
CENTRES OF THE GOLDEN RATIO

ARCHIMEDEAN TWIN CIRCLES

ZVONKO ČERIN

Abstract. We explore some properties of the geometric configuration when
arbelos of the same ratio are constructed on sides of a triangle. The centers of
the Archimedean twin circles of these arbelos determine two triangles that are
either orthologic or homologic to the base triangle only when the common ratio
of arbelos is the number related to the golden ratio. We also consider several
triangles associated to the base triangle and build arbelos of the same ratio on
their sides and seek when their centers of the Archimedean twin circles give
triangles that are either orthologic or homologic to the base triangle. When we
construct arbelos on sides of pedal and antipedal triangles of points analogous
statements are possible only for points on the Brocard axis and on the Kiepert
hyperbola of the base triangle.

1. Introduction

For points X and Y in the plane and a positive real number s, let Z be the
point such that |XZ| : |ZY | = s and let (X, Y, s) be the figure formed by three
mutually tangent semicircles O, O1, and O2 on segments XY , XZ, and ZY
respectively. Let W denote the intersection of O with the perpendicular to XY
at the point Z. The figure (X, Y, s) is called the arbelos or the shoemaker’s knife.
It has been the subject of intensive research since Greek times when Archimedes
noticed the existence of two circles W1 and W2 with the same radius such that
W1 touches O, O1, and ZW while W2 touches O, O2, and ZW (see Fig. 2).

The initial idea for this paper is to use centres of the Archimedean twin circles
W1 and W2 of arbelos on sides of an arbitrary triangle X1X2X3 and the notions
of orthology and homology for triangles to show the appearance of two significant

real numbers s1 =
√

5+1
2

(the golden ratio) and s2 =
√

5−1
2

.
Recall that triangles X1X2X3 and Y1Y2Y3 are orthologic provided the perpen-

diculars at vertices of X1X2X3 onto sides Y2Y3, Y3Y1 and Y1Y2 of Y1Y2Y3 are
concurrent. The point of concurrence of these perpendiculars is denoted by
[X1X2X3, Y1Y2Y3 ]. It is well-known that the relation of orthology for triang-
les is reflexive and symmetric. Hence, the perpendiculars at vertices of Y1Y2Y3
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Figure 1. The arbelos (X, Y, s), where s = |XZ|/|ZY |.
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Figure 2. The Archimedean circles W1 and W2 together.

onto sides X2X3, X3X1, and X1X2 of X1X2X3 are concurrent at the point
[Y1Y2Y3, X1X2X3 ].

More precisely, our first goal is to prove (in section 3) the following theorems
(see Fig. 3).

Theorem 1. The triangle W11W12W13 on centres W1(X2, X3, s), W1(X3, X1, s),
and W1(X1, X2, s) of the Archimedean first twin circle of arbelos on sides of a
triangle X1X2X3 is orthologic with X1X2X3 if and only if s is the golden ratio

(i.e., if and only if s =
√

5+1
2

).
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Theorem 2. The triangle W21W22W23 on centres W2(X2, X3, s), W2(X3, X1, s),
and W2(X1, X2, s) of the Archimedean second twin circles of arbelos on sides of

a triangle X1X2X3 is orthologic with X1X2X3 if and only if s =
√

5−1
2

.

In the sections 4 and 5 we show versions of these results where the relation of
orthology is replaced with the relation of homology.

The rest of the paper explores certain triangles Y1Y2Y3 associated to the triangle
X1X2X3 (like its first Brocard triangle, positive and negative Torricelli triangles
and positive and negative Napoleon triangles) with the property that building
arbelos on their sides lead to analogous conclusions. In the last two sections the
triangle Y1Y2Y3 is the pedal and the antipedal triangles of carefully chosen points
in the plane. In both cases we get a one parameter family of such triangles.

2. Archimedean circles W1 and W2

In this section we shall obtain expressions for the coordinates of the points
W1(X, Y, s) and W2(X, Y, s) when the points X and Y are arbitrary points in
the plane. Of course, in doing this we reprove the observation by Archimedes
that his circles have equal radii.

We use P (p, q) or (p, q) to denote points by their rectangular coordinates.
Let X(x, a) and Y (y, b). Then O(x+y

2
, a+b

2
) is the midpoint of the segment XY .

Since |XZ|
|ZY | = s, the point Z is

(

x+s y

s+1
, a+s b

s+1

)

. Moreover, semicircles O1 and O2

have centres at
(

(s+2) x+s y

2(s+1)
, (s+2) a+s b

2(s+1)

)

and
(

x+(2 s+1) y

2(s+1)
, a+(2 s+1) b

2(s+1)

)

(the midpoints

of segments XZ and ZY ).
The intersection W (p, q) of the circle O and the perpendicular to XY at Z

satisfies the equation

p2 + q2 − (x + y) p − (a + b) q + x y + a b = 0

of the circle O and the condition

(s + 1) [(x − y) p + (a − b) q] − x2 + (1 − s) x y + s y2 − (a − b) (a + b s) = 0

for the lines XY and ZW to be perpendicular. The solution that makes the
triangle XY W negatively oriented is

W

(

x + sy − (a − b)
√

s

s + 1
,

a + b s + (x − y)
√

s

s + 1

)

.

Our goal now is to prove that besides the circle O2 there is a unique circle W1

in the arbelos (X, Y, s) which touches the line ZW , the circle O1 from outside,
and the circle O from inside.

Let its centre be the point W1(p, q) and the radius a positive real number %.
Since W1 touches ZW , the distance from W1 to the projection
(

(s + 1) B (B p − A q) + A (C s + D)

(s + 1) (A2 + B2)
,

(s + 1) A (A q − B p) + B (C s + D)

(s + 1) (A2 + B2)

)



4 ZVONKO ČERIN

of W1 onto ZW is equal %, where A = x − y, B = a − b, C = y A + b B, and
D = x A + a B. Hence,

(1) (s + 1)(A p + B q) − C s − D = ± % (s + 1)
√

A2 + B2.

Since W1 touches O1 from outside, the distance |W1O1| is equal to the sum

% +
s
√

A2 + B2

2 (s + 1)

of their radii. It follows that

(2)

(

p − (s + 2) x + s y

2(s + 1)

)2

+

(

q − (s + 2) a + s b

2(s + 1)

)2

=

(

% +
s
√

A2 + B2

2 (s + 1)

)2

.

Finally, since W1 touches O from inside, the distance |W1O| is equal to the
difference 1

2

√
A2 + B2 − % of their radii. This condition leads to the relation

(3) 4

(

p − x + y

2

)2

+ 4

(

q − a + b

2

)2

= (
√

A2 + B2 − 2 %)2.

From (1) we can express % and substitute these values into (2) and (3) and solve
for p and q. We obtain

p =
(2 + 3 s) x + s (1 + 2 s) y − 2 s

√
s + 1 (a − b)

2 (s + 1)2
,

q =
(2 + 3 s) a + s (1 + 2 s) b + 2 s

√
s + 1 (x − y)

2 (s + 1)2
,

and

% =
s
√

(x − y)2 + (a − b)2

2 (s + 1)2
.

We can now repeat the above argument to show that besides the circle O1 there
is a unique circle W2 which touches the line ZW , the circle O2 from outside, and
the circle O from inside. The surprise (see Fig. 2) is that W2 also has the above
number % for radius while its centre W2 has coordinates

(2 + s) x + s (3 + 2 s) y − 2
√

s (s + 1) (a − b)

2 (s + 1)2
,

(2 + s) a + s (3 + 2 s) b + 2
√

s (s + 1) (x − y)

2 (s + 1)2
.

Recall that the condition for the triangle with vertices X1(x1, a1), Y1(y1, b1),
and Z1(z1, c1) to be orthologic to the triangle with vertices X2(x2, a2), Y2(y2, b2),
and Z2(z2, c2) is (see [1])

(4) (y2 − z2) x1 + (z2 − x2) y1 + (x2 − y2) z1+

(b2 − c2) a1 + (c2 − a2) b1 + (a2 − b2) c1 = 0.
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3. Proof of Theorems 1 and 2
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Figure 3. The triangle W21W22W23 is orthologic to X1X2X3 when s =
√

5−1
2

.

Without loss of generality we can assume that Xi(ci, di), with ci = cos xi and

di = sin xi (for i = 1, 2, 3). Then W11

(

Ac2+B c3−2 C (d2−d3)
2 (s+1)2

, A d2+B d3+2 C (c2−c3)
2 (s+1)2

)

,

where A = 2 + 3 s, B = s (1 + 2 s), and C = s
√

s + 1. The points W12 and W13

have similar coordinates with x3, x1 and x1, x2 replacing x2, x3 above. The
orthology condition (4) for triangles X1X2X3 and W11W12W13 is

(s2 − s − 1)(3 − cos (x2 − x3) − cos (x3 − x1) − cos (x1 − x2))

(s + 1)2
= 0.

Clearly, for a non-degenerate triangle X1X2X3 and a positive real number s this

condition holds if and only if s = 1+
√

5
2

.
The proof of Theorem 2 is similar. The orthology condition for triangles

X1X2X3 and W21W22W23 is

(s2 + s − 1)(3 − cos (x2 − x3) − cos (x3 − x1) − cos (x1 − x2))

(s + 1)2
= 0.

4. Homology of triangles on Archimedean centers

In this section we shall see that the same results hold for the relation of ho-
mology of triangles. Recall that triangles X1X2X3 and Y1Y2Y3 are homologic
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provided the lines X1Y1, X2Y2, and X3Y3 are concurrent. In stead of homologic
many authors use the term perspective.

Theorem 3. The triangle W11W12W13 on centres W1(X2, X3, s), W1(X3, X1, s),
and W1(X1, X2, s) of the Archimedean first twin circle of arbelos on sides of a

triangle X1X2X3 is homologic with X1X2X3 if and only if s =
√

5+1
2

.

5. Proof of Theorem 3

We shall position the triangle X1X2X3 in the following fashion with respect
to the rectangular coordinate system in order to simplify our calculations. The
vertex X1 is the origin with coordinates (0, 0), the vertex X2 is on the x-axis and
has coordinates (r h, 0), and the vertex X3 has coordinates (fu g r/k, 2 f g r/k),
where h = f + g, k = f g − 1, fv = f 2 + 1, fu = f 2 − 1, gv = g2 + 1, gu = g2 − 1,
fw = f 4 + 1, and gw = g4 + 1. The three parameters r, f , and g are the inradius
and the cotangents of half of angles at vertices X1 and X2.

Nice features of this placement are that most central points (like the incenter,
the centroid, the circumcenter, the orthocenter, the center of the nine-point circle,
the symmedian point, etc.) from Table 1 in [3] or [4] have rational functions in f ,
g, and r as coordinates and that we can easily switch from f , g, and r to the side
lengths a, b, and c and back with substitutions c = r h, a = r f gv/k, b = r fv g/k,
and

f =
(b + c)2 − a2

4 S
, g =

(a + c)2 − b2

4 S
, r =

2 S

a + b + c
,

where S = 1
4

√

(a + b + c)(b + c − a)(a − b + c)(a + b − c) is the area.
Moreover, since we use the Cartesian coordinate system, computation of dis-

tances of points and all other formulas and techniques of analytic geometry are
available and well-known to widest audience. A price to pay for these conve-
niences is that symmetry has been lost.

The third advantage of the above position of the base triangle is that we can eas-
ily find coordinates of a point with given trilinears (i. e. with the three real num-
bers proportional to the distances of the point to the sidelines of the base triangle
– see [3]). More precisely, if a point P with coordinates x and y has projections Pa,
Pb, and Pc onto the side lines X2X3, X3X1, and X1X2 and λ = |PPa|/|PPb| and
µ = |PPb|/|PPc|, then x = u

w
and y = v

w
with u = g h (fv µ + fu) r, v = 2 f g h r,

and w = f gv λ µ + g fv µ + h k.
These formulas will greatly simplify our exposition because there will be no

need to give explicitly coordinates of points but only its first trilinear coordi-
nate. For example, we write X6[a] to indicate that the symmedian point X6 (i.
e., the intersection of symmedians – the reflections of medians in the interior
angle bisectors) has trilinears equal to a : b : c. Then we use the above formu-
las with λ = a/b and µ = b/c to get the coordinates x = u

2 w
and y = v

w
of X6

in our coordinate system, where u = (f fu gu + 2 g fw) g h r, v = f g h2 k r, and
w = f 2 gw + f g fu gu + g2 fw.
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Let T =
√

s + 1. By applying the above formula for W1(X, Y, s) we obtain

W11

(

r A

2 k T 4
,

f r s B

k T 4

)

, W12

(

g r C

2 k T 4
,

g r D

k T 4

)

, W13

(

h r s (1 + 2 s)

2 T 4
, −h r s

T 3

)

,

with A = 2 g fu s2 + (4 g fu + 3 fgu + 4 fg T ) s + 2 h k, B = g (1 + 2 s) + guT , C
= (2 + 3 s) fu − 4 fs T and D = (2 + 3 s) f + fu s T . The lines X1W11, X2W12,
and X3W13 have equations

(5) 2 fs B x − A y = 0,

(6) 2 g D (x − h r) + (2 h k s2 + E s + 2 fgu) y = 0,

(7) 2 T 2 F x + T G y − 2 g h r H = 0,

with H = fu s2 + (fu − 3 fT ) s− 2 fT , G = 2 g fu s2 + (g fu − 3 fgu) s − 2 fgu, F
= h k s − 2 fg T 3 and E = 4 fg T + fu g + 4 fgu.

The intersection of lines X1W11 and X2W12 is at the point
(

g h r A D

K
,

2 fg h r s B D

K

)

,

with K = 2 s T 5(g2fw + fg fu gu + f 2gw) + fg h k (4 s4 + 14 s3 + 21 s2 + 14 s + 4).
This point will be on the line X3W13 (i. e., the lines X1W11, X2W12, and X3W13

are concurrent and triangles X1X2X3 and W11W12W13 are homologic) if and only

if 2 fg h r2 (1+s−s2)
k T 4 = 0. Hence, it follows that this will happen if and only if s = s1

because we are interested only in positive values of s.
In a similar fashion one can also prove the following theorem (see Fig. 4).

Theorem 4. The triangle W21W22W23 on centres W2(X2, X3, s), W2(X3, X1, s),
and W2(X1, X2, s) of the Archimedean second twin circle of arbelos on sides of

a triangle X1X2X3 is homologic with X1X2X3 if and only if s =
√

5−1
2

.

It is easy to check that the centre W1(X, Y, s) of the first Archimedean twin cir-
cle of the arbelos (X, Y, s) lies on the perpendicular bisector of the segment XY
if and only if s = s1. Similarly the centre W2(X, Y, s) of the second Archimedean
twin circle of the arbelos (X, Y, s) lies on the perpendicular bisector of the seg-
ment XY if and only if s = s2. Moreover, points W1(X, Y, s1) and W2(X, Y, s2)
are identical. This implies that one implication in Theorems 2 and 4 follow from
Theorems 1 and 3, respectively.

6. Arbelos on various triangles

In this section we shall look for triangles Γ = Y1Y2Y3 other than ∆ = X1X2X3

such that the triangle formed by centres of Archimedean twin circles of arbelos
with the ratio s > 0 on sides of Γ is orthologic to ∆ if and only if either s = s1

or s = s2. Let Φs
j and Ψs

j denote Wj(X2, X3, s)Wj(X3, X1, s)Wj(X1, X2, s) and
Wj(Y2, Y3, s)Wj(Y3, Y1, s)Wj(Y1, Y2, s) for j ∈ {1, 2}.
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Figure 4. The triangle W21W22W23 is homologic to X1X2X3 when s =
√

5−1
2

.

Theorem 5. If triangles Γ and ∆ are homothetic, then Φs
j is orthologic with Γ

and/or Ψs
j is orthologic with ∆ if and only if s = sj.

Proof for j = 1. Since the triangles Γ and ∆ are homothetic there is a point P
and a real number m 6= −1 such that the vertices of Γ divide the segments X1P ,
X2P , X3P in the ratio m. Let us assume that the vertices of ∆ are selected as in
the proof of Theorem 3 and that P has the coordinates (p, q). The vertices of Γ

have the coordinates
[

mp

m+1
, mq

m+1

]

,
[

h r+m
m+1

, m q

m+1

]

, and
[

fug r+k m p

k(m+1)
, 2fg r+k m q

k(m+1)

]

. The

triangles Ψ and ∆ are orthologic if and only if

(f 2gw + fg fugu + g2fw)(1 + s − s2)

k2(m + 1)(s + 1)2
= 0.

The first parenthesis in the numerator of the left hand side is clearly always
positive and this implies that the theorem holds. �

Recall that the first Brocard triangle of ∆ has as vertices the projections of its
symmedian point K onto the perpendicular bisectors of sides.

Theorem 6. Let Γ be the first Brocard triangle of a scalene triangle ∆. Then
Φs

j is homologic with Γ and Ψs
j is homologic with ∆. Moreover, Φs

j is orthologic
with Γ and/or Ψs

j is orthologic with ∆ if and only if s = sj.
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Proof for j = 1. Let us again assume that the vertices of ∆ are selected as in the
proof of Theorem 3. The vertices of Γ have the trilinear coordinates abc : c3 : b3,
c3 : abc : a3, and b3 : a3 : abc, where a, b, c denote the lengths of sides of ∆.

For the part about the homology the straightforward proof amounts to comput-
ing coordinates of all vertices and checking that the lines joining corresponding
vertices are concurrent perhaps with the help of a computer because rather com-
plicated expressions appear.

The triangles Ψ and ∆ are orthologic if and only if

(a4 + b4 + c4 − b2c2 − c2a2 − a2b2)(1 + s − s2)

(a2 + b2 + c2)(s + 1)2
= 0.

The first parenthesis in the numerator of the left hand side is equal to

(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2

2
so that it is always positive except in the case when a = b = c. This implies that
the theorem holds. �

In a similar way it is possible to prove also the following theorems. We shall
use the Torricelli and Napoleon triangles of a given triangle that have simple
constructions related to equilateral triangles built on its sides. The history of
these triangles is long and rich with many beautiful results.

Let Au, Bu, and Cu be vertices of equilateral triangles built on sides Y2Y3, Y3Y1,
and Y1Y2 of Y1Y2Y3 towards inside. When they are built towards outside then their
vertices are denoted Av, Bv, and Cv. The negative Torricelli triangle is AuBuCu

while AvBvCv is the positive Torricelli triangle of Y1Y2Y3. The centers Ax, Bx, Cx

of the triangles Y2Y3Au, Y3Y1Bu, Y1Y2Cu are the vertices of the negative Napoleon
(equilateral) triangle while the centers Ay, By, Cy of the triangles Y2Y3Av, Y3Y1Bv,
Y1Y2Cv are the vertices of the positive Napoleon (equilateral) triangle.

Theorem 7. Let the triangle ∆ satisfy a2 + b2 + c2 6= 12
√

3S. Let Γ be the
negative Torricelli triangle of ∆. Then Φs

j is orthologic with Γ and/or Ψs
j is

orthologic with ∆ if and only if s = sj.

Theorem 8. Let Γ be the positive Torricelli triangle of a scalene triangle ∆.
Then Φs

j is orthologic with Γ and/or Ψs
j is orthologic with ∆ if and only if s = sj.

Theorem 9. Let Γ be the negative Napoleon triangle of a scalene triangle ∆.
Then Φs

j is orthologic with Γ and/or Ψs
j is orthologic with ∆ if and only if s = sj.

Theorem 10. Let Γ be the positive Napoleon triangle of a triangle ∆. Then Φs
j

is orthologic with Γ and/or Ψs
j is orthologic with ∆ if and only if s = sj.

The proofs of Theorems 7 – 10 follow the method of the proof of Theorem 6.
From the trilinear coordinates we compute the rectangular coordinates of the
vertices and then apply the criterion (4) for the orthology relation. The transfer
of this criterion into the expression in side lengths and factoring out gives defining
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PSfrag replacements

X1

X2

X3

S2

S1

W21

W22

W23

Av

Bv

Cv

Figure 5. The triangle W21W22W23 on the positive Torricelli tri-

angle AvBvCv is orthologic to X1X2X3 if and only if s =
√

5−1
2

.

quadratic equations for either s1 or s2 and the factor which is zero only when the
exception from the statement holds.

7. Arbelos on pedal triangles

The pedal triangle of a point P with respect to the triangle ∆ has as vertices
the orthogonal projections of P onto the sidelines of ∆.

Let Q denote the central point of the triangle ∆ with the trilinear coordinates
a(b2 + c2 − 2a2) : b(c2 + a2 − 2b2) : c(a2 + b2 − 2c2).

Theorem 11. Let Γ be the pedal triangle of any point P 6= Q on the line join-
ing the circumcenter and the symmedian point of the triangle ∆. Then Φs

j is
orthologic with Γ and/or Ψs

j is orthologic with ∆ if and only if s = sj.

Proof for j = 1 and Ψ. Let the point P has the trilinear coordinates x0 : y0 : z0.
The trilinear coordinates of the orthogonal projection of P onto the sideline X2X3

are 0 : 2y0 + a2+b2−c2

ab
x0 : 2z0 + c2+a2−b2

ca
x0. It follows that Ψs

j is orthologic with
∆ if and only if

2S[bc x0 + ca y0 + ab z0](s
2 − s − 1)

√
s + 1

− [bc(b2 − c2) x0 + ca(c2 − a2) y0 + ab(a2 − b2) z0]s(s + 1) = 0.
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Figure 6. The triangle W21W22W23 on the pedal triangle PaPbPc

of a point from OK \ {Q} is orthologic to X1X2X3 if and only if

s =
√

5−1
2

.

The second square parenthesis is the equation of the line OK joining the circum-
center O with the symmedian point K while the first is the equation of a line
perpendicular to it through the point Q (their intersection). This completes the
proof. �

8. Arbelos on antipedal triangles

The antipedal triangle of a point P with respect to the triangle ∆ has as
vertices the intersections of the perpendiculars in the vertices of ∆ to the lines
PX1, PX2, PX3.

Let Q∗ denote the isogonal conjugate of the central point Q of the triangle ∆.
Its trilinear coordinates are 1

a(b2+c2−2a2)
: 1

b(c2+a2−2b2)
: 1

c(a2+b2−2c2)
.

Recall that the Kiepert hyperbola of a triangle ∆ is a unique (equilateral)
hyperbola that goes through its vertices, the orthocenter (the intersection of the
altitudes), and the centroid (the intersection of the medians).

Theorem 12. Let Γ be the antipedal triangle of any point P 6= X1, X2, X3, Q∗

on the Kiepert hyperbola of the triangle ∆. Then Φs
j is orthologic with Γ and/or

Ψs
j is orthologic with ∆ if and only if s = sj.
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Figure 7. The triangle W21W22W23 on the antipedal triangle
P aP bP c of a point P 6= Q∗ on the Kiepert hyperbola of ∆ is ortho-

logic to X1X2X3 if and only if s =
√

5−1
2

.

Proof for j = 1 and Ψ. Let the point P has the trilinear coordinates x0 : y0 : z0.
The trilinear coordinates of the first vertex P a of the antipedal triangle are

− [(c2 + a2 − b2) x0 + 2 c a z0][(a
2 + b2 − c2) x0 + 2 a b y0] :

[(c2 + a2 − b2) x0 + 2 c a z0][(a
2 + b2 − c2) y0 + 2 a b x0] :

[(a2 + b2 − c2) x0 + 2 a b z0][(c
2 + a2 − b2) x0 + 2 c a x0].

It follows that Ψs
j is orthologic with ∆ if and only if

2S[bc y0 z0 + ca z0 x0 + ab x0 y0](s
2 − s − 1)

√
s + 1

− [bc(b2 − c2) y0 z0 + ca(c2 − a2) z0 x0 + ab(a2 − b2) x0 y0]s(s + 1) = 0.

The second square parenthesis is the equation of the Kiepert hyperbola of ∆
while the first is the equation of the Steiner ellipse of ∆. These conics intersect
in the vertices of ∆ and in the point Q∗. This completes the proof. �

References
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