Structure Equation Model of Heptathlon

Lavoslav Čaklović, Darko Katović, Vesna Babić University of Zagreb

BIOSTAT 2014
Dubrovnik, 11-14 June 2014

Contents

(1) About Heptathlon

Run 100 m hurdless What is women's heptathlon
Scoring function
(2) Questions

Two (related) problems
(3) Q1

Scoring

Current situation

(4) Q2

SEM
(5) Analysis
(6) A1

Scoring Table Analysis
(7) A2

Score redistribution
8 Synergy
What synergy means

External viewer
클

About heptathlon (women)

Event	Day
run100 (hurdless)	First
hjump	First
shot put	First
run200	First
ljump	Second
javelin	Second
rundccc	Second

About heptathlon (women)

Event	Day	Results (Benchmark)
run100 (hurdless)	First	13.85 s
hjump	First	1.82 m
shot put	First	17.07 m
run200	First	23.8 s
ljump	Second	6.48 m
javelin	Second	57.18 m
rundccc	Second	127.63 s

About heptathlon (women)

Event	Day	Results (Benchmark)	Scores
run100 (hurdless)	First	13.85 s	1000
hjump	First	1.82 m	1000
shot put	First	17.07 m	1000
run200	First	23.8 s	1000
ljump	Second	6.48 m	1000
javelin	Second	57.18 m	1000
rundccc	Second	127.63 s	1000
		Total Score	7000

Scoring function

International Association of Athletics Federations score:

$$
\begin{equation*}
\operatorname{IAAFscore}(x):=a \cdot(\varepsilon \cdot(x-b))^{c} \tag{1}
\end{equation*}
$$

Approximation: (Loglike)

$$
\begin{gather*}
f(x):=\lambda-\alpha * \log \left(\frac{x-a}{\beta}\right) \tag{2}\\
u: x \mapsto \frac{x-a}{\beta} \quad \text { (standardization) } \tag{3}
\end{gather*}
$$

$x-a=$ the distance from the asymptote, $\beta=$ unit length, $u(W R) \mapsto 1$.

Scoring function

International Association of Athletics Federations score:

$$
\begin{equation*}
\operatorname{IAAFscore}(x):=a \cdot(\varepsilon \cdot(x-b))^{c} \tag{1}
\end{equation*}
$$

Approximation: (Loglike)

$$
\begin{gather*}
f(x):=\lambda-\alpha * \log \left(\frac{x-a}{\beta}\right) \tag{2}\\
u: x \mapsto \frac{x-a}{\beta} \quad \text { (standardization) } \tag{3}
\end{gather*}
$$

$x-a=$ the distance from the asymptote, $\beta=$ unit length, $u(W R) \mapsto 1$.

Loglike approximation f enables the comparison between disciplines.

Scoring function

hurdless

Figure 1: Loglike-scoring (solid line) and IAAF-scoring (dashed line).

Problems (related)

There are two problems:
(1) How to score?
(2) Structure Equation Modeling (SEM)

Problems (related)

There are two problems:
(1) How to score?
(2) Structure Equation Modeling (SEM)

All calculation is done on the results of the OI London 2012.

The first problem: Scoring

Current situation

(1) It seems that IAAF scoring prefer running events.

Current situation

(1) It seems that IAAF scoring prefer running events.

- Discussion about that lasts almost 50 years.

Current situation

(1) It seems that IAAF scoring prefer running events.

- Discussion about that lasts almost 50 years.
- Some evidences. . .

Current situation

(1) It seems that IAAF scoring prefer running events.

- Discussion about that lasts almost 50 years.
- Some evidences. . .

Average	
score	
Event	$\%$
run100	16.7
hjump	15.4
run200	15.1
run800	14.2
ljump	13.7
javelin	12.6
shot	12.4

Result \geq	
Enchmrk	
Event	$\%$
run800	96
run200	87
run100	37
hjump	29
ljump	10
shot	1
javelin	0

Stand.	
Nenchmarks	
Name	Val
run200	1.137
run100	1.134
run800	1.127
ljump	1.120
hjump	1.118
shot	1.019
javelin	1.011

Current situation

(1) It seems that IAAF scoring prefer running events.

- Discussion about that lasts almost 50 years.
- Some evidences. . .

Average	
Score	
Event	$\%$
run100	16.7
hjump	15.4
run200	15.1
run800	14.2
ljump	13.7
javelin	12.6
shot	12.4

Result \geq	
Enchmrk	
Event	$\%$
run800	96
run200	87
run100	37
hjump	29
ljump	10
shot	1
javelin	0

Stand.	
Nenchmarks	
Name	Val
run200	1.137
run100	1.134
run800	1.127
ljump	1.120
hjump	1.118
shot	1.019
javelin	1.011

- Is there another evidence?

Current situation

(1) It seems that IAAF scoring prefer running events.

- Discussion about that lasts almost 50 years.
- Some evidences. . .

Average	
score	
Event	$\%$
run100	16.7
hjump	15.4
run200	15.1
run800	14.2
ljump	13.7
javelin	12.6
shot	12.4

Result \geq	
Enchmrk	
Event	$\%$
run800	96
run200	87
run100	37
hjump	29
ljump	10
shot	1
javelin	0

Stand.	
Nenchmarks	
Name	Val
run200	1.137
run100	1.134
run800	1.127
ljump	1.120
hjump	1.118
shot	1.019
javelin	1.011

- Is there another evidence? Later

The second problem: SEM

SEM

(2) Is there any relation between Motor Skills of the heptathlete and her results?

SEM

(2) Is there any relation between Motor Skills of the heptathlete and her results?

- Some effort in this direction is done using the Structure Equation Modeling (SEM) and path analysis ...

SEM

(2) Is there any relation between Motor Skills of the heptathlete and her results?

- Some effort in this direction is done using the Structure Equation Modeling (SEM) and path analysisa medium success. Heazlewood (2011).

SEM

(2) Is there any relation between Motor Skills of the heptathlete and her results?

- Some effort in this direction is done using the Structure Equation Modeling (SEM) and path analysis a medium success. Heazlewood (2011).
- Earlier attempt is that of Mackenzie (2007)...

SEM

(2) Is there any relation between Motor Skills of the heptathlete and her results?

- Some effort in this direction is done using the Structure Equation Modeling (SEM) and path analysisa medium success. Heazlewood (2011).
- Earlier attempt is that of Mackenzie (2007)... SEM matrix

Event	AE	GS	Skill	RS	Speed	Mob	ES	SpE	StrE
100 m	-	Med	High	High	High	High	High	Med	-
HJump	-	Low	High	High	High	High	High	-	-
Shot	-	High	High	Med	Low	Med	High	-	-
200m	Low	Med	Med	High	High	High	High	High	High
LJump	-	Low	High	High	High	High	High	-	-
Javelin	-	Med	High	High	Low	High	High	-	-
800m	High	-	Low	Low	Med	Low	-	-	High
AE=Aerobic Endurance	Mob=Mobility								
GS=Gross Strength	ES=Explosive Strength								
RS=Relative Strength	SpE=Speed Endurance								
Speed=Running Speed	StrE=Strength Endurance								

Table 1: Motor skills impact on the event (score).

Analysis

Correspondence Analysis

R-code for one step in CA

```
residuals<-function(M) \{
    M.P <- M/sum (M)
    M.r <- apply(M.P,1,sum)
    M.c <- apply(M.P,2,sum)
    M.Drmh <- diag(1/sqrt(M.r))
    M.Dcmh <- diag(1/sqrt(M.c))
    \#M.res <- M.Drmh \(\% * \%\) (M.P-M.r \(\% 0 \%\) M.c) \(\% * \%\) M.Dcmh
    M.res <- M.Drmh \(\% * \%\) (M.P) \(\% * \%\) M.Dcmh
    colnames (M.res)<-colnames (M)
    rownames (M.res) <-rownames (M)
    return(M.res)
\}
```


Scoring Table Analysis

Factor Analysis

Correlation circle

Loadings:

	Run	Jump	Throw
hurdless	0.886		0.305
hjump		1.008	
shot			0.406
runcc	0.863		
liump	0.413	0.501	
javelin rundcce	0.433	0.364	

Run Jump Throw
SS loadings 1.8891 .3990 .953
Proportion Var 0.2700 .2000 .136
Cumulative Var 0.2700 .4700 .606

Marginal Scores

$$
\begin{gathered}
U\left(x_{1}, \ldots, x_{7}\right)=\sum_{i=1}^{t} f_{i}\left(x_{i}\right), x_{i}-i \text {-th discipline. } \\
\text { toffM }_{i j}=\frac{i \text {-th marginal score }}{j \text {-th marginal score }}=\frac{\partial U / \partial u_{i}\left(u_{1000}\right)}{\partial U / \partial u_{j}\left(u_{1000}\right)} .
\end{gathered}
$$

Trade-off matrix between marginal scores at benchmark1000							
	run100	hjump	shot	run200	ljump	javelin	run800
hurdless	1	1.66	11.2	0.99	1.6	15.57	0.96
hjump	0.6	1	6.74	0.6	0.96	9.37	0.58
shot	0.09	0.15	1	0.09	0.14	1.39	0.09
runcc	1.01	1.67	11.27	1	1.61	15.66	0.96
ljump	0.62	1.04	6.99	0.62	1	9.71	0.6
javelin	0.06	0.11	0.72	0.06	0.1	1	0.06
rundccc	1.04	1.73	11.69	1.04	1.67	16.25	1

Marginal Weights

Ranking from	
Evade-off matrix	
hjump	w
run100	0.598
run200	0.198
ljump	0.096
run800	0.071
shot	0.023
javelin	0.013
	0.002

Motor Skill Matrix (msM)

Given: semM - SEM matrix and scoreM - score matrix

Table	hurdless	hjump	shot	runcc	ljump	javelin	rundccc
Ennis	1193.96	1050.72	813.017	1095.16	1000.	812.364	985.055
Schwarzkopf	1084.99	1012.61	845.729	909.259	943.087	894.308	958.25
Chernova	1052.87	974.936	805.681	1012.49	1019.21	789.217	971.822
Skujyte	978.972	1128.34	1016.17	849.839	927.46	882.697	818.46

Motor Skill Matrix (msM)

Given: semM - SEM matrix and scoreM - score matrix

Table	hurdless	hjump	shot	runcc	ljump	javelin	rundccc
Ennis	1193.96	1050.72	813.017	1095.16	1000	812.364	985.055
Schwarzkopf	1084.99	1012.61	845.729	909.259	943.087	894.308	958.25
Chernova	1052.87	974.936	805.681	1012.49	1019.21	789.217	971.822
Skujyte	978.972	1128.34	1016.17	849.839	927.46	882.697	818.46

1° semM \rightarrow sem P - row probability matrix

Motor Skill Matrix (msM)

Given: semM - SEM matrix and scoreM - score matrix

Table	hurdless	hjump	shot	runcc	ljump	javelin	rundccc
Ennis	1193.96	1050.72	813.017	1095.16	1000	812.364	985.055
Schwarzkopf	1084.99	1012.61	845.729	909.259	943.087	894.308	958.25
Chernova	1052.87	974.936	805.681	1012.49	1019.21	789.217	971.822
Skujyte	978.972	1128.34	1016.17	849.839	927.46	882.697	818.46

1° semM \rightarrow sem P - row probability matrix
2° score $M *$ sem $P=: m s M$ - motor skills matrix.

Table	AerEnd	GrStr	Skill	RelStr	Speed	Mob	ExpStr	SpEnd	StrEnd
Ennis	301	712	1097	999	1056	1037	1064	365	319
Schwarzkopf	281	694	1066	960	1005	1000	1027	324	292
Chernova	292	679	1049	955	1006	990	1013	336	307
Skujyte	246	721	1081	954	985	1005	1060	293	258

May be considered as a redistribution of scores over the skills.

Motor Skill Matrix (msM)

Given: semM - SEM matrix and scoreM - score matrix

Table	hurdless	hjump	shot	runcc	ljump	javelin	rundccc
Ennis	1193.96	1050.72	813.017	1095.16	1000.	812.364	985.055
Schwarzkopf	1084.99	1012.61	845.729	909.259	943.087	894.308	958.25
Chernova	1052.87	974.936	805.681	1012.49	1019.21	789.217	971.822
Skujyte	978.972	1128.34	1016.17	849.839	927.46	882.697	818.46

1° semM \rightarrow semP - row probability matrix
2° score $M *$ sem $P=: m s M$ - motor skills matrix.

Table	AerEnd	GrStr	Skill	RelStr	Speed	Mob	ExpStr	SpEnd	StrEnd
Ennis	301	712	1097	999	1056	1037	1064	365	319
Schwarzkopf	281	694	1066	960	1005	1000	1027	324	292
Chernova	292	679	1049	955	1006	990	1013	336	307
Skujyte	246	721	1081	954	985	1005	1060	293	258

May be considered as a redistribution of scores over the skills.
$3^{\circ} \mathrm{ms} M$ gives the measure(s) of heptathlete skills (via heptathlone)

Motor Skill Matrix (msM)

Given: semM - SEM matrix and scoreM - score matrix

Table	hurdless	hjump	shot	runcc	ljump	javelin	rundccc
Ennis	1193.96	1050.72	813.017	1095.16	1000.	812.364	985.055
Schwarzkopf	1084.99	1012.61	845.729	909.259	943.087	894.308	958.25
Chernova	1052.87	974.936	805.681	1012.49	1019.21	789.217	971.822
Skujyte	978.972	1128.34	1016.17	849.839	927.46	882.697	818.46

1° semM \rightarrow sem P - row probability matrix
2° score $M *$ sem $P=: m s M$ - motor skills matrix.

Table	AerEnd	GrStr	Skill	RelStr	Speed	Mob	ExpStr	SpEnd	StrEnd
Ennis	301	712	1097	999	1056	1037	1064	365	319
Schwarzkopf	281	694	1066	960	1005	1000	1027	324	292
Chernova	292	679	1049	955	1006	990	1013	336	307
Skujyte	246	721	1081	954	985	1005	1060	293	258

May be considered as a redistribution of scores over the skills.
$3^{\circ} \mathrm{msM}$ gives the measure(s) of heptathlete skills (via heptathlone) - may influence a training programme in preparation period.

Score redistribution

Skills Table - Factor Analysis

Factor Analysis - Motoric Skills

Loadings:			
Str+SkillEndur		Eigval	
AerEnd	0.905	6.544	
GrStr	1.019		1.649
Skill	1.002		0.451
RelStr	0.737		0.289
Speed	0.544	0.582	0.037
Mob	0.851		0.028
ExpStr	0.945		0.002
SpEnd		0.866	0.000
StrEnd		0.987	0.000
	Str+Skill	Endur	
SS loadings		2.881	
Proportion Var	0.500	0.320	
Cumulative Var	0.500	0.820	

Skills table - Factor Analysis

Correlation circle

Synergy of Motor Skills

$\sigma u v \varepsilon p \gamma o ́ s ~(\mathrm{gr}.) ~-.~ w o r k i n g ~ t o g e t h e r, ~$ synergy (descr.) - robust interaction of elements in performing a task.

Synergy of Motor Skills

ouveprós (gr.) - working together, synergy (descr.) - robust interaction of elements in performing a task.

- Synergy is not non-linearity.

Synergy of Motor Skills

बuvepyós (gr.) - working together, synergy (descr.) - robust interaction of elements in performing a task.

- Synergy is not non-linearity.
- Synergy involves coordination.

Synergy of Motor Skills

बuvepyós (gr.) - working together, synergy (descr.) - robust interaction of elements in performing a task.

- Synergy is not non-linearity.
- Synergy involves coordination.
- What is a proper way to incorporate synergy of the motor skills in the calculation?

Synergy of Motor Skills

बuvepyós (gr.) - working together, synergy (descr.) - robust interaction of elements in performing a task.

- Synergy is not non-linearity.
- Synergy involves coordination.
- What is a proper way to incorporate synergy of the motor skills in the calculation?
- How to measure influence of a given synergy?

Synergy of Motor Skills

बuvepyós (gr.) - working together, synergy (descr.) - robust interaction of elements in performing a task.

- Synergy is not non-linearity.
- Synergy involves coordination.
- What is a proper way to incorporate synergy of the motor skills in the calculation?
- How to measure influence of a given synergy?
- Does synergy depend upon the event (discipline)?

Synergy of Motor Skills

बuvepyós (gr.) - working together, synergy (descr.) - robust interaction of elements in performing a task.

- Synergy is not non-linearity.
- Synergy involves coordination.
- What is a proper way to incorporate synergy of the motor skills in the calculation?
- How to measure influence of a given synergy?
- Does synergy depend upon the event (discipline)?
- ?

Synergy of Motor Skills

бuveprós (gr.) - working together, synergy (descr.) - robust interaction of elements in performing a task.

- Synergy is not non-linearity.
- Synergy involves coordination.
- What is a proper way to incorporate synergy of the motor skills in the calculation?
- How to measure influence of a given synergy?
- Does synergy depend upon the event (discipline)?
- ??
???

Aggregation of synergy

Dealing with tables

Decision table			Extended part	
	$A 1$	$A 2$	$A 1 \oplus A 1$	$A 1 \circ A 1$
a	2	4	$2+4$	$2 * 4$
b	1		$? ?$	$? ?$
c		5	$? ?$	$? ?$
d	3	1	$3+1$	$3 * 1$

Dealing with graphs

\rightarrow motoric.skils.synergy.nb

References

Heazlewood, I. T. (2011). Factor Structure of the Women's Heptathlon: Applications of Traditional Factor Analysis and Structural Equation Modelling. Theories \& Applications the International Edition, 1(1):114-125.
Mackenzie, B. (2007). Heptathlon.
http://www.brianmac.co.uk/hepth.

