Statistical Analysis of the Cognitive Domain Taxonomy Table

Lavoslav Čaklović Univ. of Zagreb caklovic@math.hr

BIOSTAT 2017, Croatia, 8-10 June

Statistical Analysis of the Cognitive Domain Taxonomy Table Lavoslav Čaklović Univ. of Zagrebcaklovic@math.hr

Revised Bloom Taxonomy (Teacher's table)

Table : Taxonomy table of cognitive domain (Anderson and Krathwohl,2001)

	Processes					
Knowledge	Remembers	Understands	Applies	Analyzes	Evaluates	Creates
A. Factual						
B. Conceptual		C1,C2			C4	
C. Procedural		C5	C1,C2		C1	
D. Metacognitive			C6	C3		

C1–C6 — teaching goals.

Revised Bloom Taxonomy (Students' table)

Table : Taxonomy table (TaxTable) — frequences

	Processes					
Knowledge	Remembers	Understands	Applies	Analyzes	Evaluates	Creates
A. Factual	9	3				
B. Conceptual	3	11	3	1	1	
C. Procedural	1	1	8	10	8	2
D. Metacognitive				3	8	9

 F_{ij} — Cell frequencies. The number of students which classify their knowledge in the certain cell (one to many).

Statistical Analysis of the Cognitive Domain Taxonomy Table

CA (Greenacre, 1984)

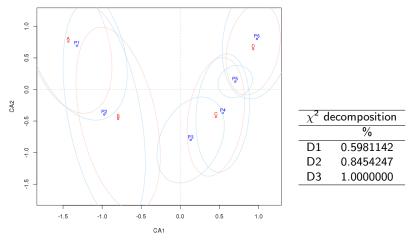


Figure : Biplot. Classical Correspondence analysis.

Statistical Analysis of the Cognitive Domain Taxonomy Table

DCA (Hill and Gauch, 1980)

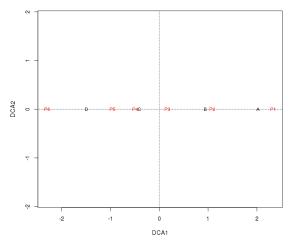


Figure : Biplot. Detrended Correspondence analysis.

Statistical Analysis of the Cognitive Domain Taxonomy Table

Questions.

- Knowledge¹ is **one-dimensional**.
- We (teachers) are functioning quite well with 1-5 point scale.
- Someone is terrorizing the school teachers with silly ideas?
- This convention is just for fun?

¹and may be the other two domains too

Statistical Analysis of the Cognitive Domain Taxonomy Table

Questions.

- Knowledge¹ is **one-dimensional**.
- **2** We (teachers) are functioning quite well with 1-5 point scale.
- Someone is terrorizing the school teachers with silly ideas?
- This convention is just for fun?
- 6 May be there is still some advantage of this analysis?

¹and may be the other two domains too

Statistical Analysis of the Cognitive Domain Taxonomy Table

Questions.

- Knowledge¹ is **one-dimensional**.
- **2** We (teachers) are functioning quite well with 1-5 point scale.
- Someone is terrorizing the school teachers with silly ideas?
- This convention is just for fun?
- May be there is still some advantage of this analysis?

Lets go further.

¹and may be the other two domains too

Statistical Analysis of the Cognitive Domain Taxonomy Table

DCA (scales)

Table : Scales² for dimensions *knowledge* and *processes* in DCA.

	knowledge						
	Α	В	С	D			
	0	1.08	2.44	3.52			
processes							
P1	P2	P3	P4	P5	P6		
0	1.25	2.17	2.83	3.30	4.64		

The scales may be used to define distance of the (particular) cell from the top-left cell in the TaxTable (cell value).

²shifted

Distance matrix generated by DCA scales. Taxi matrix³.

	P1	P2	P3	P4	P5	P6
	1	2	3	4	5	6
Α	0	3	5	7	8	11
В	3	6	8	10	11	14
С	6	9	11	13	14	17
D	9	12	14	16	17	20

Table : Cell values of the TaxTable

> make_score("B3", table=TaxTable)

> 8

- > achievements <- c("A3", "A3", "B5", "C3", "D6")</pre>
- > make_score(achievements, table=TaxTable)
- > 52

³Maximal value is 20.

Statistical Analysis of the Cognitive Domain Taxonomy Table

Statistical Analysis of the Cognitive Domain Taxonomy Table Lavoslav Čaklović Univ. of Zagrebcaklovic@math.hr

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Teacher may generate students' table after the exam and

Teacher may generate students' table after the exam and compare the before-exam table with after-exam table

Teacher may generate students' table after the exam and compare the before-exam table with after-exam table and both tables with goals-table.

Teacher may generate students' table after the exam and compare the before-exam table with after-exam table and both tables with goals-table.

May be the goals are too high for the students?

Teacher may generate students' table after the exam and compare the before-exam table with after-exam table and both tables with goals-table.

May be the goals are too high for the students?

THANK YOU

Statistical Analysis of the Cognitive Domain Taxonomy Table Lavoslav Čaklović Univ. of Zagrebcaklovic@math.hr

Bibliography

- Anderson, L. W. and Krathwohl, D. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom's taxonomy of educational objectives. Longman, New York.
- Greenacre, M. (1984). *Theory and Applications of Correspondence Analysis.* Academic Press, London.
- Hill, M. O. and Gauch, H. G. (1980). Deterended correspondence analysis, an improved ordination technique. *Vegetatio*, 42:47–58.