
REGULAR HEPTAGON’S INTERSECTIONS CIRCLES

ZVONKO ČERIN

Abstract. This paper describes two interesting circles containing
intersections of many lines associated to a regular heptagon. These
intersections are vertices of regular heptagons. In the proofs we use
the complex numbers and the Maple V software.

1. Introduction
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Figure 1: Regular heptagon ABCDEFG and one of
its heptagonal triangles ABD.

The regular heptagon (i. e., the planar regular convex polygon with
seven vertices) has not been studied extensively like its cousins the
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equilateral triangle, the square, the regular pentagon, and the regular
hexagon. Perhaps the reason is because this is the regular polygon with
the smallest number of vertices that cannot be constructed only with
compass and straightedge. The few sporadic known results on regular
heptagons were reviewed by Leon Bankoff and Jack Garfunkel 30 years
ago in the reference [1].
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Figure 2: Illustration of two results by Victor Thébault.

They first recall the following result by Victor Thébault:
The distance from the midpoint U of side AB of a regular convex

heptagon ABCDEFG inscribed in a circle with center O to the mid-
point V of the radius perpendicular to BC and cutting this side, is equal
to half the side of a square inscribed in the circle.

In other words, we have |UV | = |AO|
√

2

2
. Extending this to diagonals,

Hüseyin Demir observed that the circle km of radius UV , centered at V ,
bisects the segments AB, BG, EA, GD, CE and DC in the midpoints
U , X, Y , Y ′, X ′ and U ′ (see the left part of Figure 2).

The right part of Figure 2 shows the second result also by Thébault:
If W is the midpoint of OF , M is the point diametrically opposite

F and J is the point on UB produced such that |UJ | = |UM |, then

|UW | = |UO|
√

2, |OJ | = |AO|
√

6

2
and the line UV is tangent to the circle

through U , O and W .
The rest of [1] is a study of the heptagonal triangle (for example, the

triangle ABD in Figure 1) whose angles are π
7
, 2π

7
and 4π

7
radians. We

mention only the following four of their properties from an extensive
list (see pages 14, 17 and 19 of [1]):
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• The sum of cotangents of angles is equal to
√

7.
• The sum of squares of cotangents of angles is equal to 5.
• The triangle formed by joining the feet of the internal angle

bisectors of the heptagonal triangle is isosceles.
• The two tangents from the orthocenter to the circumcircle of the

heptagonal triangle are mutually perpendicular.

Today we can add new results to the above list with some help from
computers. In papers [2], [3] and [4] the author has improved some
of the above theorems. We added six more midpoints of segments in
Demir observation that also lie on the circle km in [2]. Later in [4] we
recognized two regular heptagons inscribed in km whose vertices are
these midpoints. The reference [3] contains the improvement of the
second Thébault result above and some new geometric relationships in
regular heptagons.

In this paper we show that the intersections of many lines associated
to a regular heptagon ABCDEFG lie on its interesting circles deter-
mined either by incenters or by the excenters of the triangles DEB and
ABG. In other words we discover many regular heptagons related to a
given regular heptagon which all have easy construction with compass
and straightedge.

Recall that every triangle ABC has the incircle and three excircles
which touch the lines BC, CA and AB. Their centers are the incenter
I and the excenters Ia, Ib and Ic. The incenter is inside while the
excenters are outside the triangle and in the natural order Ia is called
the first excenter since it lies on the first angle bisector AI.

In order to simplify our statements we use the following notation.
The parallel and the perpendicular to the line ` through the point X

are X ‖ ` and X ⊥ `.
In our proofs we shall use complex numbers because they provide

simple expressions and arguments. There are several excellent books,
for example [7], [5], [9], [6], [10], and [8], that give introductions into the
method which we utilize. In an appendix we implement this approach
in Maple V. The reader can see there how the intersection of two lines
is computed. This is in fact the only thing to learn.

A point P in the Gauss plane is identified with a complex number P

(its affix). The complex conjugate of P is denoted P̄ . We shall always
assume that the complex coordinates of the vertices of the heptagon
ABCDEFG are A = 1, B = f 2, C = f 4, D = f 6, E = f 8, F = f 10,
and G = f 12, where f is the 14th root of unity. Had we used the 7th

roots of unity some important points like the midpoints P and Q of
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the shorter arcs AG and AB would have complicated affixes. Hence,
all these points are on the unit circle k whose center is the origin O.

2. The first circle from incenters

We begin our study with the circle m whose center is the incenter
V of the triangle ABG and which goes through the incenter U of the
triangle BED.

PSfrag replacements

A

B

C

D

E

F

G

O

U

V

I

J

M

N

K

k

m

P

Q

Figure 3: The circle m with the center at the incenter of ABG

and the radius
√

2 has interesting properties. (Theorems 1–3).

Theorem 1. The circle m has the radius
√

2 and it goes through the
points C and F .

Let K = IN ∩ JM where the points I, N and J , M are intersections
of BC, EF and FG, CD with G ⊥ GO and B ⊥ BO.

Theorem 2. The points I, J , M and N are on the circle m and the
point V is the midpoint of the segment KO.

Theorem 3. The triangles BIK, GJK, BCM , FGN are heptagonal.

Proof of Theorems 1–3. The points P and Q are f 13 and f . Note that
|BC| = |CD| so that ^BEC = ^CED. It follows that EC is the bi-
sector of the angle E in the triangle BDE. In the same way we see
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that the line DG is the bisector of the angle D in the triangle BDE

and that BP , GQ and AO are the bisectors of the angles B, G and
A in the triangle ABG. The incenters U and V are therefore the in-
tersections CE ∩ DG and BP ∩ GQ. Hence, U = −f 5 + f 4 − 1 and
V = f 2 − f 3 + f 4 − f 5. The equation of the circle m with the center
V and the radius

√
2 is (z − V )(z − V ) = 2 or

z z̄ + f 2 (f − 1)(f 2 + 1)(z + z̄) + f 5 − 2 f 4 + 2 f 3 − f 2 − 1 = 0.

When we substitute the coordinates of the points C, F , and U for z

into this equation we obtain an expression that has the polynomial
p− = f 6 − f 5 + f 4 − f 3 + f 2 − f + 1 as a factor. Since f 14 − 1 factors
as (f − 1)(f + 1) p− p+, with p+ = f 6 + f 5 + f 4 + f 3 + f 2 + f + 1 and
p+ = 1 + 2 i (1 + 2 cos π

7
) sin 2 π

7
6= 0, we see that p− = 0 so that the

points C, F , and U are on the circle m.
In order to find the affix of the point I (the intersection of the line

BC with the perpendicular G ⊥ GO to the line GO in G) notice that
BC has the equation (f 5 − f 3) z − (f 4 − f 2) z̄ + f 5 + f 2 = 0 while the
equation of G ⊥ GO is f 2 z − f 5 z̄ − 2 = 0. Now we must solve in z

and z̄ the system formed by these two equations in order to obtain
I = f + f 2 − f 5. For the points J , M , and N we get similarly J = Ī,
M = f 4 − f 3 + f 2 + f − 1, and N = M̄ .

Once we know the points I, J , M , and N the rest of the proof is
a routine verification. The substitution of their coordinates into the
equation of the circle m always contain the factor p− which is zero.
Notice that the lines IN and JM are tangents of the circle k. Finally,
solving linear equations we can compute the affix of the intersection
K = 2 V of these tangents. Clearly, the point V is the midpoint of the
segment KO. Then we look for conditions (see [5] and the appendix)
that the triangles JKG and FNG are directly similar to the heptagonal
triangle DEG and that the triangles IKB and CMB are reversely
similar to the heptagonal triangle DEG. In all four cases the above
factor p− of f 14 − 1 (which is zero) appears. �

3. Three regular heptagons inscribed in m

In the next two theorems we shall describe three regular heptagons
inscribed in the circle m whose easy constructions with compass and
straightedge depend on the points I, J , M and N .

Theorem 4. Let the points H, J ′, S, U ′, H ′, I ′, S ′ be intersections
of AP , AC, CG, BE, BF , AF , DG with BE, N ‖ FG, K ‖ AG,
M ‖ CE, K ‖ CG, K ‖ BF , M ‖ CG, respectively. Then FUMHIJ ′S
and NU ′CH ′I ′JS ′ are regular heptagons inscribed in m (see Fig. 4).
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Figure 4: The regular heptagons FUMHIJ ′S and
NU ′CH ′I ′JS ′ inscribed in the circle m. (Theorem 4).

The point H lies also on N ‖ BF and U ′ is the incenter of the triangle
DEG.

Theorem 5. The midpoints B0, A0, G0, F0, E0, D0, and C0 of the
shorter arcs NF , U ′U , CM , HH ′, I ′I, JJ ′, and SS ′ are vertices of a
regular heptagon whose sides are parallel to the corresponding sides of
BAGFEDC (see Fig. 5).

Proof of Theorems 4 and 5. The equations of the lines AP and BE are

(1 − f)z + (f 13 − 1)z̄ + f − f 13 = 0

and
(f 12 − f 6)z + (f 8 − f 2)z̄ + f 8 − f 20 = 0.

Their intersection H is −f 5 + 2 f 4 − f 3 + 2 f 2 − f + 1. Also,

J ′ = −2 f 5 + 2 f 4 − 2 f 3 + f 2 + 1, S = −2 f 5 + f 4 − 2 f 3 + 2 f 2 − f,

I ′ = −f 5 + 2 f 4 − 2 f 3 + 2 f 2 + 1, H ′ = −f 5 + f 4 + f 2 + f − 1,

U ′ = −f 3 + f 2 − 1 and S ′ = −f 5 − f 3 + f. Let us define the number
w to be f − f 2 − f 4. Then |S ′V |2 = (S ′ − V )(S̄ ′ − V̄ ) = w(1 − w) is
equal to 2. In the same way we verify that |HV |2, |J ′V |2, |SV |2, |U ′V |2,
|H ′V |2, and |I ′V |2 are also 2 so that the heptagons FUMHIJ ′S and



REGULAR HEPTAGON’S INTERSECTIONS CIRCLES 7

PSfrag replacements

A

B

C

D

E

F

G

O

U

VI

J

M

N

K

k

m

P

Q

H

I

J ′

S

H′

I′

S′

U ′

Figure 5: The regular heptagon on midpoints of shorter arcs
NF , U ′U , CM , HH ′, I ′I, JJ ′, and SS ′ has sides parallel to the
corresponding sides of BAGFEDC. (Theorem 5).

NU ′CH ′I ′JS ′ are inscribed in m. That these are regular heptagons
follows from the fact that |FU |2, |UM |2, |MH|2, |HI|2, |IJ ′|2, |J ′S|2,
|SF |2, |NU ′|2, |U ′C|2, |CH ′|2, |H ′I ′|2, |I ′J |2, |JS ′|2, and |S ′N |2 all
have the same value 2f 5 − 2f 2 + 4.

In order to find the midpoint B0 of the shorter arc FN we use
that it has equal distances from the points F and N , that it lies on
m, that its distance to the point F is less than

√
2 (the radius of

m) and that it is a polynomial of order at most five in f . Hence,
B0 = −f 5 + f 4 − f 3 + (1 −

√
2)f 2. Similarly,

A0 = −f 5 + f 4 − f 3 + f 2 −
√

2, C0 = −f 5 − (1 −
√

2)f 4 − f 3 + f 2,

D0 = (1+
√

2)(1−f)(f 4+f 2+2−
√

2), E0 = D0, F0 = C0, G0 = B0.

It is now easy to check that the regular heptagons B0A0G0F0E0D0C0

and BAGFEDC have parallel corresponding sides. �
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4. Four inscribed regular heptagons

In this section we describe four regular heptagons inscribed in the
circumcircles of the triangles BIK, GJK, FGN and BCM and show
that their centers are vertices of a rectangle.
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Figure 6: Four regular heptagons inscribed in circumcircles of
the triangles FGN , GJK, BIK, BCM . (Theorem 6).

Theorem 6. Let D1, C1, B1, G1, G2, D2, C2, B2, B3, G3, F3, E3,
A4, E4, D4, C4 be intersections of EG, BF , CG, AG, AG, EG,
DG, CG, AB, BF , BE, BD, AB, BD, BE, BF with CF , DG,
AF , F ‖ BC, K ‖ FG, J ‖ DE, J ‖ BF , N ‖ BC, K ‖ BC, I ‖ EF ,
I ‖ AB, I ‖ BG, C ‖ FG, CF , CG, AC. Then NFD1C1B1GG1,
GG2KJD2C2B2, IKB3BG3F3E3, and BA4MCE4D4C4 are regular hep-
tagons inscribed in the circumcircles of FGN , GJK, BIK, and BCM

whose sides are parallel to the corresponding sides of FEDCBAG,
AGFEDCB, DCBAGFE, and BAGFEDC (see Fig. 6).

Proof. The circumcenter O1 of the triangle FGN is −f 5+ f 4−f 3 and
the equation of its circumcircle m1 is

(f 4 + f 2 + 1)z z̄ − f 4(f 2 + 1)(z + f 8 z̄) + f 16 = 0.

The points D1, C1, B1, G1 are −f 5 + f 4 − f 2, −f 5 + f 4 − f 3 + f − 1,
−f 5 + 2 f 4 − 2 f 3 + f 2 − f + 1, −f 5 + f 4 − f 3 − f 2 + f , respectively.
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As the expression f 2n(N − O1) + O1, for n = 1, . . . , 6 is G1, G, B1,
C1, D1, and F , we infer that NFD1C1B1GG1 is a regular heptagon
inscribed in m1. That its sides are parallel with the corresponding
sides of the heptagon FEDCBAG is now easy to verify. The remaining
three circumcircles of the triangles GJK, BIK, and BCM are treated
similarly. �
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Figure 7: The circumcenters of the triangles FGN , GJK, BIK,
BCM are vertices of a rectangle. (Theorem 7).

Theorem 7. The circumcenters O1, O2, O3, O4 of the triangles FGN ,
GJK, BIK, and BCM are vertices of a rectangle – the translation
for the vector ~OV of the rectangle P1GBQ1 where P1 and Q1 are the
midpoints of the shorter arcs EF and CD (see Fig. 7).

Proof. Notice that P1 = f 9, Q1 = f 5, O2 = −2 f 5 + f 4 − f 3 + f 2, O3 =
−f 5 + f 4 − f 3 + 2 f 2 and O4 = f 4 − f 2 + f 2. The claim follows from
P1 + V = O1, G + V = O2, B + V = O3 and Q1 + V = O4. �

5. The second circle from excenters

Since the circle m is determined by the incenters of the triangles
DEB and ABG, we can ask if the excenters of these triangles give
a circle containing intersections of some lines related to the regular
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heptagon ABCDEFG. The answer to this natural question is given
in the following theorems.
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Figure 8: The circle n determined by excenters U0 and V0 and
two regular heptagons inscribed in it. (Theorems 8 and 9).

Theorem 8. Let U0 and V0 be the first excenters of the triangles DEB

and ABG in the regular heptagon ABCDEFG inscribed to the circle
k with the center O and the radius R. Then the circle n with the center

V0 and the radius
R
√

2 cos
3 π

14

sin
π

14

goes through the points U0, I and J (see

Fig. 8).

Proof. Since the excenter V0 is the intersection of lines AO and G ⊥ GV

we get V0 = f 5 − f 4 + f 3 − f 2 − 2. Similarly, the excenter U0 is the
intersection of the lines DG and E ⊥ EU so that U0 = −f 5 − f 4 + 1.
The equation of the circle n with the center at the point V0 through the
point U0 is z z̄ − V0(z + z̄) + 7 f 5 − 2 f 4 + 2 f 3 − 7 f 2 − 9 = 0. Its ra-

dius is
√

14 − 10 f 5 + 4 f 4 − 4 f 3 + 10 f 2 which reduces to
√

2 cos
3 π

14

sin
π

14

. By

substitution of coordinates of the points I and J in the above equation
we can verify that they lie on the circle n. �

Theorem 9. Let the points G5, F5, E5, D5, C5, B5, G6, F6, E6,
D6, C6, B6 be intersections of BG, D ⊥ DO, FG, JU , JM , I ⊥ FI,
J ⊥ CJ , IN , CV0, JV , E ⊥ EO, BG with FU, V0 ‖ FM , D ‖ BU ,
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U0 ‖ IM , D ⊥ CD, U ⊥ UV , E ‖ BP , E ⊥ EF , I ‖ AE, E ⊥ CE,
J ‖ MQ, D ⊥ DO. Then IG5F5E5D5C5B5 and JG6F6E6D6C6B6 are
regular heptagons inscribed in n (see Fig. 8). The midpoints A7, G7,
F7, E7, D7, C7, B7 of the shorter arcs IJ , G5G6, F5F6, E5E6, D5D6,
C5C6, B5B6 are vertices of a regular heptagon whose sides are parallel
to the corresponding sides of AGFEDCB (see Fig . 10).

Proof. Solving linear equations we get G5 = −2f 5 − 2f 3+f 2 − 2f+1,
F5 = −3f 4 − 2f 2 − f − 2, E5 = 2f 5 − 2f 4 + f 3 − 4f 2 − 4, D5 = 3f 5−
f 4 + 2f 3 − 2f 2 − 5, C5 = 4f 5 − f 4 + 3f 3 − f 2 + f − 3, B5 = f 5+3f 3+
f − 1, G6 = B5, F6 = C5, E6 = D5, D6 = E5, C6 = F5 and B6 = G5.
Since the expressions f 2k(I − V0) + V0 and f 2k(J − V0) + V0 for k from
1 to 6 are B5, C5, D5, E5, F5, G5 and B6, C6, D6, E6, F6, G6 we
conclude that IG5F5E5D5C5B5 and JG6F6E6D6C6B6 are regular hep-
tagons inscribed in n.

Let η =
√

14

7
. As in the proof of Theorem 5 we find

A7 = (1 − 3 η)

(

f 5 +
1 + 14 η

11
f 3(f − 1) − f 2 − 2

)

,

B7 = f 5 − (1 − 2 η)f 4 + (1 + η)f 3 − (1 − 5 η)f 2 + η f − 2(1 − η).

The condition for the lines AB and A7B7 to be parallel (which must be
zero) holds because it contains p− as a factor. Since A7B7C7D7E7F7G7

is obviously a regular heptagon it follows that its sides are parallel with
the corresponding sides of ABCDEFG. �

Theorem 10. Let the points C8, B8, A8, G8, F8, E8, D9, C9, B9,
A9, G9, F9, E9 be intersections of AG, BE, EJ , IM , CG, BF ,
CG, BF , JN , DI, DG, AB, BE with J ⊥ JM , FI, IV0, J ‖ CQ,
FU , E ⊥ EF , J ⊥ JV , D ‖ FO, U0 ‖ BD, JV0, CJ , N ‖ CO, CV0.
Then U0C8B8A8G8F8E8 and D9C9B9A9G9F9E9 are regular heptagons
inscribed in n (see Fig. 9). The midpoints D10, C10, B10, A10, G10,
F10, E10 of the shorter arcs U0D9, C8C9, B8B9, A8A9, G8G9, F8F9,
E8E9 are vertices of a regular heptagon whose sides are parallel to the
corresponding sides of DCBAGFE (see Fig. 10).

Proof. From linear equations we get C8 =−2f 5 − f 4 − f 3 − f 2− f − 1,
B8 =f 5 − 2f 4 − f 3− 2f 2− f − 3, A8 =3f 5 − 2f 4+2f 3 − 3f 2− f − 4,
G8 = 4f 5 − 2f 4 + 4f 3 − 3f 2 + 2f − 5, F8 = 2f 5+f 4+2f 3+f − 2, E8

= f 3+2f 2, D9 = E8, C9 = F8, B9 = G8, A9 = A8, G9 = B8, F9 = C8

and E9 = U0. Since f 2k(U0 − V0) + V0 and f 2k(D9 − V0) + V0 for k

from 1 to 6 are E8, F8, G8, A8, B8, C8 and E9, F9, G9, A9, B9, C9

we conclude that U0C8B8A8G8F8E8 and D9C9B9A9G9F9E9 are regu-
lar heptagons inscribed in n.
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Figure 9: Another two easily constructible regular heptagons
inscribed in the circle n. (Theorem 10).

This time we get

A10 = (1 + 3 η)

(

f 5 +
1 − 14 η

11
f 3(f − 1) − f 2 − 2

)

,

B10 = f 5 − (1 + 2 η)f 4 + (1 − η)f 3 − (1 + 5 η)f 2 − η f − 2(1 + η).

The condition for the lines AB and A10B10 to be parallel again holds
because it contains p− as a factor. Since A10B10C10D10E10F10G10 is
obviously a regular heptagon it follows that its sides are parallel with
the corresponding sides of ABCDEFG. �

Theorem 11. The points A7, D10, G7, C10, F7, B10, E7, A10, D7,
G10, C7, F10, B7, E10 are the vertices of the regular 14-gon (see Fig.
10).

Proof. Since A10 = f(D7 − V0) + V0, it follows that by rotating D7 for
the angle of π

14
radians we get A10. This implies the claim of the

theorem. Notice that the regular heptagons A7B7C7D7E7F7G7 and
A10B10C10D10E10F10F10 are symmetric with respect to the perpendic-
ular at O to the line OA. �
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tices. (Theorems 8–11).
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Appendix

This note is an example of a new approach to geometry offered by
computers. In this appendix we will reveal how one can check our
results on a computer.

The figures are made in the software The Geometer’s Sketchpad
that could also be used for approximate verification of statements and
in the discovery of new theorems about geometric objects like regular
heptagons.

Our mathematically correct proofs where realized on a computer
in the software Maple V (version 8). We will describe how to prove
Theorems 1–3 in Maple V.

First we give points as ordered pairs [p, q] of the complex number p

and its conjugate q. The complex number f is the 14th root of unity.

hA:=[1,1]:hB:=[fˆ2,fˆ12]:hC:=[fˆ4,fˆ10]:hD:=[fˆ6,fˆ8]:

hF:=[fˆ8,fˆ6]:hE:=[fˆ10,fˆ4]:hG:=[fˆ12,fˆ2]:hO:=[0,0]:

hP:=[fˆ13,f]: hQ:=[f,fˆ13]:

Here we use hA instead of A as a name of the first vertex because
with plain letters we run into problems as some letters are reserved in
Maple V (for example D).

We introduce the shortening FS for the simultaneous use of com-
mands factor and simplify to reduce typing.

FS:=x->factor(simplify(x)):

The following function computes the square of the distance between
two points a and x.

di:=(a,x)->FS((a[1]-x[1])*(a[2]-x[2])):

Lines are represented as ordered triples [u, v, w] of coefficients of their
equations u z + v z̄ + w = 0. The function li gives the line through
two different points.

li:=(a,b)->FS([a[2]-b[2],b[1]-a[1],a[1]*b[2]-a[2]*b[1]]):

The function ins gives the intersection of two lines. (The names in
and int are reserved!). When its usage results in the error message

Error, numeric exception: division by zero

then the lines are parallel (when they do not have an intersection).

ins:=(p,q)->FS([(p[2]*q[3]-p[3]*q[2])/(p[1]*q[2]-p[2]*q[1]),

(p[3]*q[1]-p[1]*q[3])/(p[1]*q[2]-p[2]*q[1])]):

This short introduction into the analytic plane geometry via complex
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numbers concludes with the simple functions for the midpoint of two
given points and the parallel and the perpendicular through a given
point to a given line.

mid:=(a,b)->FS([(a[1]+b[1])/2,(a[2]+b[2])/2]):

par:=(t,p)->FS([p[1],p[2],-t[1]*p[1]-t[2]*p[2]]):

per:=(t,p)->FS([p[1],-p[2],t[2]*p[2]-t[1]*p[1]]):

The points U and V are now obtained as follows:

hU:=ins(li(hC,hE),li(hD,hG)):hV:=ins(li(hB,hP),li(hG,hQ)):

The circle m is the locus of all points whose square of distance to the
point V is equal to 2. The following function hm associates to a point
the difference of the square of its distance from V and 2. A point T

will lie on the circle m if and only if the value hm(T ) is zero.

hm:=x->FS(di(x,hV)-2):

We check now the values of hm in the points C, F , and U .

hm(hC); hm(hF); hm(hU);

The output for the first two inputs is p− K where K is

f 18 − f 17 − f 15 + f 14 − f 13 + f 12 − 2 f 11+

f 10 − f 9 + 3 f 8 + f 7 − f 5 + f 4 − 2 f − 2

while for the third is p
−

M

N2 where N = (f 2 + f + 1)(f 2 − f + 1) and

M = −2 − 2f − 9f 19 − 3f 11 − 4f 3 − 7f 5 − 10f 15 + 11f 14−
11f 17 + 9f 16 − 3f 23 − 6f 21 − 4f 2 − f 25 + f 26 + 9f 10 − 4f 9+

4f 8 − 5f 7 − f 6 + 7f 18 + 5f 20 + 4f 22 + 3f 24 − 5f 4 + 13f 12 − 7f 13.

Since all of these expressions contain p− as a factor we infer that they
are equal to zero.

The points I, N , J , M , and K are defined as follows.

hI:=ins(li(hB,hC),per(hG,li(hG,hO))):

hN:=ins(li(hE,hF),per(hG,li(hG,hO))):

hJ:=ins(li(hF,hG),per(hB,li(hB,hO))):

hM:=ins(li(hC,hD),per(hB,li(hB,hO))):

hK:=ins(li(hI,hN),li(hJ,hM)):

We compute the values of hm in the points I, N , J , and M to verify
that they lie on the circle m. Next we find the midpoint of the segment
KO and show that it is at the distance zero from the point V .

hm(hI); hm(hN); hm(hJ); hm(hM); di(hV,mid(hK,kO));
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For the last claim we will use the following functions that test if two
triangles are directly or reversely similar (see [5]).

sid:=((a,b,c),(p,q,r))->FS(a[1]*q[1]-a[1]*r[1]-b[1]*p[1]+

b[1]*r[1]+c[1]*p[1]-c[1]*q[1]):

sir:=((a,b,c),(p,q,r))->FS(q[2]*a[1]-r[2]*a[1]-p[2]*b[1]+

r[2]*b[1]+c[1]*p[2]-q[2]*c[1]):

sid((hD,hE,hG),(hJ,hK,hG)); sid((hD,hE,hG),(hF,hN,hG));

sir((hD,hE,hG),(hI,hK,hB)); sir((hD,hE,hG),(hC,hM,hB));
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