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ZVONKO ČERIN

Abstract. This paper explores the geometry of the regular hep-
tagon ABCDEFG. We start from a classical result by Thébault
and Demir that six midpoints of sides and diagonals lie on a cirlce
m with diameter equal to the side of the square inscribed in the
circumcircle of ABCDEFG. Then we discover eight more mid-
points of segments on m and show that they are vertices of two
regular heptagons inscribed in the circle m. Extending further this
idea we show that midpoints of many other segments also lie on
the circle m so that it deserves the name – the midpoints circle

of ABCDEFG. In the proofs we use the complex numbers and
perform our calculations with the help of computers in Maple V.

The regular heptagon (i. e., the planar regular convex polygon with
seven vertices) has not been studied extensively like its cousins the
equilateral triangle, the square, the regular pentagon, and the regular
hexagon. Perhaps the reason is because this is the first regular polygon
that cannot be constructed only with compass and straightedge. The
few sporadic known results on regular heptagons were reviewed 30 years
ago by Leon Bankoff and Jack Garfunkel in the reference [1]. One of
the simplest is the following result by Victor Thébault and Hüseyin
Demir [1, p. 10] which shows that the midpoints of several segments
in the regular heptagon are related to the inscribed square.

Theorem 1. Let ABCDEFG be a regular heptagon inscribed in a
circle k of radius R and center O. If P is the midpoint of the shorter
arc BC and U and V are midpoints of the segments AB and OP then

|UV | =
√

2
2

R. In other words, 2|UV | is equal to the side of the square
inscribed in the circle k. Moreover, the midpoints of the segments BG,
AE, DG, CE, and CD share this property with the point U .

Proof. Without loss of generality we can assume that R = 1 and that
the vertices F , G, A, B, C, D, and E correspond to 7th roots 1, e,
e2, e3, e4, e5, and e6 of unity. Then the points O, P , U , and V are at
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Figure 1: Selection of affixes of points in the proof of Theorem 1.

complex numbers 0, −1, e2+e3

2
, and −1

2
(see Figure 1). Hence,

|UV |2 = (U − V )(U − V ) = (U − V )(U − V ) =
(

e2 + e3

2
+

1

2

) (

e5 + e4

2
+

1

2

)

=
2 + 1 + e + e2 + · · · + e6

4
=

1

2

because 1 + e + e2 + · · · + e6 = 0. The proofs for the other five mid-
points are similar. �

The above proof is indeed simple. It uses the well-known identifica-
tion of points and complex numbers in the Gauss plane, the fact that
X+Y

2
is the midpoint of the segment XY , that the square of the distance

between points X and Y is the product (X − Y )(X − Y ) of X − Y and
its conjugate X − Y , that the conjugation satisfies X − Y = X − Y ,
some algebraic simplification and the special property of the 7th root
of unity at the end.

With so many computers around us and their profound influence on
our lives one can wonder if we can discover and prove Theorem 1 with
some help from computers.
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Our figures are made in the software The Geometer’s Sketchpad, the
tool that can be used for approximate verification of statements and in
the discovery of new theorems in geometry.

For example, to make Figure 1, we draw the points O and A, the
circle k from them and mark O as a center (of a rotation). Then we
rotate for 360

7
degrees the point A six times in succession to get the

vertices of ABCDEFG. For the point P we rotate F about O for
180 degrees. The points V , U , U ′, W , W ′, L and L′ are midpoints
of segments OP , AB, CD, BG, CE, AE and DG. We see that the
circle m constructed from the points V (as the center) and U goes
through these midpoints. This is only an indication that Theorem 1
is true and it is not its proof because The Geometer’s Sketchpad has
maximal precision of hundred thousandths that falls short of absolute
correctness.

Looking back at the above proof of Theorem 1 we see that the key
step was the algebraic simplification. The software like Derive, Math-
ematica and Maple V excel in this task so that they will easily do this
part provided we make some preparation.

We will now make this in Maple V first for Theorem 1 and then build
up the necessary functions that will be used to discover and prove all
our other results.

We give points as ordered pairs [p, q] of the complex number p and
its conjugate q. The complex number e is the 7th root of unity, i. e.,
e7 − 1 = 0. From e7 − 1 = (e − 1)(e6 + e5 + e4 + e3 + e2 + e + 1) and
e 6= 1 we get σ = e6 + e5 + e4 + e3 + e2 + e + 1 = 0. Hence, we input:

hF:=[1,1]: hG:=[e,eˆ6]: hA:=[eˆ2,eˆ5]: hB:=[eˆ3,eˆ4]:

hC:=[eˆ4,eˆ3]: hD:=[eˆ5,eˆ2]: hE:=[eˆ6,e]: hP:=[-1,-1]:

hV:=[-1/2,-1/2]:

Here we use hA instead of A as a name of the first vertex because
with plain letters we run into problems as some letters are reserved in
Maple V (for example D).

In order to cut down typing we introduce the shortening FS for the
simultaneous use of commands factor and simplify that will be used
frequently.

FS:=x->factor(simplify(x)):

The following procedures dis and mid compute the square of the dis-
tance between two points a and x and their midpoint. The letters b,
c, y, and z denote local variables. They are the first and the second
coordinates of the given points. The square of the distance is the prod-
uct of the difference b − y and its conjugate c − z. The midpoint is b+y

2
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and its conjugate is c+z
2

.

dis:=proc(a,x) local b,c,y,z; b:=a[1]: c:=a[2]:

y:=x[1]: z:=x[2]: FS((b-y)*(c-z)): end:

mid:=proc(a,x) local b,c,y,z; b:=a[1]: c:=a[2]:

y:=x[1]: z:=x[2]: FS([b/2+y/2, c/2+z/2]): end:

The circle m is the locus of all points whose square of distance to the
point V is equal to 1

2
. The following function hm associates to a point

the difference of the square of its distance from V and 1
2
. A point T

will lie on the circle m if and only if the value hm(T ) is zero.

hm:=x->FS(dis(x,hV)-1/2):

The proof of Theorem 1 amounts to check whether the values of the
function hm in the points U , U ′, W , W ′, L and L′ are zero.

hU:=mid(hA,fB): hUp:=mid(hC,fD): hW:=mid(hB,fG):

hWp:=mid(hC,fE): hL:=mid(hA,fE): hLp:=mid(hD,fG):

hm(hU); hm(hUp); hm(hW); hm(hWp); hm(hL); hm(hLp);

The outputs are α σ
4

, α σ
4

, β σ

4
, β σ

4
, γ σ

4
and γ σ

4
, where α = e2 + e − 1,

β = e3 − e2 + 2e − 1 and γ = e5 − e4 + 2e − 1. Since they all contain
σ as a factor and σ = 0 we conclude that these midpoints are on the
circle m and the proof of Theorem 1 in Maple V is accomplished.

In this note we shall first add six new segments whose midpoints also

lie on the circle m with the center at the point V and the radius R
√

2
2

.
The discovery of these new points was by chance while playing with the
Sketchpad. However, the symmetry of Figure 1 in the line FO and the
fact that the intersections H, I, J of the lines AE, AB, BG with their
reflections DG, CD, CE are on FO make these intersections obvious
candidates for endpoints of such segments.

Theorem 2. Let ABCDEFG be a regular heptagon inscribed in a
circle k of radius R and center O. Let H = AE ∩ DG, I = AB ∩ CD,
and J = BG ∩ CE. If P is the midpoint of the shorter arc BC and V

is the midpoint of the segment OP then the midpoints X, Y , U , W ,
K, L, L′, K ′, W ′, U ′, Y ′, and X ′ of the segments BI, GJ , AB, BG,
AH, AE, DG, DH, CE, CD, CI, and EJ , respectively, all lie on the
circle m. The line joining the intersections Q and Q′ of the circles k

and m is the perpendicular bisector of the segment PV .

Proof. Let the assumptions of the proof of Theorem 1 hold. Then the
equation of the circle m is

[

z − (−1
2
)
] [

z − (−1
2
)
]

= 1
2

which simplifies
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Figure 2: The circle m is passing through 14 midpoints.

to 4 z z̄ + 2 z + 2 z̄ − 1 = 0. The method of proof is to find the com-
plex coordinate of each point and check that they satisfy this equa-
tion. For example, in order to do this for the point X (the mid-
point of the segment joining the vertex B with the intersection I

of lines AB and CD), we determine equations of lines AB and CD

and solve them to get I = (e+1)e4

e2+1
and X =

e3(2 e2+e+1)
2(e2+1)

. Let δ denote

2 e5 + e4 + 3 e3 − 2 e2 + e − 1. Since 4 X X̄ + 2 X + 2 X̄ − 1 factors as
δ σ

(e2+1)2
, we conclude that the point X is on the circle m.

The last claim is true because the circles m and k (whose equation

is z z̄ = 1) intersect in points Q = − 3
4

+ i
√

7
4

and Q′ = −3
4
− i

√
7

4
. �

In order to implement the above proof in Maple V we need the
functions for lines and their intersections.

We represent lines as ordered triples [u, v, w] of coefficients of their
equations u z + v z̄ + w = 0. The procedure lin gives the line through
two different points.

lin:=proc(m,n) local a,b,c,x,y,z; a:=m[1]: b:=m[2]:

x:=n[1]: y:=n[2]: FS([b-y, x-a, a*y-b*x]): end:

That the coefficients u, v, and w are indeed b − y, x − a, and ay − bx

follows easily by substituting the coordinates of the points m and n
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and solving in u and v.

solve({u*a+v*b+w,u*x+v*y+w},{u,v});

The output is {u = w (b−y)
a y−b x

, v = w (x−a)
a y−x b

}. If we substitute this into the
equation of the line and multiply with ay − xb and divide with w we
get the above form.

In a similar way we derive the important procedure which gives the
intersection of two lines. When its usage results in the error message

Error, numeric exception: division by zero

this means that ay − xb = 0 so that the lines are parallel (when they
do not have an intersection).

inter:=proc(m,n) local a,b,c,x,y,z; a:=m[1]:

b:=m[2]: c:=m[3]: x:=n[1]: y:=n[2]: z:=n[3]:

FS([(b*z-c*y)/(a*y-b*x),(c*x-a*z)/(a*y-b*x)]): end:

The verification of Theorem 2 is done with the following input:

fp:=(a,b,c,d)->inter(lin(a,b),lin(c,d)):

hH:=fp(hA,hE,hD,hG): hI:=fp(hA,hB,hC,hD): hX:=mid(hI,hB):

hJ:=fp(hB,hG,hC,hE)): hY:=mid(hJ,hG): hK:=mid(hH,hA):

hKp:=mid(hH,hD): hYp:=mid(hJ,hE): hXp:=mid(hI,hC):

hm(hX);hm(hY);hm(hK);hm(hKp);hm(hYp);hm(hXp);

The first output is δ σ
(e2+1)2

. This completes the proof for the point X.

Next we prove that the intersections Q and Q′ of the circles k and
m are also midpoints of segments. This observation is a consequence
of our desire to have points Q and Q′ as midpoints of some segments
related to the regular heptagon as other twelve points from Theorem 2
are. The search for the points M and M ′ in the Sketchpad begins
with any point S and its reflection S ′ in the point Q. We move S into
various positions (for example, into the point H) and look carefully on
what lines the point S ′ will be. Of course, a bit of luck is needed here
but if you are patient the reward will come.

Theorem 3. Let M and M ′ be the intersections of the lines AG and
DE with the tangents to the circle k at the points C and B. Then Q

and Q′ are the midpoints of the segments HM and HM ′ (see Figure 2).

Proof. The line AG has the equation e5 z + e z − e6 − 1 = 0 and the
equation of the tangent to the circle k at C is e3 z + e4 z − 2 = 0. They

intersect in the point M = e4(e2+2 e+2)
e4+e3+e2+e+1

. Now we can show that the
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midpoint of the segment HM is the complex number

5 e6 + 5 e5 + 3 e4 + 2 e3 + 2 e2 + e + 2

4(e4 + e3 + e2 + e + 1)(e + 1)

and agrees with the point Q by finding that their distance is zero or
by checking that it satisfies the equations of k and m. �

In Maple V the above proof begins with the procedure for the per-
pendicular through a given point to a given line:

per:=(t,p)->FS([p[1],-p[2],t[2]*p[2]-t[1]*p[1]]):

The following input defines the point M and verifies if the midpoint of
HM is Q.

hM:=inter(lin(hA,hG),per(hC,lin(hC,hO))):

sQ:=solve({4*p*q+2*p+2*q-1, p*q-1}, {p,q}):

hQ:=subs(sQ[1],[p,q]): hQp:=subs(sQ[2],[p,q]):

dis(hQ,mid(hH,hM));

The output is λ µ ν2

64(e4+e3+e2+e+1)2(e+1)2
, where λ and µ are polynomials of

order 7 in e and ν = 2e3 + e2 − e − 2 − e(e + 1)k with k = i
√

7. But,

the expression
[

2e3+e2−e−2
e(e+1)

]2

+ 7 factors as 4 σ
e2(e+1)2

. This implies that

2e3 + e2 − e − 2 = ±e(e + 1)k. The minus sign is eliminated be looking
at close enough numerical values. Hence, ν = 0 and Q is the midpoint
of HM . More rigorous is the following direct proof that ν = 0.

hn:=2eˆ3+eˆ2-e-2-e(e+1)*I*sqrt(7): t:=2*Pi/7:

FS(numer(convert(FS(subs(e=cos(t)+I*sin(t),hn)),exp)));

In the statement of Theorems 2 and 3 we described fourteen points
on the circle m. These points are rather special because in the next
result we will show that they are vertices of two regular heptagons.

In the proof of the first part of Theorem 4 we will use the following
lemma.

Lemma 1. Let ϑ = π
14

. Then 8 cos3 ϑ − 4
√

7 cos2 ϑ +
√

7 = 0.

Proof. Let u = sin ϑ and v = cos ϑ. From sin x = sin (π − x) for x = 5ϑ
we get sin 5ϑ = sin 9ϑ. The left hand side is sin 5ϑ = u(16 v4 − 12 v2 + 1)
while the right hand side is

sin 9ϑ = u(256 v8 − 448 v6 + 240 v4 − 40 v2 + 1).

Now divide both sides by u and move all terms on one side to get
4 v2 (64 v6 − 112 v4 + 56 v2 − 7) = 0. It follows that the polynomial in
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the parenthesis is equal to zero. However, it is the product

64 v6 − 112 v4 + 56 v2 − 7 = (8 v3 − 4
√

7 v2 +
√

7)(8 v3 + 4
√

7 v2 −
√

7).

Since the second parenthesis is not zero (because v ∈ [ 3
4
, 1]), the first

will be zero. �

The two lines of input for the proof of Lemma 1 in Maple V are:

t:=cos(Pi/14): s:=sqrt(7):

FS(numer(convert(8*tˆ3-4*s*tˆ2+s,exp))):

Theorem 4. (a) The polygons XQWLK ′U ′Y ′ and Y UKL′W ′Q′X ′

are regular heptagons inscribed in the circle m (see Figure 3).
(b) If X ′′, Q′′, W ′′, L′′, K ′′, U ′′, and Y ′′ denote midpoints of the

shorter arcs XY , QU , WK, LL′, K ′W ′, U ′Q′, and Y ′X ′ then the
regular heptagon Q′′W ′′L′′K ′′U ′′Y ′′X ′′ has sides parallel to the corre-
sponding sides of the heptagon ABCDEFG (see Figure 4).
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Figure 3: Two regular heptagons of midpoints inscribed in m.

Proof of Theorem 4(a). Since the vertices of heptagons XQWLK ′U ′Y ′

and Y UKL′W ′Q′X ′ are on the circle m, it suffices to show that all
sides of these heptagons have the same length. When we compute the
six differences of squares of distances |Y U |2 − |UK|2, |Y U |2 − |KL′|2,
|Y U |2 − |L′W ′|2, |Y U |2 − |W ′Q′|2, |Y U |2 − |Q′X ′|2, |Y U |2 − |X ′Y |2 for
the second heptagon, we shall always get zero. For the two differences
involving Q′ we do not get zero directly. In fact, we obtain expressions
in sine and cosine functions which could be reduced so that they have
8 (cos π

14
)3 − 4

√
7 (cos π

14
)2 +

√
7 as a factor. However, by Lemma 1,
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Figure 4: The regular heptagon of midpoints of small arcs.

this factor is equal to zero too. The proof for the first heptagon is
similar. �

Proof of Theorem 4(a) in Maple V. The six differences are computed
with the following input:

fq:=(a,b)->FS(dis(hY,hU)-dis(a,b)): fq(hU,hK);fq(hK,hLp);

fq(hLp,hWp); fq(hWp,hQp); fq(hQp,hXp); fq(hXp,hY);

The output of op(3,fq(hWp,hQp)); is the expression ν that we already
noted is equal to zero. �

Proof of Theorem 4(b). The composition of the dilation D(O,
√

2
2

) with

the translation by the vector
−→
OV transforms the heptagon ABCDEFG

into the unique heptagon inscribed in the circle m whose sides are pa-
rallel to the corresponding sides of ABCDEFG. Hence, it suffices to
show that the midpoint of the shorter arc LL′ is precisely the intersec-

tion
√

2−1
2

of m and the segment FO. This follows from the observation

that L = e2(e4+1)
2

and L′ = e(e4+1)
2

are conjugates. �

In the rest of this note we wish to show that midpoints of many other
segments also lie on the circle m.
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In order to simplify our statements we use the following notation.
The midpoint of points P1 and P2 is [P1, P2] while [P1, `], r(P1, `), and
r(P1, P2) are the perpendicular to the line ` through the point P1 and
the reflections of P1 in the line ` and in the point P2, respectively.

The following are the results on other midpoints that lie on the
circle m. The proofs of all of them are left to the reader because they
are similar to the proof of Theorems 2 and 3, namely we identify the
complex coordinate of the point and check that it satisfies the equation
of m.

Theorem 5. Let T = [F, Q] and T ′ = [F, Q′]. Let S = [O, N ] and
S ′ = [O, N ′], where N = OT ′ ∩ [V, OP ] and N ′ = OT ∩ [V, OP ]. Then
the points T , T ′, S and S ′ are on the circle m. Moreover, S and S ′ are
antipodal to Q′ and Q (see Figure 5).
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Figure 5: The midpoints T , T ′, S and S ′ lie on the circle m.

The following input into Maple V is checking Theorem 5:

hT:=mid(hF,hQ):hTp:=mid(hF,hQp):hm(hT);hm(hTp); ft:=

x->inter(lin(hO,x),per(hV,lin(hO,hP))): hN:=ft(hTp):

hNp:=ft(hT):hS:=mid(hO,hN):hSp:=mid(heO,hNp):hm(hS);

hm(hSp); dis(hV,mid(hQ,hSp)); dis(hV,mid(hQp,hS));
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Theorem 6. Midpoints [A, r(O, BC)], [H, r(O, AB)], [I, r(O, FG)],
[C, r(O, EG)], [B, r(O, DE)], [I, r(O, CE)], and [D, r(O, Y )] are the
vertices of the regular heptagon A1A2A3A4A5A6A7 inscribed in the cir-
cle m (see Figure 6).
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Figure 6: The first regular heptagon of the midpoints inscribed
in the circle m (Theorem 6).

The following Maple V procedures give the reflection of a point in a
line and in a point, respectively.

ref:=proc(t,p) local x,y,a,b,c; x:=t[1]:y:=t[2]:a:=p[1]:

b:=p[2]: c:=p[3]: FS([-(b*y+c)/a, -(a*x+c)/b]): end:

rep:=proc(t,p) local x,y,a,b; x:=t[1]:y:=t[2]:

a:=p[1]: b:=p[2]: FS([-x+2*a, -y+2*b]): end:

The points A1, . . . , A7 are:

fu:=(a,b,c,d)->mid(a,ref(b,lin(c,d))):hA1:=fu(hA,hO,hB,hC):

fv:=(a,b,c)->mid(a,rep(b,c)): hA2:=fu(hH,hO,hA,hB):

hA3:=fu(hI,hO,hF,hG): hA4:=fu(hC,hO,hE,hG): hA5:=

fu(hB,hO,hD,hE): hA6:=fu(hI,hO,hC,hE): hA7:=fv(hD,hO,hY):

Now we check that these points are on m and that by rotating the
vertex A7 for k 2 π

7
radians for k = 1, . . . , 6 we get points A1, . . . , A6.

for i from 1 to 7 do hm(hA||i); od; for i from 1 to 6 do
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FS(eˆi*(hA7[1]-hV[1])+hV[1]-hA||i[1]); od;

Theorem 7. Midpoints [D, r(O, BC)], [H, r(O, CD)], [I, r(O, EF )],
[B, r(O, EG)], [C, r(O, AG)], [I, r(O, BG)], and [A, r(O, Y ′)] are the
vertices of the regular heptagon B1B2B3B4B5B6B7 inscribed in the cir-
cle m (see Figure 7).
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Figure 7: The second regular heptagon also of the midpoints
of the segments connecting the reflected points (Theorem 7).

This time in Maple V, the points B1, . . . , B7 are:

hB1:=fu(hD,hO,hB,hC): hB2:=fu(hH,hO,hC,hD): hB3:=

fu(hI,hO,hE,hF): hB4:=fu(hB,hO,hE,hG): hB5:=

fu(hC,hO,hA,hG):hB6:=fu(hI,hO,hB,hG):hB7:=fv(hA,hO,hYp):

Now we check that these points are on m and that by rotating the
vertex B1 for k 2 π

7
radians for k = 1, . . . , 6 we get points B2, . . . , B7.

for i from 1 to 7 do hm(hB||i); od; for i from 2 to 7 do

FS(eˆ(i-1)*(hB1[1]-hV[1])+hV[1]-hB||i[1]); od;

Theorem 8. Midpoints C1, C2, C3, C4, C5, C6 and C7 of the shorter
arcs B1A6, B2A5, B3A4, B4A3, B5A2, B6A1 and B7A7 of the circle m

are the vertices of the regular heptagon. The sides of C1C2C3C4C5C6C7



REGULAR HEPTAGON’S MIDPOINTS CIRCLE 13

are parallel with the corresponding sides of the heptagon GABCDEF .
A1A2A3A4A5A6A7, B1B2B3B4B5B6B7 and C1C2C3C4C5C6C7 are the
images of K ′U ′Y ′XQWL, KUY X ′Q′W ′L′ and W ′′Q′′X ′′Y ′′U ′′K ′′L′′

under the homothety H(V, −1) (see Figure 8).
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Figure 8: The third regular heptagon of the midpoints of the
shorter arcs (Theorem 8).

The point C7 is −1−
√

2
2

. We check that it is on m and that it has the
same distance from A7 and B7. The rest is a routine verification that
we leave to the reader as an exercise.
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