Sparse potpensity method

Lavoslav Čaklović

Faculty of Natural Sciences, Dept. of Math.

Biostat 2019 - Zagreb, 5-8 june

Sadržaj

(1) The logic of causation

Cause and effect Hume
Counterfactual approach
(2) Statistical answer to logical problem.

Neyman, 1923.
Randomization
Additional constraints
(3) Matching with Potential

Potential enters the game
Experiment, LaLonde Graf preferencije

Cause and effect

The logic of causation

To formalize the theory we should:

- setup the meaning of notions like:
events, cause, effect, similar world...
- setup the meaning of 'conclusion'

$$
A \text { causes } B(A \leadsto B)
$$

and the negation of an event.

- setup the rules of assigning the truth value to hypothetical sentences. For instance:

Had Franz Ferdinand not been shot, WW1 would not have occurred.

Is it truth or not? Is it true in this world or in hypothetical world?

Hume vs. Lewis

Hume: ${ }^{1}$
... what one does have is the constant conjunction of cause C and effect E and the expectation that E will follow C.

May be more formally:
... we may define the relation of cause and effect such that where, if the first object had not been, the second never had existed.

Lewis (1973) — counterfactual approach:

[^0]
Counterfactual (Lewis, 1973)

A is the cause of $B(A \leadsto B)$ if and only if:
(1) $A \rightarrow B$ (if A were to occur B would occur) - A implies B.
(2) $A \square \rightarrow B$ (if B were not to occur A would not occur)

Counterfactual (Lewis, 1973)
A is the cause of $B(A \leadsto B)$ if and only if:
(1) $A \rightarrow B$ (if A were to occur B would occur) - A implies B.
(2) $A \square \rightarrow B$ (if B were not to occur A would not occur)

It may be shown that (1) and (2) are necessary conditions for causality, but not sufficient.
(3) $B \square \rightarrow A$ (if A were not to occur B would not occur)

Neyman (1923), Quine (1960), Mill (1843) are also speaking of counterfactuals.

Counterfactual (Lewis, 1973)
A is the cause of $B(A \leadsto B)$ if and only if:
(1) $A \rightarrow B$ (if A were to occur B would occur) - A implies B.
(2) $A \square \rightarrow B$ (if B were not to occur A would not occur)

It may be shown that (1) and (2) are necessary conditions for causality, but not sufficient.
(3) $B \square \rightarrow A$ (if A were not to occur B would not occur)

Neyman (1923), Quine (1960), Mill (1843) are also speaking of counterfactuals.
Weakness of Lewis approach:

- his causal relation is symmetric
- early preemption
- late preemption
- trumping

A possible correction: causal chain.

Influence (Lewis, 2000)

In his new theory Lewis is talking about influence instead of causality and introduces the chain of influence fro A to B.

Still, there is a problem with backward transitivity.
The principle of individual choice. In the causal history of an event we choose an event as the cause which offers a reasonable explanation of the causal chain. 'Reasonable' is context dependent ${ }^{2}$

Explanation is 'epistemic notion', causality is 'metaphysical relation'.

[^1]Influence (Lewis, 2000)
In his new theory Lewis is talking about influence instead of causality and introduces the chain of influence fro A to B.

Still, there is a problem with backward transitivity.
The principle of individual choice. In the causal history of an event we choose an event as the cause which offers a reasonable explanation of the causal chain. 'Reasonable' is context dependent ${ }^{2}$

Explanation is 'epistemic notion', causality is 'metaphysical relation'.

Are we are coming back to Hume??!!

[^2]Neyman, 1923. Statistical answer to logical problem.
A - a finite set of entities (population).
T - a treatment with measurable effect Y.
\bar{Y} - a parameter of distribution Y (usualy $E(Y)$)
C - another treatment (control).
$\bar{Y}_{A, T}$ - expectation $E(Y \mid T)$.

Neyman, 1923. Statistical answer to logical problem.
A - a finite set of entities (population).
T - a treatment with measurable effect Y.
\bar{Y} - a parameter of distribution Y (usualy $E(Y)$)
C - another treatment (control).
$\bar{Y}_{A, T}$ - expectation $E(Y \mid T)$.
$\bar{Y}_{A, C}$ - expectation $E(Y \mid C)$ (counterfactual world)

Neyman, 1923. Statistical answer to logical problem.
A - a finite set of entities (population).
T - a treatment with measurable effect Y.
\bar{Y} - a parameter of distribution Y (usualy $E(Y)$)
C - another treatment (control).
$\bar{Y}_{A, T}$ - expectation $E(Y \mid T)$.
$\bar{Y}_{A, C}$ - expectation $E(Y \mid C)$ (counterfactual world)
Definition. Causal effect of T with respect to C is the difference

$$
\tau=\bar{Y}_{A, T}-\bar{Y}_{A, C}
$$

We are reading $\bar{Y}_{A, T}$ (real world), not $\bar{Y}_{A, C}$ (imaginal world). How to manage such missing data situation?

Neyman, 1923.

Neyman - A replacement for counterfactual world?
A - the population exposed to the treatment T and $\bar{Y}_{A, C}$ is not measurable.
B^{3} - another population exposed to the (control) C. Let us consider $\bar{Y}_{A, T}-\bar{Y}_{B, C}$. Ideal situation: $\forall i \in A$ there is a twin $i^{\prime} \in A$. The first is treated, the second is controlled, and we have a difference

$$
Y(i \mid T)-Y\left(i^{\prime} \mid C\right), i, i^{\prime} \text { tweens. }
$$

If we 'forget' the twin i ' we think of two potential values $\left\{Y_{i T}, Y_{i c}\right\}$ of which only one is 'readable' depending if the entity is treated or controlled. T is then the indicator for treated group. Let us define $Y_{i}:=\left(1-T_{i}\right) Y_{i c}+T_{i} Y_{i T}$, and

$$
\tau:=E\left(Y_{i} \mid T_{i}=1\right)-E\left(Y_{i} \mid T_{i}=0\right) .
$$

${ }^{3}$ Should be 'close' to the real world.

Randomization (Rubin)

$$
\begin{equation*}
\tau:=E\left(Y_{i} \mid T_{i}=1\right)-E\left(Y_{i} \mid T_{i}=0\right) \tag{1}
\end{equation*}
$$

Formula (1) is meaningful if the group affiliation is independent of Y, i.e. $E\left(Y_{i} \mid T\right)=E\left(Y_{i}\right)$. Then

$$
\tau:=E\left(Y_{i T}\right)-E\left(Y_{i C}\right)
$$

Independence may be guaranteed ba random ${ }^{4}$ choice of treated units. See also: v. Russo, Wunsch, Mouchart, Inferring Causality through Counterfactuals in Observational Studies, Some epistemological issues (2010)

Additional constraints

- Stable Unit Treatment Value Assumption (SUTVA).
- (A) $\left\{Y_{i T}, Y_{i C}\right\} \Perp T \mid X \quad$ i \quad (B) $\quad 0<\operatorname{Pr}(T=1 \mid X)<1$, for each covariate X (A-independence, B -overlapping)
- balance
$\tau \mid(T=1)=E\left[\left(E\left(Y_{i T} \mid X, T=1\right)-E\left(Y_{i C} \mid X, T=0\right)\right) \mid T=1\right]$,
where the outer expectation is taken over the restriction $X \mid T==1$.

Matching, i.e. looking for twins may be done by NN, Mahalanobis distance or by using the distance on some scale like propensity scale.

A recent paper: Why Propensity Scores Should Not Be Used for Matching (Gary King-Nielsen-November, 2018)

Potential method: Working plan

Observational data:

item id	T or C	covariates X	Y
i	T	\ldots	Y_{i}
j	C	\cdots	Y_{j}
\ldots	\cdots	\cdots	\cdots
n	C	\ldots	Y_{n}

much more C's than T's
A rough procedure...

1. $\forall i$ (treated) find a twin i^{\prime} (controlled) and observe the difference $\tau_{i}=Y_{i}-Y_{i^{\prime}}$. What is the definition of twin?

- If X 's have the same values for i and i^{\prime} - we have a twin.
- If not, find a set of proxy twins.

2. Construct some scale on the set of treated + proxy twins.
3. From the distance matrix create optimal matching.
4. Calculate mean effect.

Working plan - details

- Some factors (covariates) generate a stratified population.
- The proxy twins should be in the same strata.
- We will use potential as the scale. Usually it is generated by generalized (logistic) regression.
The good side of potential is that it allows missing data sparse covariates values.
The difficulty is that PM forces the user to specify the trade off between the covariate units. This may be avoided by standardization of data, normalizing each column to the same flownorm ${ }^{5}$.
- Now we have potential scale on each strata.
- The final step is to use the Hungarian method for matching.

Experiment, LaLonde

An example: lalonde data

item	treated	age	education	married	nodegree	ejump	etnic
<chr>	<fct>	<dbl>	<dbl>	<fct>	<fct>	<dbl>	<fct>
E1	1	37	11	1	1	9930.	. B
E2	1	22	9	0	1	3596.	H
E3	1	30	12	0	0	24909.	B
E4	1	27	11	0	1	7506.	B
E7	1	23	12	0	0	0	B
E8	1	32	11	0	1	8472.	B
E9	1	22	16	0	0	2164.	B
E10	1	33	12	1	0	12418.	0

\# ... with 16,279 more rows

treated	n
<fct>	<int>
0	15992
1	297

Hungarian matching (strata="10B")
get_strata_data(data, strata=c("1", "0", "B"))
\# A tibble: 16 x 9

item	treated	age	edu	marr	nodeg	ejump	etnic	X
<chr>	<fct>	<dbl>	<dbl>	<fct>	<fct>	<dbl>	<fct>	<dbl>
E1450	0	23	12	1	0	3210.	B	-0.886
E8055	0	42	14	1	0	1261.	B	4.11
E1893	0	23	12	1	0	331.	B	-0.886
E862	0	27	12	1	0	-2274.	B	-0.360
E1965	0	26	12	1	0	-83.6	6 B	-0.492
E1701	0	27	12	1	0	-2702.	B	-0.360
E40	1	23	12	1	0	5912.	B	-0.886
E61	1	42	14	1	0	13168.	B	4.11
E183	1	23	12	1	0	-4796.	B	-0.886
E239	1	27	12	1	0	-5029.	B	-0.360
E271	1	26	12	1	0	-4370.	B	-0.492
E283	1	27	12	1	0	-334.	B	-0.360

Effect by strata

Size b	ta:	Effect by strata:	Overall effect:
1 OOB	203	eff (00B) $=2382.36$	513.2903.
200 H	22	eff (00H) $=5168.931$	
3000	376	eff (000) $=-56.78306$	
4 01B	276	eff (01B) $=-163.8093$	
501 H	70	eff (01H) $=-2023.542$	
6010	250	eff (010) $=-570.09$	
7 10B	57	eff (10B) $=2644.577$	
810 H	14	$\operatorname{eff}(10 \mathrm{H})=3927.748$	
9100	236	eff (100) $=-4383.368$	
10 11B	121	eff (11B) $=2794.743$	
11 11H	8	eff (11H) $=-8109.565$	
12110	39	$\operatorname{eff}(110)=1507.999$	

Olmos \& Govindasamy, Propensity Scores: A Practical Introduction Using R (2015), propensity score (effect): 326.3214

The final effect

We are interpreting the effect of the cause, not he cause of the effect.

Reality or perception?

Graf preferencije

Potential Method ${ }^{6}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

D

nodes $_{n}$					flow
arcs_{m}	A	B	C	D	\mathcal{F}
α	-1	1	0	0	1

Preference flow \mathcal{F}
${ }^{6}$ Čaklović (2012); Čaklović and Kurdija (2017)

Graf preferencije

Potential Method ${ }^{6}$

Preference flow \mathcal{F}

[^3]
Graf preferencije

Potential Method ${ }^{6}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

nodes $_{n}$					flow
arcs $_{m}$	A	B	C	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4

Preference flow \mathcal{F}

$$
\mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0
$$

Graf preferencije

Potential Method ${ }^{6}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow
arcs $_{m}$	A	B	C	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

Preference flow \mathcal{F}

$$
\mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0
$$

Graf preferencije

Potential Method ${ }^{6}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow
arcs $_{m}$	A	B	C	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Graf preferencije

Potential Method ${ }^{6}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs_{m}	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m}
$$

Graf preferencije

Potential Method ${ }^{6}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs_{m}	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

Graf preferencije

Potential Method ${ }^{6}$

Preference flow \mathcal{F}
$\mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0$
$\mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7$
\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs $_{m}$	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

\mathcal{F} is consistent iff $\mathcal{F} \in R(A)$

Graf preferencije

Potential Method ${ }^{6}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs $_{m}$	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

\mathcal{F} is consistent iff $\mathcal{F} \in R(A)$
\mathcal{F} je consistent iff $A X=\mathcal{F}$

Potential Method ${ }^{6}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs $_{m}$	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

\mathcal{F} is consistent iff $\mathcal{F} \in R(A)$
\mathcal{F} je consistent iff $A X=\mathcal{F}$
\mathcal{F} je consistent iff $c \perp \mathcal{F}, \forall c$

Graf preferencije

Potential of preference graph

A - incidence matrix, $n=$ \#Vertices, $m=$ \#Arcs.
\mathcal{F} - preference flow.
Ranking of the vertices is given by potential X :

$$
A^{\tau} A X=A^{\tau} \mathcal{F}
$$

$A^{\tau} \mathcal{F}$ - flow gain in vertices
$L=A^{\tau} A$ - Laplace matrix of the graph.

Graf preferencije

Potential of preference graph

A - incidence matrix, $n=$ \#Vertices, $m=$ \#Arcs.
\mathcal{F} - preference flow.
Ranking of the vertices is given by potential X :

$$
A^{\tau} A X=A^{\tau} \mathcal{F}
$$

$A^{\tau} \mathcal{F}$ - flow gain in vertices
$L=A^{\tau} A$ - Laplace matrix of the graph.
For connected graph, the matrix A has range $n-1$, the kernel is generated by the vector of ones $\mathbb{1}=[1,1, \ldots, 1]^{\tau}$. For uniqueness of X we put the condition

$$
\sum_{i=1}^{n} x_{i}=0
$$

Graf preferencije

Konsistency (bis)

Konzistentan graf

Nekonzistentan graf

A B C D
A
B
C D

Graf preferencije

Bibliography

Čaklović, L. (2012). Measure of Inconsistency for the Potential Method. In Torra, V., Narukawa, Y., López, B., and Villaret, M., editors, MDAI, volume 7647 of Lecture Notes in Computer Science, pages 102-114. Springer.
Čaklović, L. and Kurdija, A. S. (2017). A universal voting system based on the Potential Method. European Journal of Operational Research, 259:677-688.

[^0]: ${ }^{1}$ A Treatise of Human Nature \& An Enquiry Concerning Human Understanding.

[^1]: ${ }^{2}$ Because of that we are speaking about individual choice.

[^2]: ${ }^{2}$ Because of that we are speaking about individual choice.

[^3]: ${ }^{6}$ Čaklović (2012); Čaklović and Kurdija (2017)

