Decision Graph

One criterion. The set of vertices equals the set of alternatives $V=\{i, j, k, \ldots\}$. A pair $\alpha=(j, i)$ is in the set of $\operatorname{arcs} \mathcal{A}$ iff i and j are compared and i is more preferable than j. An arc α is weighted by nonnegative number F_{α}. In case of equal preference $F_{\alpha}=0$ and arc orientation is arbitrary.

$$
\text { (i) } \stackrel{\alpha, F_{\alpha} \geq 0}{(i)}
$$

$F: \mathcal{A} \rightarrow \mathbb{R}$ we call preference flow.
Multiple criteria - group flow. Each criterion (group member) has its own preference graph. For i-th criterion C_{i}, with weight $w_{i}\left(\sum w_{i} \leq 1\right)$ and preference flow F_{i} on $\left(V_{i}, \mathcal{A}_{i}\right), V_{i} \subseteq V$, consensus graph (V, \mathcal{A}) and consensus flow F are defined as follows: For $\alpha=(u, v)$ calculate

$$
\begin{equation*}
F_{\alpha}:=\sum_{\substack{i=1 \\ \pm \alpha \in \mathcal{A}_{i}}}^{k} w_{i} F_{i}(\alpha) . \tag{1}
\end{equation*}
$$

- If $F_{\alpha} \geq 0$ then: $\alpha \in \mathcal{A}$ and $F(\alpha):=F_{\alpha}$;
- Otherwise: $-\alpha \in \mathcal{A}$ and $F(-\alpha):=-F_{\alpha}$

An example for two criteria.
$w_{1}=1 / 3 \quad w_{2}=2 / 3$
Demonstration: [use refresh button, F5] http://pc205.math.hr/Decision/show.php

Decision Making

Normal Integral

Consistent flow. A preference flow F we call consistent if there exists a potential $X: V \rightarrow \mathbb{R}$ such that

$$
B X=F
$$

where B denotes incidence matrix of the preference graph.
Normal integral of a given flow F defined on a connected graph is potential $X: V \rightarrow \mathbb{R}$, a (unique) solution of

$$
\begin{equation*}
B^{\tau} B X=B^{\tau} F, \quad \sum_{i=1}^{m} X_{i}=0 \tag{Int}
\end{equation*}
$$

Weight function $w: V \rightarrow \mathbb{R}$ is

$$
w=\frac{a^{X}}{\left\|a^{X}\right\|_{1}} \quad(a=2 \quad \text { for the moment })
$$

nconsistency measure invariant on positive affine $\frac{1}{3}$ tratsformations in F-space is defined by

A^{5}	$\frac{1}{3}$	C^{2}

$\operatorname{Inc}(F)=\frac{\|F-B X(F)\|_{2}}{\|B X(F)\|_{2}}$
(Inc)
which measures the angle between F and column space of B. Evidently,
Theorem 1. F is consistent iff $\operatorname{Inc}(F)=0$.

PM and Stochastic Preference

Stochastic preference. The classical approach to stochastic preference can be find in [French]. Problem is the following:

To each pair of alternatives a, b decision maker assigns probability $p_{a b}$ of choosing a when offered the choice between a and b. We assume $p_{a b}+p_{b a}=1$, with convention $p_{a a}=\frac{1}{2}$. Find a condition on numbers $p_{a b}$ to generate a value function U on the set of alternatives, i.e.

$$
p_{a b} \geq \frac{1}{2} \Leftrightarrow U(a) \geq U(b) .
$$

A binary relation P on the set of alternatives we call stochastic preference if

$$
a P b \Leftrightarrow p_{a b} \geq \frac{1}{2} .
$$

Theorem 2. ([French, p. 101]) If stochastic preference satisfies

$$
\begin{equation*}
\frac{p_{a b}}{p_{b a}} \cdot \frac{p_{b c}}{p_{c b}}=\frac{p_{a c}}{p_{c a}} \tag{2}
\end{equation*}
$$

for all $a, b, c \in A$ then P is necessarily a weak order.
If we define $F(a b)=\log p_{b a}$ we get a preference flow on the set of alternatives. Theorem 2. gives a necessary condition for consistency of F. In that case normal integral of F represents utility.

via Potential Method

Lavoslav Čaklović, University of Zagreb caklovic@math.hr

PM and Kemeny's median

An experiment. Students were asked to rank their lecturers with respect to Teaching qualities, Professional competence and Attitude towards students:

- at Dept. of Psychology, Univ. of Zagreb
- 48 students
- forced to use all criteria and alternatives.

PM ranking for criteria ()

CRITERIA	CLUST. 1	Clust. 2	GROUP
TeachQual	0.407	0.363	0.389
ProfComp	0.384	0.322	0.356
AttStud	0.209	0.315	0.255

Kemeny's social preference flow is

Low weights of the Kemeny's social preference may lead to conclusion that those qualities are 'almost equaly prefered'. In PM they are strongly separated because the weight of the preference has no value for Kemeny

Another experiment was made with students 29 of them, at Math. Dept. They were allowed to select criteria and alternatives of their own choice.

Conclusions

- Criteria profile can be formed if each group member use all criteria (Psycho-group example) Criteria clustering can be done as well.
- Inconsistency measure is not a valuable information in group decision. Each cluster can have small inconsistency and group inconsistency can be big, and vice versa. This is a reason for doing group clustering.
- Dissimilarity matrix is highly sensitive on input data. This means that 'small' change of flow from the point of view of MCDM, generates new clusters.

Clustering

Dissimilarity measure. Let $\pi=\left(F_{1}, \ldots, F_{n}\right)$ be a group profile of individual preference flows for a group of decision makers $\mathcal{G}=\{1,2, \ldots, n\}$. Denote by X_{i} the normal integral of F_{i}. We define

$$
\delta\left(F_{1}, F_{2}\right):=\left\|X_{1}-X_{2}\right\|_{2} \quad \text { (FDist) }
$$

Dissimilarity measure (FDist) allows to calculate the distance between preference flows of two decision makers, even if they have different criteria.
Outlayer discovery. In a group of students that were asked to compare their lecturers the last two group members were significantly distant from the others.

Finally, their flows were not taken into account in group consensus flow.

PM and AHP

Eigenvalue method. A pairwise comparison matrix

$$
W=\left(w_{i j}\right), \quad i, j=1, \ldots, n
$$

is given. We suppose that $w_{i j}>0$ and $w_{i j}=$ $w_{j i}^{-1}$. The second requirement defines reciprocal matrix. In the case of exact measurements the matrix is of the form

$$
w_{i j}=\frac{w_{i}}{w_{j}}, \quad i, j=1, \ldots, n
$$

for some positive vector $w=\left(w_{1}, \ldots, w_{n}\right)$. In this case

$$
W=\left[\begin{array}{c}
w_{1} \\
\vdots \\
\vdots \\
w_{n}
\end{array}\right]\left[\begin{array}{lll}
\frac{1}{w_{1}} & \cdots & \frac{1}{w_{n}}
\end{array}\right],
$$

the spectrum $\sigma(W)=\{0, n\}$ where 0 has multiplicity $n-1$ and n has multiplicity one with w as eigenvector. We call such matrix a consistent matrix. The following characterization of positive consistent matrix can be found in [Sa96]
Theorem 3. For a positive reciprocal matrix $A=\left(a_{i j}\right) \quad i, j=1, \ldots, n$ the following statements are equivalent:
i) A is consistent;
ii) The maximum positive eigenvalue $\lambda_{\max }$ equals the order of the matrix;
iii) $a_{i j} a_{j k}=a_{i k}, \quad i, j, k=1, \ldots, n$.

If we define a preference flow $F_{j i}=\log a_{i j}$ on the set of alternatives theorem 3.iii) gives a sufficient and necessary condition for consistency of F.
PM can be applied even if graph is not connected which is not true for EM.

Web interface

Setting leaves

Pairwise comparison step

```
Alt1 
```

Result

