ANALYTIC GEOMETRY OF THE PLANE
AND MATHEMATICA
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ABSTRACT. We describe the use of the program Mathematica in
the analytic geometry of the plane in the rectangular coordinates.
As an illustration of possible applications of this method we present
the solutions of fifteen problems from the problem book for the first
class of gymnasiums in Croatia.

In this article we describe the computer approach to the analytic
geometry of the plane. In order to do this we shall use the symbolic
computation program Mathematica. Of course, the same could be
done in the rival program Maple V. These are the most widely known
and the most popular extensive systems that "know mathematics".
Each of them has its own programming language. Our task is reduced
to describing basic functions that are needed for solving geometry prob-
lems with the analytic method.

This is the translation to English of the article [2] that is in Croatian.
In the references [1], [3], [4] that are in Croatian the same task was
done in the program Maple V. The whole project is the result of the
second author’s course "Geometry and computers" at the Mathematics
Department of the University of Zagreb (in Croatia) in which the first
and the third authors (the undergraduate students) have been enrolled
in the academic year 2002/2003.

The key idea of the analytic geometry is to associate algebraic enti-
ties with geometric objects and then investigate them using algebraic
methods. Since the simplest way to achieve this is in the plane we start
our study there.

The building blocks in the plane are points so that we must first
decide how to represent them by suitable algebraic objects. The selec-
tion of a coordinate system is the easiest method of doing this. Among
several such known systems (e. g. rectangular, skew-angled, polar,
trilinear, barycentric,...) we choose the rectangular coordinate system
for its simplicity and familiarity.

This system is determined by two perpendicular oriented lines p,
and p, and by the point £ different from their intersection O = p, N p,
selected on one of them (say on p,). The point O is called the origin,
the lines p, and p, are the z-azis and the y-azis. The point E is the
unit point (see Figure 1).
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F1GURE 1. The rectangular coordinate system.

The position of any point 7" in the plane is completely determined by
the ordered pair (z, y) of real numbers which are named the (rectangu-
lar) coordinates of the point T'. The numbers z and y are the following
ratios of oriented distances

_ |07, _ |07
T = Y y - Y
|OE| |OE|
where T, and T}, are the projections of the point 7" on the z-axis and
on the y-axis.

The input of points on the plane in Mathematica is quite simple
because they are just ordered pairs of real numbers. For example, the
input
tA:={2, 3}; tB:={5, 7}; tC:={-2, 0}; tT:={x, y};
defines four points on the plane A(2,3), B(5,7), C(-2,0), T'(z,y).

Now, when we know how to define points on the plane let us measure
distances between them.

For points A and B on the plane with coordinates (a, u) and (b, v)
the distance |AB)| is the hypothenuse of the right triangle ABC, where
C is the intersection of the parallel to the x-axis through A and the par-
allel to the y-axis through B. The legs of that triangle are (horizontal)
|b — a| and (vertical) |u — v| (see Figure 2). Therefore, by Pythagorean
theorem, the distance is

|AB| = /(b — a)? + (v — u)2.
The following function calculates distances in Mathematica:

distance[{a_,u_}, {b_,v_}]:=Sqrt[FS[(b-a) "2+(v-u)"2]]

The name of this function is distance. It asks for two ordered pairs
of real numbers. The first pair has the components a and u while the
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FIGURE 2. The distance between the points A(a, u) and
B(b, v) is |AB| = \/(b—a)? + (v — u)2.

components of the second pair are b and v. The machine first computes
(b—a)? + (v —u)? and then tries as much as possible to simplify and
factor this sum of squares (the command FS). In the end it finds the
square root of everything (the command Sqrt).

In order to cut down typing we introduce the shortening FS for the
simultaneous use of commands Factor and FullSimplify that will be
used frequently.

FS[m_]:=Factor[FullSimplify[m]];

Many times it is important to determine the midpoint of the segment
whose endpoints are given. From the Figure 3 below we infer that the
coordinates of the midpoint P of the segment with endpoints A(a, u)
and B(b, v) are 22 and “i.

The function which computes the midpoint of a segment has in the
program Mathematica the following form:

midpoint[{a_,u_}, {b_,v_}] :=FS[{(a+b)/2, (u+v)/2}]

It is slightly harder to find the coordinates of the point which divides
a segment in a given ratio. In other words, we are looking for the point
C on the line AB such that the ratio of lengths of oriented segments
|AC]
|CB

is equal to a given real number \ (that must be different from

U+ v
ordinate). The
+ A +A ( )
number A is often given as the quotient ™ of integers m and n (that
are not opposite to each other).
The corresponding functions are defined in Mathematica as follows:

—1). Tts coordinates are (abscissa) and
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FIGURE 3. The coordinates of the midpoint P of the
segment AB are the arithmetic mean of the coordinates
of its endpoints.

ratio[{a_,u_},{b_,v_},k_1:=
FS[{(a+k*b) /(1+k) , (u+k*v) /(1+k) }]

ratiomn[{a_,u_}, {b_,v_},m_,n_] :=
FS[{(a*n+b*m) / (m+n) , (wkn+v*m) / (m+n) }]

Of course, the midpoint function is a special case of these functions.
We get the midpoint for A =1 and for m =1 and n = 1.

Besides points the most important objects in the plane are lines.
Recall that lines are represented by linear equations. More precisely, if
a, b and c are real numbers and a and b are not both zero, then the set
of all points P(z, y) in the plane whose coordinates satisfy the equation
ar+by+c=0is a line. Conversely, for every line in the plane we
can find such real numbers a, b and ¢ so that each of its points satisfies
the above equation.

This explains why we shall represent lines in Mathematica as ordered
triples {a, b, ¢} of coefficients of their linear equations. For example,
the input

pX:={1, 0, 0}; pY:={0, 1, 0}; pD:={1, -1, 0}; pG:={-1, 2, 2}

defines four lines in the plane. They are the z-axis, the y-axis, the bi-
sector of the first and the third quadrant and the line —x +2y + 2 = 0.

The line is usually determined by one of its points Py(xo, yo) and
the tangent k of the angle which it makes with the positive direction
of the z-axis. In this case its equation is

y—yozk’(x—xo),
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so that in Mathematica we use for it the following function:
linel[k_, {b1_,b2_}] :=FS[{k,-1,b2-b1*k}];

The second most common method of representing a line is when we
know two different points P;(z1, y1) and Py(x9, y2) which lie on it. The
equation of the line is

Y2 — Y1
T2 — I

Y=y = (x — =)

when 7 # xo. Rewriting this equation in the form

(o —y1) 2+ (1 —22) y + (X1Y2 — 22y1) =0

we see that it holds also when x; = x5. Therefore, in this situation the
corresponding Mathematica function is the following:

line2[{x1_,y1_3},{x2_,y2_}] :=FS[{y2-y1,x1-x2,x1*y2-x2%y1}];

Sometimes it is useful to have the following function which investi-
gates whether the given point lies on the given line. The letter Q in its
name suggests the word "question" and is common for Mathematica.
The point is on the line if and only if the function evaluates to zero.

onlineQ[{a_,b_},{x_,y_,z_}] :=FS[a*x+y*b+z];

It is now easy to find the condition that the coordinates of three
points Py(z1, y1), Pa(z2, y2), and P3(z3, y3) must satisfy in order that
they lie on a line (i. e., that they are collinear). In fact, by now we
know the equation of the line through the points P; and P,. Since the
point P3 must lie on this line its coordinates must satisfy this equation.
In other words,

onlineQ[{x3,y3},1line2[{x1,y1},{x2,y2}]1]

is zero (i. e., (Y2 — y1) X3 + (v1 — x2) y3 + (r1y2 — T2 y1) = 0).
This explains the definition of the following Mathematica function
which tests if three given points are collinear.

collinearQ[{x1_,y1_},{x2_,y2_3},{x3_,y3_}] :=
FS[y2*x3-y1*x3+x1*y3-x2*y3+x1*y2-x2*y1]

Similarly as in the case of the function onlineQ, three points in the
plane will be collinear if and only if the function collinearQ evaluates
in them to zero.

Different lines Ay x + Byy + C; =0and Ay + Byy + Cy = 0 in the
plane either intersect or are parallel. If they intersect, then the coor-
dinates of the point of their intersection are
B0y — By (, G Ay - O Ay
T A B,-AB T AB - AB
We obtain them as output of the following Mathematica input:

Solve [{A1xx+B1*y+C1==0, A2xx+B2*y+C2==0}, {x, y}]

T
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The assumption that the given lines intersect implies that the denomi-
nators in the above expressions are different from zero. Parallel lines do
not have the intersection (in the finite plane) and A; By — Ay By =0
is the condition on their coefficients that must hold in order that they
are parallel. Hence, the following Mathematica function determines
the intersection of two lines in case when they are not parallel:

inter[{a_,b_,c_},{i_,j_,k_}] :=
FS[(-j*c+kxb)/(-i*b+ax*xj), (ixc-axk)/(-ixb+axj)];

They will be parallel provided the use of the function inter results in
the Mathematica error message of division with zero:

1
Power::"infy" : '"Infinite expression 0 encountered."

When the lines p; and p, with equations
Ajz+Biy+C; =0 and Asx+ Boy+Cy =0

intersect, then the tangent of the angle ¢ among them is given by the

formula
AlBQ — AgBl k2 - kl
tanp = =

- A Ay + BBy 1+ kiky

A
where k; = _§1 and ky, = —§2 are tangents of the angles ¢, and s
1 2
that they make with the positive direction of the z-axis (see Figure 4).

o
P2

FIGURE 4. The angle among two intersecting lines.

The following function accomplishes this in Mathematica:

angle[{a_,b_,c_},{i_,j_,k_}] := FS[(axj-ixb)/(axi+b*j)];
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Notice that the lines will be perpendicular when the use of this function
in Mathematica reports the division with zero error.

It follows that the lines p; and py are parallel if the angle among them
is zero or if A1 By — A3B; = 0 or k1 = ko. On the other hand, they will

1
be perpendicular if AjAs + B1By =0 or ky = 7 (the denominator

of the above quotient is zero so that the angle is right).

These remarks justify the following definitions of Mathematica func-
tions that give the parallel through a given point to a given line and the
perpendicular through a given point to a given line. Similar functions
test if two given lines are parallel or perpendicular:

parallel([{a_,b_},{x_,y_,z_}] :=FS[{x,y,-x*a-bxy}];
perpen[{a_,b_},{x_,y_,z_}] :=FS[{y,-x,x*b-y*a}];
parallelQ[{a_,b_,c_},{x_,y_,z_}] :=FS[axy-x*b];
perpenQ[{a_,b_,c_},{x_,y_,z_}] :=FS[a*x+y*Db];

When the functions parallelQ or perpenQ, for a given pair of lines,
return the value zero, then these two lines are parallel or perpendicular,
respectively.

For three different lines py, ps and ps3 in the plane with equations

AlfL‘—f-Bly—f—Cl:O, Agl’—f-Bgy—f-ngo, Agl’—f—Bgy—f-Cg:O

we shall now determine the condition which their coefficients must sa-
tisfy in order that they are concurrent (i. e., that they are parallel or
intersect in a point).

If the lines p; and p, intersect at the point T'(x, y) we know that
the coordinates x and y are the quotients fll giiﬁi gi and gi gz:% ‘2,11.
Substituting these values into the equation of p; we get

A1By — Ay By
Hence, these three lines have a common point provided the expression
in the numerator of the left hand side

A = A3 (B1Cy — ByCh) + B3 (C1 Ay — CyAy) + C5 (A1 By — AsBy)

is equal to zero.

If the lines py, po and p3 are parallel then their coefficients satisfy
the relations Ay = MNAy, B, = ABy, A3 = uA,, By = uBy, for some real
numbers A and p different from zero. When we substitute these values
into A it is again equal to zero.

Conversely, if A = 0, then after dividing both sides of this equality by

A, By — Ay B; we infer that the intersection T <Bl Co=BC) €1 Ar=Ch A1>

= 0.

A1 By—A3 By’ A Ba—Ag By
of the lines p; and p, satisfies the equation of p;. Hence, these three
lines are concurrent. This argument holds only for A; B, — Ay By # 0,
i. e., if the lines p; and py are not parallel.
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If the lines p; and p, are parallel, then there is a real number \ # 0
such that Ay = MA; and By = AB;. Substituting these into the equality
A = 0 we obtain

(AlBg - AgBl)()\Cl - Cg) - O

In the product on the left hand side the second parenthesis is different
from zero because p; # po. Hence, A1 B3 — A3B; = 0 which means that
the lines p; and p3 are also parallel and the proof is completed because
then the lines py, ps and p3 are parallel.

In this way we explained how to define the following function in
Mathematica which will test if three given lines are concurrent:

concurQ[{a_,b_,c_},{i_,j_,k_},{p_,q_,r_}] :=
FS[a*xj*r-axk*q-ixb*r+ixc*q+pxb*xk-pxc*jl;

Hence, three lines either intersect in a point or are parallel provided
the value of the function concurQ in them is zero.

FIGURE 5. The reflection of a point with respect to a
point (left) and with respect to a line (right).

In solving problems using the analytic geometry it is often necessary
to determine the projection of a point onto a line. Since the projection
is the intersection of the line and the perpendicular to the line through
the point, if we input into Mathematica

P:={p, q}; m:={a, b, c}; Q:=inter[m, perpen[P, m]];

the output will be the coordinates of the projection () of the point P
onto the line m. Hence, the corresponding function looks as follows:

project[{p_, q_},{a_,b_, c_}]:=
FS[{- (c*a+b*q*a-p*b~2)/(b"2+a"2),
(-bxc+qg*a”2-a*xp*b) /(b 2+a"2) }]1;
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Similarly, many times we also need the reflection of a point with
respect to a given point or a given line. When the point P is reflected
with respect to the point () the coordinates of the reflected point R can
be determined using the function ratio for A = —2 because the point
R divides the segment PQ in the ratio —2.

P:={p, q}; Q:={a, b}; R:=ratio[P, Q, -2]

It follows that the function which associates to a pair of given points
P and (@ the reflected point R in Mathematica is defined by the input

reflectP[{p_, q_},{a_, b_}]:= FS[{2*a-p, 2xb-q}];

The reflection of a point P with respect to a line m is analogous.
This time the required point R is the reflection of the point P with
respect to the projection () of the point P onto the line m:

P:={p, q}; m:={a, b, c}; R:=ratio[P, project[P, m], -2];

Hence, the corresponding Mathematica function has the following form:

reflectL[{p_, q_},{a_,b_,c_}] :=
FS[{(b"2*p-a”2xp-2*axb*xq-2xc*a) /(a"2+b"2) ,
(a™2*q-b"2*q-2*a*bxp-2*cxb) /(a"2+b"2) }];

This concludes the listing of the most basic functions for the analytic
geometry of the plane. In the rest of this paper we shall present fifteen
geometry problems from the problem collection [6] and give detailed
solutions of them in Mathematica. The collection is for the first year
high school level (age 15-16) but some solutions require knowledge from
the second and the third year.

Our first example is the problem 395 from the book [6] that reads as
follows:

Problem 1. Prove that the area P of a triangle ABC' with vertices in
the points A(z1, y1), B(za, y2) and C(x3, y3) is given by the formula:

_ |7 (y2 — ys) + wa(ys — y1) + z3(y1 — )]
2

P

or
p 9@ —a3) +yawy — 1) + ys(a1 — 29))|
5 .

Proof. Recall that the area of a triangle is a half of the product of
lengths of any of its sides with the corresponding altitude. Hence, with
the help of Mathematica functions introduced earlier, the area is easily
computed as follows:

tA:={Subscript[x,1],Subscript[y,11};
tB:={Subscript[x,2],Subscript[y,2]1};
tC:={Subscript[x,3],Subscript[y,3]};
tD:=project[tC,line2[tA,tB]];
vP:=FS[distance[tA,tB]*distance[tC,tD]/2];
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C(‘L'?n y3)
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B(w2, y2)

FIGURE 6. The area of the triangle ABC' is half of the
product of the length of the base AB and the length of
the corresponding altitude C'D.

The output in Mathematica will be a rather complicated expression

2
) Vas2 = 2xox1 + 12 +y12 — 291y + y22.

1 [ (=y3z1 + x3y1 + ysw2 — Tay1 — T3y2 + T1y2
2 @22 — 2xox1 + w12 + 912 — 2y1y2 + Y22

As the computer is just a machine and we have not explained the
nature of symbols representing the coordinates of the vertices, it will
not cancel out the denominator in the first square root with the second
square root even though they are clearly identical. It also does not
notice that the square root of the square in the numerator of the first
square root is equal to the absolute value

| —ysx1 + T3y1 + YsTa — Ty — T3Ya + T1Y2]

When we make these simplifications we shall obviously get the required
formula. 0

It is interesting to note that without the absolute value the above
formula computes the oriented area of the triangle ABC'. If this tri-
angle is positively oriented, i. e., if the movement ABC'A is in the
counterclockwise direction, then this real number will be positive and
otherwise is negative. It will be zero if and only if the points A, B and
C are collinear.

The function that gives this oriented area in Mathematica is realized
in the following input:

areal{a_, x_},{b_, y_},{c_, z_}]:=
FS[(x*c-b*x-a*z+a*xy+b*z-c*y)/2];

The second example is the problem 425 from the same book [6].
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Problem 2. Let ABC be a triangle and let U, V, W be midpoints
of sides BC', CA and AB. The segments AU, BV and CW are called
the medians of the triangle ABC. Prove analytically that the three
medians intersect in a point that we call the centroid of the triangle
and that the centroid divides each median in the ratio 2 : 1 counting
from the vertex.

C’(m3, ys)

A(wla yl)

B(“’Za y2)

FIGURE 7. The triangle ABC and its medians AU, BV
and C'W intersecting in the centroid G.

Proof. The proof on the computer, in Mathematica, begins by typing
the following input:

tA :={Subscript[x,1],Subscriptly,11};

tB :={Subscript[x,2], Subscript[y,2]1};

tC :={Subscript[x,3],Subscriptly,31};

tU:=midpoint [tB,tC]; tV:=midpoint[tC,tA];

tW:=midpoint [tA,tB]; concurQ[line2[tA,tU],
line2[tB,tV],1line2[tC,tW]];

In amazingly short time the computer will output the value zero which

proves that the medians intersect in a point. The coordinates of this
point are revealed with the commands:

tG :=inter[line2[tA,tU], 1ine2[tB,tV]];

The point G has the coordinates (£1t2t2s W) oo that we can
immediately write down the Mathematica function which associates

the centroid to a triangle:
centroid[{a_,x_},{b_,y_},{c_,z_}]:=FS[(atb+c) /3, (x+y+z) /3]

In order to prove the second claim of the problem we shall find the
point that divides the median of the vertex A (i. e., the segment AU)
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in the ratio 2 : 1 counting from the vertex A and show that it coincides
with the point G (the centroid of the triangle ABC'). The same argu-
ment could be repeated for the medians of the vertices B and C.

tT:=ratiomn[tA, tU, 2, 1]; distancel[tG, tT]

Since the returned value is zero, the points G and T coincide so that
the proof of the problem is completed successfully. O

The third example is the problem 989 also from the collection [6].

Problem 3. Prove that the midpoints of sides and the feet of the
altitudes of a triangle lie on the same circle.

C

BII

BI

F1GURE 8. The midpoints of sides and the feet of the
altitudes of a triangle lie on the same circle.

Proof. Without loss of generality we can assume that the points A, B
and C are selected in the plane so that their coordinates are (0, 0),
(¢, 0) and (u, v), where ¢, v and v are real numbers with ¢ and v
different from zero.

eh:={0, 0}; eB:={c, 0}; eC:={u, v};
Then we get the midpoints of the sides applying the function midpoint:

eAp:=midpoint[eB,eC]; eBp:=midpoint[eC,eA];
eCp:=midpoint[eA,eB];

The feet of the altitudes are the projections of the vertices onto the
opposite sidelines:

eApp:=project[eA,line2[eB,eCl];
eBpp:=project[eB,line2[eC,eAl];
eCpp:=project[eC,line2[eA,eB]l];
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The center of the circle circumscribed to a triangle is the intersection of
perpendicular bisectors of its sides. Hence, in our situation, the center
S of the circle circumscribed to the triangle A’B'C” with vertices in the
midpoints of sides is defined as follows:

eS:=inter[perpen[midpoint [eBp,eCp]l,line2[eBp,eCpl],
perpen[midpoint [eCp,eAp],line2[eCp,eAp]l]]

Applying the same method to the triangle A” B”C" with vertices at the
feet of the altitudes we can find the center T of its circumscribed circle.

eT:=inter [perpen[midpoint [eBpp,eCppl,line2[eBpp,eCppll,
perpen[midpoint [eCpp,eAppl,line2[eCpp,eAppl]]

After we type in the above commands the computer will output the
coordinates of the points S and T. We see that they are equal, so that
the points S and T coincide.

In order to complete the proof it remains still to prove that the radii
of the circumcircles of the triangles A’B’'C’' and A”B"C" are equal.
This is checked in Mathematica with the following input:

FS[distance[eS,eCp]-distance[eT,eCppl]

Since the returned value is zero the proof is successfully accomplished.

With almost no effort we can now prove that the radius of the above
circle (also known as the nine-point circle because it also goes through
the midpoints of the segments joining vertices with the orthocenter) is
equal to the half of the radius of the circle circumscribed to the triangle
ABC. In order to check this using the same method as above we first
find the coordinates of the center O of the circumcircle of ABC

e0:=inter[perpen[midpoint[eB,eC],1line2[eB,eCl],
perpen[midpoint [eC,eA],1ine2[eC,eA]]]

and request from Mathematica to compute the following:
FS[distance[e0,eC]/distance[eS,eCp]]

Of course, the result is the number two. O
The fourth example are the problems 719 and 720 from the book [6].

Problem 4. Prove that if a triangle has two equal altitudes or two
equal medians, then it is isosceles.

Proof. With the assumptions and the notation from the proof of the
Problem 3, typing in

FS[distance[eA,eApp] "2-distance[eB,eBpp] "2]

we obtain (Ugﬂfj’;’i(ffc;)c()UQJrug). Hence, if the altitudes AA” and BB”
have the same lengths then v = $ so that ABC' is an isosceles triangle
because the vertex C' lies on the perpendicular bisector of the side AB.

Similarly we see that after typing into the program Mathematica
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AII
BII

B’ A’

A B

FIGURE 9. Relations |AA'| = |BB'| or |AA"| = |BB"|
imply |BC| = |CA].

FS[distancel[eA,eAp] "2-distance[eB,eBp] "2]

the output is W that leads to the same conclusion for medians. [
More complicated to prove is the Problem 721 from [6]. Our method

of its proof assumes the knowledge of the trigonometric functions (the

cotangent in particular).

Problem 5. Prove that a triangle is isosceles if and only if it has two
equal angle bisectors.

B

FI1GURE 10. The sides BC' and C'A are equal if and only
if the bisectors AA; and BB; of angles A and B are equal.

Proof. In order to have simple expressions we shall assume that the
vertices A and B and the incenter I (i. e., the center I of the circle
inscribed to the triangle ABC') have the coordinates (0, 0), (f + g, 0),
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and (f, 1), where f and g are positive real numbers. In fact, these are
the cotangents of the halves of the angles A and B. In addition, we
assumed that the inradius is equal to 1.

tA:={0, 0}; tB:={f+g, 0}; tI:={f, 1}; tJc:={f, 0};

If the points J,, J,, J. are the projections of the incenter I onto
the sides of ABC| then J. has the coordinates (f, 0) while we get the
coordinates of J, as solutions of the following system of equations:

sys:=Solve[{distance[tB,{p, q}]==distance[tB,tJc],
distance[tI,{p, q}1==1},{p, q}1;

where p and q are the coordinates of the point J, that we are trying to
determine. This system has only two solutions. The first are the co-
ordinates of the point J. while the second are the required coordinates

% and 22“11 of the point J,,.

tJa:={p,q} /. Extractlsys, 2]

In a similar way we can find also the coordinates f(f’;tll) i m of the

point Jj.

tJb:={p,q} /. Extract[Solve[{distance[tA,{p, q}]==
distance[tA,tJc], distance[tI,{p, q}]==1},{p, q}l, 2]

Now we can find the points A; and B; of intersection of bisectors of
angles A and B with the opposite sides as intersections AI N B.J, and
BINAJ,.

tAi:=inter[line2[tA,tI],1ine2[tB,tJall;
tBi:=inter[1line2[tB,tI],1line2[tA,tJbl];

Let us now ask the program Mathematica to calculate the difference of
the squares of lengths of angle bisectors with the following input:

Q:=FS[distance[tA,tAi] "2-distance[tB,tBi] "2];
The output will be the quotient
L+ (f -9 ('@ +46°F —5 2 +g' P +4fg— 1)
(G +2f9—1)°(f*+2fg—1)°
Since its numerator contains f — g as a factor and f + g is obviously

never zero, we conclude that the proof will be completed provided we
show that the long parenthesis

Z=['+4¢*f =5 +¢'f*+4fg—1

in the numerator is always positive.

First note that the sum 3 + £} of halves of the angles is at most g
so that

> 0.

Cot(A B):Cot(é) ot(3) -1 _fg-1

J— + J—
2 2 cot(4) + cot(£) f+g
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We conclude that fg > 1.
The first and the fourth term of Z together give

fl? + 29" = (fP+ ) (f9)* = 2(f 9)(f9)* = 2(f 9)°
because f2? + ¢g? > 2fg. If we introduce the notation ¥ = fg then
Z > 69° — 50° + 49 — 1.

Since ¥ > 1 we can replace ¥ in the above cubic polynomial with 1 + 9

and get (39 +2) (292 + 39 +2). This expression is always positive

because the new variable ¢ is positive. This completes the proof.
Notice that the same could be obtained with the substitution f = %

for the positive real number k in the polynomial Z. Following the input

Collect[Extract[Q,4] /. f£f->(1+k)/g, gl;
the program Mathematica outputs

(1+k)*
g2

(1+k)2g*+ +2+6k+ Tk +4k

which is obviously always positive. O

We continue with the problem 833 from [6] which is in the section
about similarity of triangles.

Problem 6. Let r be the radius of the circle inscribed to a triangle
ABC and let R be the radius of its circumscribed circle. Prove that
R > 2r.

A(0,0) ‘ B(r(f +9), 0)

FIGURE 11. The diameter of the incircle is at most equal
to the radius of the circumcircle.
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Proof. The following proof has great similarity with the solution of
the previous problem. Without loss of generality we can assume that
the angles A and B of the triangle ABC' are acute (i. e. less than 7
radians) and that the vertices A, B and the center I of the incircle have
the coordinates (0, 0), (r(f +¢), 0) and (fr, ) for some real numbers
f>1,g>1and r > 0.

Our idea of the proof is first to determine the coordinates of the
vertex C' and the center O of the circumcircle. This will make it possible
to compute the radius R of the circumcircle. Finally, we show that the
difference R — 2 r is always positive except in the case of the equilateral
triangle when it is zero.

Let J,, Jy, J. be projections of the center I of the incircle onto the
sides of the triangle ABC. The point J,. has the coordinates (fr, 0)
while we get the coordinates of the J, from the following system of the
equations

sys:=Solve[{distance[tB,{p, q}]==distance[tB,tJc],
distance[tI,{p, q}l==r},{p, q3}]1;

where p and ¢ are the wanted coordinates of the point J,. This system
has two solutions: the coordinates of the point J. and the coordinates
(g2f+2g+f)r d 2rg?

1+92 1+92

“jﬁi;})’" and ?Ji; of the point J,.

tJa:={p,q} /. Extractl[sys, 2]
tJb:={p,q} /. Extract[Solve[{distance[tA,{p, q}]==
distance[tA,tJc], distance[tI,{p, q}]l==r},{p, q}l, 2]

of J,. In a similar way we get the coordinates

The vertex C' is the intersection A.J, N BJ,.
tC:=inter[line2[tA,tJb],line2[tB,tJal]l;

The center O of the circumcircle and its radius R are given as solutions
of the following system of equations:

t0:={p, q}; Solve[{distance[tA,t0]==R,
distance[tB,t0]==R, distance[tC,t0]==R},{p, q, R}];

From the two solutions of the system only the one where

S r(l+g2) 1+ 1)
B= -

is correct. In the second solution the radius R is negative which is not
acceptable.

R:=r*x(1+£72) x(1+g~2) /4/ (f*g-1) ;

M:=Collect [Extract [FS[R-2*r],2],f];

\ [CapitalDelta] :=FS[Coefficient[M,f,1]"2-
4xCoefficient[M,f,2]*Coefficient[M,f,0]]
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The difference R — 2r is equal to 4(M ", where M is the quadratic

fg—1)’
trinomial
(+1f*—8gf+g°+9

in f. Its discriminant is —4 (=3 + 92)2 which is always negative (so that
M > 0 because the leading coefficient g + 1 is positive) except when
g=cotZ = V3 and f=+/3 (i. e. the triangle ABC is equilateral)
when M = 0. U

Next is the problem 312 from [6] which is in the second chapter on
the perimeter and the area of circles.

Problem 7. Let T" be a point inside the triangle ABC' and let Ay,
By, C; be interior points of the sides BC, CA, AB. Let R; for
1=1,2, 3,4, 5, 6 be radii of the circumcircles of the triangles AC|T,
ClBT, BAlT, AlCT, CBlT, BlAT Prove that R1 Rg R5 = R2 R4 RG.

F1GURE 12. The radii of the six circumcircles satisfy the
relation R1 R3 R5 = R2 R4 RG.

Proof. Let us first define in Mathematica the function which associates
to a given triple of points the radius of the circumcircle of the triangle
whose vertices are these points.

bisector[a_, b_] :=perpen[midpoint[a,b],line2[a,b]l];
CCla_,b_, c_]:=inter[bisector[a,b],bisector[a,cl];
RC[a_, b_, c_]:=distancela,CC[a, b, cl];

Let us now input the points A, B, C' and T.
tA:={0, 0}; tB:={c, 0}; tC:={s, t}; tT:={p, q};
If s # ¢ then the position of a point A; on the line BC' can be described
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by a real number u and the coordinates of this point are <u, M)

c—S
We get this by requiring that the point with the coordinates (u, z) lies
on the line BC' and then solve the condition with respect to z.

tAl:={u, z} /. SolvelonlineQ[{u, z}, 1line2[tB, tCl1==0, z];
Similarly, if s # 0, then any point B; on the line C'A has the coordi-

nates (’U, %’) and any point C; on the line AB has the coordinates

(w, 0) for some real numbers v and w.
tAl:={u, t*(c-u)/(c-s)}; tB1l:={v, t*v/s}; tCl:={w, 0};

If s = ¢ then any point A on the line BC' has the coordinates (¢, u)
for some real number w. If s = 0 then any point B, on the line C'A has
the coordinates (0, v) for some real number v.

tA2:={c, u}; tB2:={0, v};

Let us now define a function which computes the difference of the
squares of the products of radii of the circumcircles for seven points in
the plane.

FR[a_,b_,c_,d_,e_,f_,g 1:= FS[(RC[a,f,gl*RC[b,d,g]*

RC [C:e:g] ) A2_(Rc[f :b:g] *Rc[d:csg] *Rc[e:a:g] ) A2] ;
It is now easy to check that the following values are zero:

FR[tA, tB, tC, tAl, tB1, tC1, tT]
s:=c; FR[tA, tB, tC, tA2, tB1, tC1, tT]
s:=0, FR[tA, tB, tC, tAl, tB2, tC1, tT]

This completes the solution of the Problem 312 from [6] in the program
Mathematica. O

Remark 1. 1t is clear from the above proof that we have never used
the assumption that the point 7 is inside of the triangle ABC nor the
assumption that the points A;, By, C] are interior points of the sides
BC, CA, AB. In this way, using the computer, we succeeded to prove
a more general statement.

The following example is the Problem 644 from the collection [6]
which is in the section on the volume of the cylinder, cone, and ball.

Problem 8. On the bottom of the cylindrical container whose base
has the diameter 15 cm there is a ball with the diameter 12 cm. The
water is poured into the container up to the highest point of the ball.
For how many cm will drop the level of the water when the ball is taken
out?

Proof. Recall the formulas Vi = % (%)377 for the volume of the ball

with the diameter D and Vi = (%l)2 h 7 for the volume of the cylinder
of the height h whose base is a circle with the diameter d.
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F1GURE 13. The cylindrical container with the ball inside.

In the program Mathematica these volume functions are defined as
follows:

VB[d_]:=d"3*Pi/6; VC[d_, h_]:=d"2xh*Pi/4;

The volume of the water in the container is the difference of the volume
of the cylinder (with the height equal to the diameter of the ball) and
the volume of the ball:

Vwater:=VC[15, 12]1-VB[12];

After the removal of the ball the water will fill in the cylindrical con-
tainer whose base is the circle with the diameter of 15 cm and its height
will be 12 — p cm where p is the required drop in the level of the water
in the container. This drop p is found in the program Mathematica as
follows:

Solve[Vwater==VC[15, 12-p], pl
The solution is p = 5.12 cm. O

Another nice example is the Problem 963 from [6]. We assume again
the knowledge of trigonometric functions.

Problem 9. A trapezium is circumscribed about the circle with the
radius R. The chord that joins the touching points of the lateral sides
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has the length b and is parallel to the bases. Prove that the area of the

. . 8R3
trapezium 1s =-.

G FO,R)E

H(Rcoso, Rsino) £ b \ D(Rcos@, Rsin#)

(0 T

A B(O’ _R) ¢

F1GURE 14. The area of the trapezium ACEG is %.

Proof. Select the rectangular coordinate system so that the circle k£ with
the radius R inscribed to the trapezium ACEG has the center in the
origin and its parallel sides (bases) AC' and EG touch k in the points
B(0, —R) and F(0, R). Let the lateral sides CE and AG touch k in
the points D(Rcosf, Rsinf) and H(Rcoso, Rsino) for some angles
6 and o.

Let us first input into the program Mathematica the points O, B,
F, D, H and the lines AC, EG.

t0:={0, 0}; tB:={0, -R}; tF:={0, R};
tD:={R Cos[\[Thetal]l, RSin[\[Thetall};
tH:={R Cos[\[Sigmall, RSin[\[Sigmall};
pAC:={0, 1, R}; pEG:={0, 1, -R};

Then we ask when will the chord DH joining the touching points D
and H of the lateral sides be parallel with the bases.

parallelQ[line2[tD, tH], pAC]

The condition is R(sinf — sino) = 0 so that we must have o =7 — 0.
Hence, the trapezium ACEG is equilateral and symmetrical with re-
spect to the line BF'. It suffices therefore to find the area only of the
right half BOEF.

The line C'E is the perpendicular in the point D to the line OD (the
property of the tangent to the circle) and the points C' and E are the
intersections of the line C'F with the lines AC and EG.

pCE:=perpen[tD, line2[t0, tD]];
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tC:=inter[pAC, pCE]; tE:=inter[pEG, pCE];

The area of the right half BC'E'F' is the sum of the areas of the triangles
BCFE and BEF.

FS[area[tB, tC, tE]+areal[tB, tE, tF]l]

The program Mathematica will compute that this sum has the value

3;:29. Since b =2 R cosf, we conclude that the wanted area of the
trapezium ACEG is indeed ?. O

Remark 2. In the book [6] there is the incorrect claim that the area of
the trapezium is AR

Using the approach from the solution of the Problem 13 (i. e., the
Problem 1112 from [6]) it is possible to completely avoid the trigono-

metric functions. This solution we leave to the readers as an exercise.

We continue with the solution of the Problem 1026 from |[6].

Problem 10. Prove that in every regular heptagon A; Ay A3 A4 A5 A A7
the following equality holds:
1 1 1

= + .
|A1 Al |A1As] AL A

holds

: 1 1
F1GURE 15. The relation s = A A + ]
in every regular heptagon A; As A3 A4 A5AgA-.

Proof. Choose the coordinate system so that the circle & with the cen-
ter at the origin and with the radius R is circumscribed to the hep-
tagon A; Ay A3A4A5AgA7. We can assume that the vertex A; has the
coordinates (R, 0). The other relevant vertices have the coordinates

A, (R cos 2 Rsin 2“) As (R cos i Rsin 4“) Ay (R cos & Rsin & )
Let us 1nput these points into the program Mathematlca
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tA1:={R, 0};

tA2:={RCos[2 Pi/7], RSin[2 Pi/7]1};
tA3:={RCos[4 Pi/7], RSin[4 Pi/7]1};
tA4:={RCos[6 Pi/7], RSin[6 Pi/7]1};

In order to check the above relation among the reciprocal values we
must type into the program Mathematica the following:

FullSimplify[Numerator[Together[1/distance[tAl, tA2]
-1/distance[tA1l, tA3]-1/distance[tAl, tA4]]], R>0]

For few seconds the computer will output the value zero which proves
that the statement in the problem holds. 0

Remark 3. Several other interesting properties of the regular heptagon
proved in the program Maple V are described in the article [5].

Next is the Problem 1084 from the section eight of the collection [6].

Problem 11. The projections of the legs of the right triangle onto the

hypothenuse have lengths %, % Find the radius of the circle inscribed

into this triangle?

Yy
A(0, b)
D
I.
r
r
Iy I(r, )
r
xr
C Ia B(a, 0)

FIGURE 16. The projections AD and DB of the legs are
known. We look for the inradius r.

Proof. Select the rectangular coordinate system so that its origin is

the vertex C' of the right triangle and its legs are on the coordinate

axes. We can assume that the remaining vertices A and B have the

coordinates (0, b) and (a, 0), for some positive real numbers a and b.
In the program Mathematica these points are input as follows:

tC:={0, 0}; tA:={0, b}; tB:={a, 0F};
Then we find the projection D of the vertex C' onto the hypotenuse
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AB.
tD:=project[tC, line2[tA, tBl];

The values for the variables ¢ and b can be determined from the infor-
mation that [AD| = & and |BD| = £.

Solve[{distance[tA,tD]==18/5,
distance[tB,tD]==32/5},{a, b}];

There are eight solutions (four real and four complex) but only one
when a = 8 and b = 6 is acceptable. Hence, this right triangle has sides
8, 6, 10 (that are twice as long as the sides of the standard (Egyptian)
right triangle with sided 4, 3, 5) so that its inscribed circle has the
radius r = 2.

This could also be seen by asking that the center I of the inscribed
circle with the coordinates (r, ) is at the distance r from the line AB.

a:=8; b:=6; tI:={r, r}; Solveldistancel[tI,
project[tI, line2[tA, tBll==r, rl;

From the two solutions » =2 and r = 12 only the first satisfies the
conditions of the problem. The second solution gives the radius of the
corresponding excircle. O

Now we consider the Problem 1103 again from the collection [6].

Problem 12. Two sides of the triangle have the length 6 cm and 8
cm. The medians of these sides are perpendicular. Find the third side
of this triangle.

Yy C(u, v)
b a
T, T,
T
x
A(0, 0) ¢ B(c, 0)

F1GURE 17. Find the side cif the sides @ and b are known
and the medians AT, and BT, are perpendicular.
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Proof. Let the triangle ABC' be embedded into the rectangular coor-
dinate system so that A(0, 0), B(c, 0), and C(u, v) for positive real
numbers ¢ and v and for a real number w.

In the program Mathematica these points and the centroid T are
input as follows:

tA:={0, 0}; tB:={c, 0}; tC:={u, v}; tT:=centroid[tA,tB,tC];

Since the medians of the vertices A and B are perpendicular, ABT is
the right triangle and ¢* = |AB|*> = |AT|? 4+ | BT|* by the Pythagorean
theorem. On the other hand |BC| =6 and |AC| = 8. If we ask the

program Mathematica to solve this system of three equations in the
variables ¢, u, and v with the input

Solve[{distance[tB,tC]==6, distance[tA,tC]==8,
c"2==distance[tA,tT] "2+distance[tB,tT] "2},{c, u, v}]

it will respond with two solutions. Only the one where ¢ = 21/5 c¢m is
correct. U

Our next example is the Problem 1112 from [6].

Problem 13. A circle is inscribed into a trapezium. Prove that the
ratio of the areas of the circle and the trapezium is equal to the ratio
of their perimeters.

G F|(0, R) FE

A(—u, —R) B(0, —R) C(v, —R)

FI1GURE 18. The ratios of the areas and of the perimeters
of the circle and the circumscribed trapezium are equal.

Proof. Choose the rectangular coordinate system so that the circle k
with the radius R which is inscribed to the trapezium AC'EG has the
center in the origin while its parallel sides (bases) AC' and EG touch
k in the points B(0, —R) and F'(0, R). Let the vertices A and C have
the coordinates (—u, —R) and (v, —R) for positive real numbers u and
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v. Let the lateral sides CE and AG touch k in the points D and H.
Our first goal is to find the coordinates of these points and then the
coordinates of the vertices E and G.

Let us first input into the program Mathematica the points O, B,
F, A, C and the lines AC, EG.

t0:={0, 0}; tB:={0, -R}; tF:={0, R};
tA:={-u, -R}; tC:={v, -R};
pAC:={0, 1, R}; pEG:={0, 1, -R};

Assume that the point H has the coordinates (p, ¢). They must satisfy
two conditions. The first is p? + ¢> = R? i. e. that the point H lies on
the circle k. The second condition is that the distance from A to H
is equal to u because the lines AB and AH are tangents through the
point A onto the circle k.

H:=Solve[{p~2+q~"2==R"2, distancel[{p, q},tA]l==u}, {p, q}]
tH:={p, q} /.H;

In a similar way we can determine the coordinates of the point D.

K:=Solve[{p~2+q~"2==R"2, distancel[{p, q},tCl==v}, {p, q}]
tD:={p, q} /.K;

The vertices £ and G are the intersections of the line EG with the
lines CD and AH, respectively.

pAH:=1ine2[tA, tH]; pCD:=1ine2[tC, tD];
tE:=inter[pEG, pCD]; tG:=inter[pEG, pAH];

The first coordinates of the points £ and G are RTQ and —%2. Hence,

the perimeter O cpe of the trapezium ACEG is 2(u + v + RTQ + RTQ)
Its area Paicgg iS

FS[areal[tA, tC, tEl+areal[tA, tE, tGl]

(u4v)(uv+R2)

equal to R o . Now it is easy to check that

2R B R*7
Oacec  Pacrc

Remark 4. In |6] there are no solutions for the Problem 1112.
The next example is the Problem 1139 from [6].

Problem 14. Prove that if the angle bisector of a triangle is also the
bisector of the angle determined by the altitude and the median, then
this triangle is right.
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Iy

F1GURE 19. The triangle is either isosceles or right if the
angle bisector is also the bisector of the angle between
the altitude and the median.

Proof. Let us choose the rectangular coordinate system so that the
T 2_ .

points A(0, 0), B((f +g)r, 0), C (%, %) are the vertices of
the triangle and the center of its inscribed circle is the point I(fr, r),
where f and ¢ are cotangents of % and % and r is the radius of the
incircle.

We shall first input into the program Mathematica the points A, B,
the midpoint C, of the segment AB, the points C, I and the feet Cj,
of the altitude of the vertex C' on the line AB.

tA:={0, 0}; tB:={r*(f+g), 0}; tCg:=midpoint[tA,tB];
tC:={r*g* (£°2-1)/(fxg-1), 2xfxg*r/(£f*xg-1)};
tI:={f*r, r}; tCh:=project[tC,line2[tA,tB]];

In order that the bisector of the angle C' (i. e. the line CI) is the
bisector of the angle between the altitude (i. e. the line C'C}) and
the median (i. e. the line C'C}) it is necessary and sufficient that the
segments /I, and I, have the same length, where I}, and I, are the
projections of the point I onto the lines CC), and C'C,,.

tIh:=project[tI,line2[tC,tCh]];
tIg:=project[tI,line2[tC,tCgl];
I1Z:=FS[distance[tI,tIg] “2-distance[tI,tIh] 2]

The program Mathematica reports that the expression /7 is equal

r2(f -9 (fg+g+f-1)(fg—g—F—-1)(fg+1)*(fg—1)"
(12202 + >[4 =2 2>+ g* f2 + 2 f3g+ 2 fg* + f2 =2 fg + ¢%)
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Hence, it will be zero if and only if f =g (i. e. |BC|=|CA| so that
the triangle ABC' is isosceles) or

(fg+9+f—-1)(fg—g—f—1)=0

which is the condition for the lines BC' and C'A to be perpendicular (i.
e. that the angle C has 90 degrees and the triangle ABC' is right).

perpenQ[line2[tB, tC], 1line2[tC, tA]] O

Remark 5. In the collection 6] the possibility that the triangle ABC
is isosceles is absent.

Our final example is the Problem 1152 from [6].

Problem 15. Let different points A and B be given and let the point
T be outside the line AB. Through the point T' construct the line m
so that the ratio of the distances of the points A and B to the line m
is 2: 3.

F1IGURE 20. There are two lines a and b through the
point 7" such that the ratios of their distances to the

points A and B are 3.

Proof. Choose the rectangular coordinate system so that the given
points are A(0, 0), B(c, 0), and T'(p, q) for real numbers ¢, p, q. Let
the line m has the equation ux 4+ vy 4+ w = 0 for some real numbers u,
v, w. In order that it goes through the point 7" the free term w must
be equal to —up —vq.

Let us input into the program Mathematica the points A, B, T" and
the line m.

tA:={0, 0}; tB:={c, 0}; tT:={p, q}; pm:={u, v, -uxp-vxq};

Let A,, and B,, be the projections of the points A and B onto the line
m.
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tAm:=project[tA, pm]; tBm:=project[tB, pm];

|AAm| 2
BB 18 equal to .

By the requirement of the problem the quotient
Notice that the expression

I1Z:=FS[distance[tA,tAm] "2/distance[tB, tBm] "2-4/9]

has as the numerator the product (5up + 5vq — 2 uc) (up + vq + 2 uc).
Hence, there are two possibilities ¢ = —ulZetp) apd q= @. They
give lines g — (2¢ + p)y + 2gc = 0 and 5q x + (2¢ — 5p)y — 2qc = 0 as
solutions of the problem. Even though we know the solutions the ques-
tion remains how to construct them. But, it is simple to see that they
intersect the line AB in the points C'(—2c¢, 0) and D(Zc, 0) and these
are easily constructed. O

Remark 6. In the collection [6] there are no solutions for the problem
1152.
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