈〉 τ .

The first trilinear coordinate of D = 〈W a
b W

b
bW

c
b , τ〉 is

1

a [8T (b2 λ2 + c2) + λ (z2a(8T + a2) − z4a)]
.

By simple substitution we can check that this point lies on the quartic
Γ whose equation is

∑

b c y z [2 a2 x2 P + b c y z Q] = 0,
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with P = 8P1 P2 T + P3 and Q = Q1Q2 − 16T a2 (a4 −m2a)P2, where
P1 = z4a a

2 −m2a z2a, P2 = a4 − z2a a
2 + z4a −m2a,

P3 = (z4a + 3m2a) a
8 − z3

2a a
6 +m2a (2 z4a −m2a) a

4−
m2a z2a (2 z4a − 3m2a) a

2 +m2a ((z4a −m2a)
2 +m4a),

Q1 = a6 − z2a a
4 − c2 (b2 − 2 c2) a2 −m2a d2a,

and

Q2 = a6 − z2a a
4 − b2 (c2 − 2 b2) a2 +m2a d2a.

Of course, the same could be proved by eliminating the parameters λ
and µ from the equations Dx = µx, Dy = µ y, Dz = µ z, where Dx, Dy,

Dz are trilinear coordinates of the homology center D. It is easy to
check that the quartic Γ goes through the vertices of τ and through
its Tarry point X98 whose first trilinear coordinate is 1

a (z2a a2−z4a)
. Fi-

nally, the verification of the statement about the centroids is easily
accomplished in rectangular coordinates. �

Theorem 3. For every λ ≥ 0 the triangles W aW bW c and W a
b W

b
bW

c
b

are homologic.

Proof. Since we know the trilinear coordinates for the vertices of both
triangles W aW bW c and W a

b W
b
bW

c
b it is easy to write down the equa-

tions joining their corresponding vertices and verify that they concur
again by calculating the determinant from the coefficients of these lin-
ear equations. �

In this way, it is possible also to show the following homology rela-
tions: W a

aW
b
aW

c
a 〈〉 τb, W a

b W
b
bW

c
b 〈〉 τa, W a

gW
b
gW

c
g 〈〉 τb, W a

b W
b
bW

c
b 〈〉 τg,

W a
xW

b
xW

c
x 〈〉 τy, W a

yW
b
yW

c
y 〈〉 τx, where τa, τg, τx, and τy denote the an-

ticomplementary, the complementary, and the two Napoleon triangles
of τ . The loci of their homology centers are quartics that go through
few points related to τ .

Another group of interesting homology relations appears when we
consider two triangles and we build an arbelos with the same parameter
λ on each side of both.

Let τ0 = τ . Let τu and τv be Torricelli triangles of τ (whose vertices
are apexes of equilateral triangles erected on sidelines towards either all
inwards or all outwards). For the following pairs: (0, u), (0, v), (0, x),
(0, y), (a, b), (a, u), (a, v), (a, x), (a, y), (b, g), (b, u), (b, v), (b, x),
(b, y), (g, u), (g, v), (g, x), (g, y), (u, v), (u, x), (u, y), (v, x), (v, y),
and (x, y), the relation W a

pW
b
pW

c
p 〈〉W a

q W
b
qW

c
q holds, where p is the

first and q is the second member of the pair. The loci of the centers
of these homologies are curves of order six. Moreover, if τm and τn
are homothetic triangles, then W a

mW
b
mW

c
m 〈〉W a

nW
b
nW

c
n. The homology

center agrees with the center of the homothety.
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5. Arbelos on Apollonian segments

Let U and V be the points on sideline BC met by the interior and
exterior bisectors of angle A. The circle having diameter UV is the
A-Apollonian circle and its center the midpoint Aπ of UV is the A-
Apollonian point. The B- and C- Apollonian circles and points are
similarly constructed. Each circle passes through one vertex and both
isodynamic points X15 and X16. The Apollonian points Aπ, Bπ, Cπ are
collinear and we regard them as vertices of degenerate triangle τπ. The
trilinear coordinates of Aπ are 0 : b : −c.

It is known [6, p. 118] that the midpoints Ac, Bc, Cc of the chords of
the circumcircle containing the vertex and the symmedian point K are
vertices of the second Brocard triangle τc of τ . The trilinear coordinates
of Ac are t2a

a
: b : c.

Theorem 4. For every λ ≥ 0 the second Brocard triangle τc of τ is
homologic to the triangle W a

πW
b
πW

c
π. The locus of the homology center

〈W a
πW

b
πW

c
π, τc〉 for a scalene triangle τ is a part of a parabola.

Proof. The trilinear coordinates of W a
π are k1 : k2 : k3 with

k1 = a (8T (d2b λ
2 − d2c) + (8T (z2a − 2 a2) + a2 z2a − z4a)λ),

k2 = λ b (8T d2b (λ+ 1) − b2 z2b + z4b),

k3 = c ((8T d2c + c2 z2c − z4c)λ+ 8T d2c).

The equation of the line joining Ac with W a
π is

a b cE x + c F y + bG z = 0,

where E = 8T (d2b λ
2 + d2c) − λE1, E1 = d2a (t2 + 8T ), F = 8T (a2 d2b

λ2 − d2c z2a) − λF1, F1 = F2 + 8TF3, F2 = a6 − (2 z2a + c2)a4 + 2 z4aa
2

−b2 d2a z2a, F3 = a4 − b2 t2a, G = 8T (d2b z2a λ
2 + a2 d2c ) − λG1, G1 =

G2 + 8T G3, G2 = a6 − (2 z2a + b2) a4 + 2 z4a a
2 + c2 d2a z2a, and G3 =

a4 + c2 t2a. It is now simple to check that the determinant from the co-
efficients of the lines joining the corresponding vertices of the triangles
W a

πW
b
πW

c
π and τc is zero. Hence, W a

πW
b
πW

c
π 〈〉 τc.

The first trilinear coordinate of D = 〈W a
πW

b
πW

c
π, τc〉 is

a [8T (b2 λ2 + c2) + λ (z2a(8T − a2) + z4a)].

By simple substitution we can check that this point lies on the parabola
Γ whose equation is

∑

cyclic

[ b c P x2 + 2 a2Qy z ] = 0,

with P = Q2Q3 + 16 a2 (a4 −m2
a)T P2 and Q = P3 − 8T P1 P2, where

P1, P2, P3, Q2, and Q3 have been defined in the proof of Theorem 2. Of
course, the same could be proved by eliminating the parameters λ and
µ from the equations Dx = µx, Dy = µ y, Dz = µ z, where Dx, Dy, Dz

are trilinear coordinates of the homology center D. It is easy to check
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that the focus of the parabola Γ is at the central point with the first
trilinear coordinate a(16T z2a + 3 (a2 z2a − z4a)) and that its directrix
has the equation

∑

cyclic

b c [16 (a4 −m2
a)T + 5 a2 P2] x = 0.

�

Theorem 5. For every real number λ ≥ 0, the triangles W a
πW

b
πW

c
π and

τπ are homologic. For a scalene triangle τ , the locus of the homology
center 〈W a

πW
b
πW

c
π, τπ〉 is a part of a parabola.

PSfrag replacements
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Figure 5. The triangle W a
πW

b
πW

c
π and the triangle

AπBπCπ on Apollonian points are homologic.

Proof. The equation of the line joining Aπ with W a
π is

b c U x + c a V y + a b V z = 0,

with U and V equal to 8 (λ+ 1)(λ d2b + d2c)T + λ (2 a4 − z2a a
2 + d2

2a)
and 8 (λ+ 1)(λ d2b + d2c)T + λ (z2a a

2 − z4a), respectively. It is now
easy to check that the determinant from the coefficients of the lines
joining the corresponding vertices of the triangles W a

πW
b
πW

c
π and τπ is

zero. Hence, W a
πW

b
πW

c
π 〈〉 τπ.

The first trilinear coordinate of D = 〈W a
πW

b
πW

c
π, τπ〉 is

a [8T (d2b λ
2 − d2c) + λ (8T (z2a − 2 a2) + a2 z2a − z4a)].
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By direct substitution we can check that this point lies on the parabola
Γ whose equation is

∑

cyclic

[ b c (t2b t2c − 16 a2 T ) x2 + 2 a2 (2m2a − a2 t2a − 8 z2a T ) y z ] = 0.

It is easy to check that the focus of the parabola Γ is at the central point
with the first trilinear coordinate a (3 (z4a − a2 z2a) + 16T (z2a − 2 a2))
and that its directrix has the equation

∑

cyclic

b c [8T (λ+ 1)(λ d2b + d2c) + λ (2 a4 − z2a a
2 + d2

2a)] x = 0.

�

In a similar way one can prove the following theorem for the triangle
τε whose vertices are points of intersection of external angle bisectors
with the corresponding sidelines. These points are collinear so that τε

is also a degenerate triangle.

Theorem 6. The triangles τε and W a
ε W

b
εW

c
ε are homologic for every

real number λ ≥ 0. For a scalene triangle τ , the locus of the homology
center 〈W a

ε W
b
εW

c
ε , τε〉 is a part of a parabola.

Remark 2. In the above results we have always build arbelos outwards.
Of course, it is possible to build them inwards with similar conclusions.
For example, in Theorem 1 in stead of the points W a, W b, W c we can
take the centers of the Bankoff circles of arbelos ζ(C, B, 1

λ
), ζ(A, C, 1

λ
),

ζ(B, A, 1
λ
). With these extended concept of building arbelos on sides

of triangles our statements about loci are true without the words ”part
of”. Another possibility is to allow negative values for the parameter
λ and drop out arbelos altogether by considering vertices P , Q, R of
three similar triangles BCP , CAQ, ABR build on sides of a triangle.
In this form our results are closely related to the following 19th century
results:

(1) The centers of similitude of each pair of these triangles are the
vertices of the Brocard’s second triangle.

(The center of similitude of two similar figures is the unique point
such that a suitable rotation and a dilatation with that point as center
transforms one figure into the other.)

(2) Three homologous lines through the vertices of the Brocard’s first
triangle meet on the Brocard’s circle.

(3) If a triangle is formed by three homologous lines its symmedians
pass through the vertices of the Brocard’s second triangle and meet at
a point on the Brocard’s circle.

(see [4, pp. 189–204] and [7, pp. 302–312]).
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