Preference measurement and application to choice theory

Lavoslav Čaklović Faculty of Natural Sciences/Dept. of Math.

Biostat 2019 - Zagreb, 5-8 june

Contents

 Table of contents 2 General remarks

> A brief history Human vs. exact sciences

3 Random choice

Stochastic preference Representation theorem Visual representation of choice Flow representation of choice

Axiom of choice. Luce Ballots. Example Generators of choice data A puzzle

4 Addendum

Value difference measurement Measurable value function Qualitative probability Potential Method

-

Contents	General remarks	Random choice	Addendum	References
A brief history				
A brief h	story (which o	concerns out top	pic only)	

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).

Contents	General	remarks	Random choice	Addendum	References
A brief history					
۸ این د ا					
A brief r	iistory (which c	concerns out to	DIC ONLY)	

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).

Probability is the special case of value function with the axiom of 'independence' (de Finetti).

イロト 不得 トイヨト イヨト ヨー うらつ

Contents	General remarks	Random choice	Addendum	References
A brief history				
A brief hi	story (which co	oncerns out to	pic only)	

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).

Probability is the special case of value function with the axiom of 'independence' (de Finetti).

• Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of Measurement I–II (What is the measurement?)

Contents	General remarks	Random choice	Addendum	References
A brief history				
A brief hi	story (which co	oncerns out to	pic only)	

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).

Probability is the special case of value function with the axiom of 'independence' (de Finetti).

• Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of Measurement I–II (What is the measurement?)

What is time?

\sim		+		-	
\sim	υ	 Ŀ	e		

Human vs. exact sciences

Human vs. exact sciences (again and again) Humanity (nature) Techniques (mind) value difference measurement extensive measuremen

extensive measurement
measurement unit
archimedean axiom
precision
algebra
equation
statistics
quantity
max/min
convergence

Scientists in humanity are using (imitating) the methods from exact sciences. They should develop their own mathematics.

A solution \rightarrow *Potential Method*.

Contents	General remarks	Random choice	Addendum	References
Stochastic preference				

Stochastic preference

S — set of states (objects). p_{ab} — propensity of choosing state a if the pair of states (a, b) is offered $(p_{aa} = \frac{1}{2}, \forall a \in S)$. We suppose that $0 < p_{ab} < 1$ and

 $p_{ab}+p_{ba}=1.$

Let us define a relation on the set of states S

$$a \geqslant b \iff p_{ab} \geqslant rac{1}{2}.$$

 $\pmb{Q}.$ Is it possible to represent the relation (S, \succcurlyeq) by real function V such that

$$a \ge b \iff V(a) \ge V(b).$$

Existence \rightarrow

Representation theorem for choice)
If
$$p_{ab} \neq 0$$
, $\forall a, b$ satisfies the consistency condition

$$\frac{p_{ab}}{p_{ba}} \cdot \frac{p_{ca}}{p_{ac}} = \frac{p_{cb}}{p_{ba}}, \text{ for all } a, b, c \in S, \quad (1)$$

then, \geq is transitive and there exists a real function V such that

$$p_{bc} = rac{V(b)}{V(b) + V(c)}.$$
 (2)

Moreover,

$$a \geqslant b \iff V(a) \geqslant V(b),$$

and function v(a) = ln(V(a)) is measurable value function, i.e.

$$(a \leftarrow b) \geq_e (c \leftarrow d) \iff v(a) - v(b) \geq v(c) - v(d),$$
 (3)

where $(a \leftarrow b) \geq_e (c \leftarrow d) \iff p_{ab} \geq p_{cd}$.

Contents

General remarks

Random choice

Visual representation of choice

Visual representation: ratio A : B : C = 4 : 3 : 1

Central point (star) is the representation of A: B: C = 4: 3: 1. This is the consistent case which is equivalent to 3 pairwise ratios: A: B = 4: 3A: C = 4: 1B: C = 3: 1.

Ratio A : B : C : Dmay be represented as a point in tetrahedron. Contents

General remarks

Flow representation of choice

Flow representation: ratio A : B : C = 4 : 3 : 1

Left side: multigraph with parallel edges which represent the ratio. Right side: aggregated graph ready for analysis with Potential Method.

Contents	General remarks	Random choice	Addendum	References
Axiom of choice. Luce	2			

Axiom of choice

Axiom (Luce, 1959)

Suppose R is a subset of S; then the choice probabilities for the choice set R are assumed to be identical to the choice probabilities for the choice set S conditional on R having been chosen, i.e., for $a \in R$

 $P_R(a) = P_S(a|R)$

Consequences (equivalence):

- $p_{ab}p_{bc}p_{ca} = p_{ac}p_{cb}p_{ba} \text{ (product rule)}$ $p_R(a) = \frac{V(a)}{\sum_{x \in R} V(x)} \text{ (logit, strict utility model)}$
- consistency

What happens if the axiom of choice is not satisfied and (or) $p_{ab} = 0$ for some pair (a, b)? In that case data are not consistent, we have now value function V, but we may calculate *potential* X.

> < 回 > < 回 > < 回 > < 回 > < 回 >

b

Generators of choice data

- In a survey:

. . .

(a) Please choose one possibility from the given four: A, B, C, D.

イロト 不得 トイヨト イヨト ヨー うらつ

- (b) How sure you are in yoou choice? (0-100)
- Promotion in marketing.
- Individual choice by triad interface.
- Recommendation (of a restaurant, option, ...)
- Product development
- Public transport (organization)

Contents	General remarks	Random choice	Addendum	References
A puzzle				

A puzzle

Question:
$$A: B: C = 2:1:1 \oplus A: B: C = 1:1:2$$

Both multigraphs we shall aggregate by:
1. ...taking *log* (like choice) and add parallel edges.
2. ...adding parallel edges and *summing* after that.

Contents	General remarks	Random choice	Addendum	References
A puzzle				

Puzzle - continued

Answer:
$$A : B : C = 2 : 1 : 1 \oplus A : B : C = 1 : 1 : 2$$

Measurable value function

 (S, \ge) — weak preference, (S_e, \ge) weak preference on the set of *exchanges*.

Definition (Measurable value function)

Function $V : S \rightarrow \mathbb{R}$ is measurable value function if:

$$a \ge b \Leftrightarrow V(a) \ge V(b)$$
 (4)

$$(a \leftarrow b) \geq_e (c \leftarrow d) \Leftrightarrow V(a) - V(b) \geq V(c) - V(d).$$
 (5)

(4) means that V is ordinal value function on S.
(5) means that V(a) - V(b) is ordinal value function on S_e.

Measurable value function

Theorem (Necessary and sufficient condistions for MVF)

Axioms A1–A6 (bellow) are sufficient for existence of measurable value function. Moreover, A1-A4 and A6 are necessary for existence of measurable

Moreover, A1–A4 and A6 are necessary for existence of measurable value function.

- A1. (Weak preference) \geq is weak preference, and \geq_e is weak preference on the set of exchanges.
- A2. (Compatibility \geq and \geq_e) $\forall a, b \in S$

$$a \ge b \Leftrightarrow (a \leftarrow b) \ge_e (c \leftarrow c), \quad \forall c \in S.$$

A3. (Inversion) $\forall a, b, c, d \in S$

$$(a \leftarrow b) \geqslant_e (c \leftarrow d) \Leftrightarrow (d \leftarrow c) \geqslant_e (b \leftarrow a).$$

A4. (Concatenation) $\forall a, b, c, d, e, f$

$$\begin{array}{c} (a \leftarrow b) \geqslant_e (d \leftarrow e) \\ (b \leftarrow c) \geqslant_e (e \leftarrow f) \end{array} \end{array} \} \implies (a \leftarrow c) \geqslant_e (d \leftarrow f).$$

Contents	General remarks	Random choice	Addendum	References
Measurable value fund	tion			

A5. (Solvability)
$$(\forall b, c, d \in S) (\exists x \in S)$$
 tako da je

$$(x \leftarrow b) \sim_e (c \leftarrow d).$$
 (a)

 $(\forall b, c \in S) \ (\exists x \in S)$ such that

$$(b \leftarrow x) \sim_e (x \leftarrow c).$$
 (b)

・ロト ・日 ・ モー・ モー・ ちょうくの

A6. (archimedean) Each strictly bounded standard sequence is finite.

Contents	General remarks	Random choice	Addendum	References
Qualitative probability				

de Finetti. Qualitative probability.

S — the set and $(\mathcal{P}(S), \geq)$ the relation on the set of subsets. We are looking for representation $P : A \mapsto P(A) \in \mathbb{R}$ such that

$$A \ge B \iff P(A) \ge P(B).$$
 (6)

イロト 不得 トイヨト イヨト ヨー うらつ

¹Complete and and transitive.

Contents General remarks Random choice Addendum References
Qualitative probability

de Finetti. Qualitative probability.

S — the set and $(\mathcal{P}(S), \geq)$ the relation on the set of subsets. We are looking for representation $P : A \mapsto P(A) \in \mathbb{R}$ such that

$$A \ge B \iff P(A) \ge P(B).$$
 (6)

イロト 不得 トイヨト イヨト ヨー うらつ

Axioms for qualitative probability:

Z1 (Completeness) \geq is weak preference¹. Let use denote ani-symmetric and symmetric part by $> \& \sim$.

¹Complete and and transitive.

de Finetti. Qualitative probability.

S — the set and $(\mathcal{P}(S), \ge)$ the relation on the set of subsets. We are looking for representation $P : A \mapsto P(A) \in \mathbb{R}$ such that

$$A \ge B \iff P(A) \ge P(B).$$
 (6)

Axioms for qualitative probability:

Z1 (Completeness) \geq is weak preference¹. Let use denote ani-symmetric and symmetric part by $> \& \sim$.

Z2 (Independence² from common part) For subsets A, B, C such that $A \cap C = B \cap C = \emptyset$

$$A \geqslant B \iff A \cup C \geqslant B \cup C.$$

¹Complete and and transitive.

²Known in the literature as the Axiom of independent alternative.

de Finetti. Qualitative probability.

S — the set and $(\mathcal{P}(S), \ge)$ the relation on the set of subsets. We are looking for representation $P : A \mapsto P(A) \in \mathbb{R}$ such that

$$A \ge B \iff P(A) \ge P(B).$$
 (6)

Axioms for qualitative probability:

Z1 (Completeness) \geq is weak preference¹. Let use denote ani-symmetric and symmetric part by $> \& \sim$.

Z2 (Independence² from common part) For subsets A, B, C such that $A \cap C = B \cap C = \emptyset$

$$A \geqslant B \iff A \cup C \geqslant B \cup C.$$

Z3 (Nontriviality) $S > \emptyset$ (strong preference) and $A \ge \emptyset, \forall A \subseteq S$.

²Known in the literature as the Axiom of independent alternative.

¹Complete and and transitive.

Contents	General remarks	Random choice	Addendum	References
Qualitative probability	<i>,</i>			

Theorem (de Finetti³)

Let us suppose Z1-Z6, then there exist P such that (6).

Z4 (Referent test) Decision maker is capable to identify the event on the probability wheel (PW).

Z5 (Continuity) $\forall A \subset S$ decision maker is capable to identify sector \tilde{A} on the PW such that $A \sim \tilde{A}$. Let us denote by $\alpha(A)$ the central angle of \tilde{A} .

Z6 (Sure thing principle) $\alpha(S) = 360^{\circ}$.

³In fact he almost had a theorem.

Contents	General remarks	Random choice	Addendum	References
Potential Method				

D

C

Potential Method⁴

Preference flow ${\mathcal F}$

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Incidence matrix $A \in \mathbb{R}^{m \times n}$

		nod	es _n		flow
arcs _m	Α	В	С	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3

Preference flow \mathcal{F}

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Incidence matrix $A \in \mathbb{R}^{m \times n}$

		nod	les,		flow
arcs _m	А	В	С	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4

Preference flow \mathcal{F}

$$\mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} = 0$$

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Incidence matrix $A \in \mathbb{R}^{m \times n}$

		nodes,			
arcs _m	A	В	С	D	\mathcal{F}
α	-1	1	0	0	1
β	0	$^{-1}$	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

Preference flow \mathcal{F}

$$\mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} = \mathbf{0}$$

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes,				flow
arcs _m	Α	В	С	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

Preference flow \mathcal{F}

 $\mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} = 0$ $\mathcal{F}_{\epsilon} + \mathcal{F}_{\delta} + \mathcal{F}_{\beta} = 7$

 \mathcal{F} cycle DBCD is not consistent!

Contents	General remarks	Random choice	Addendum	References
Potential Method				

 \mathcal{F}_{α}

C

0

 $^{-1}$

1

D

0

0

0

-1

1

flow

 \mathcal{F}

1

3

4

2

2

Preference flow \mathcal{F}

 $N(A^{\tau}) \oplus R(A) = \mathbb{R}^{m}$

 $\mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} = 0$ $\mathcal{F}_{\epsilon} + \mathcal{F}_{\delta} + \mathcal{F}_{\beta} = 7$ \mathcal{F} cycle DBCD is not consistent!

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Incidence matrix $A \in \mathbb{R}^{m \times n}$ nodes_n

C

0

-1

D

0

0

0

-1

1

В

1

-11

 $\begin{array}{cccc}
-1 & 0 & 1 \\
0 & 1 & 0
\end{array}$

0

 $N(A^{\tau}) \oplus R(A) = \mathbb{R}^{m}$

 $c \oplus \mathcal{F}_{o} = \mathcal{F}$

А

-1

0

0

arcs_m

 α β

 $\gamma \over \delta$

 ϵ

flow

 \mathcal{F}

1

3

4

2

2

Preference flow \mathcal{F}

 $\mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} = 0$ $\mathcal{F}_{\epsilon} + \mathcal{F}_{\delta} + \mathcal{F}_{\beta} = 7$

 \mathcal{F} cycle DBCD is not consistent!

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Preference flow \mathcal{F}

 $\mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} = 0$ $\mathcal{F}_{\epsilon} + \mathcal{F}_{\delta} + \mathcal{F}_{\beta} = 7$

 \mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes,				flow
arcs _m	A	В	С	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

 $N(A^{\tau}) \oplus R(A) = \mathbb{R}^{m}$ $c \oplus \mathcal{F}_{o} = \mathcal{F}$ $\mathcal{F} \text{ is consistent iff } \mathcal{F} \in R(A)$

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Preference flow \mathcal{F}

 $\begin{aligned} \mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} &= 0\\ \mathcal{F}_{\epsilon} + \mathcal{F}_{\delta} + \mathcal{F}_{\beta} &= 7\\ \mathcal{F} \text{ cycle DBCD is not consistent!} \end{aligned}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

		nodesn				flow
	arcs _m	A	В	С	D	\mathcal{F}
	α	-1	1	0	0	1
	β	0	-1	1	0	3
	γ	-1	0	1	0	4
	δ	0	1	0	$^{-1}$	2
_	ϵ	0	0	-1	1	2

$$\begin{split} \mathcal{N}(\mathcal{A}^{\tau}) \oplus \mathcal{R}(\mathcal{A}) &= \mathbb{R}^{m} \\ c \oplus \mathcal{F}_{o} &= \mathcal{F} \\ \mathcal{F} \text{ is consistent iff } \mathcal{F} \in \mathcal{R}(\mathcal{A}) \\ \mathcal{F} \text{ je consistent iff } \mathcal{A}X &= \mathcal{F} \end{split}$$

Contents	General remarks	Random choice	Addendum	References
Potential Method				

 $\mathcal{F}_{\alpha} + \mathcal{F}_{\beta} - \mathcal{F}_{\gamma} = 0$ $\mathcal{F}_{\epsilon} + \mathcal{F}_{\delta} + \mathcal{F}_{\beta} = 7$ $\mathcal{F} \text{ cycle DBCD is not consistent!}$

⁴Čaklović (2012); Čaklović and Kurdija (2017)

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes _n				flow
arcs _m	A	В	С	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

 $N(A^{\tau}) \oplus R(A) = \mathbb{R}^{m}$ $c \oplus \mathcal{F}_{o} = \mathcal{F}$ $\mathcal{F} \text{ is consistent iff } \mathcal{F} \in R(A)$ $\mathcal{F} \text{ je consistent iff } AX = \mathcal{F}$ $\mathcal{F} \text{ je consistent iff } c \perp \mathcal{F}, \forall c$ $c \in N(A^{\tau}) \text{ cycle}$

Contents	General remarks	Random choice	Addendum	References	
Potential Method					
Detential of profession graph					

Potential of preference graph

A — incidence matrix, n = #Vertices, m = #Arcs. \mathcal{F} — preference flow.

Ranking of the vertices is given by *potential* X:

$$A^{\tau}AX = A^{\tau}\mathcal{F}.$$

イロト 不得 トイヨト イヨト ヨー うらつ

 $A^{\tau}\mathcal{F}$ — flow gain in vertices $L = A^{\tau}A$ — Laplace matrix of the graph.

Contents	General remarks	Random choice	Addendum	References
Potential Method				
		1		

Potential of preference graph

A — incidence matrix, n = #Vertices, m = #Arcs. \mathcal{F} — preference flow.

Ranking of the vertices is given by *potential* X:

$$A^{\tau}AX = A^{\tau}\mathcal{F}.$$

 $A^{\tau}\mathcal{F}$ — flow gain in vertices

 $L = A^{\tau}A$ — Laplace matrix of the graph.

For connected graph, the matrix A has range n - 1, the kernel is generated by the vector of ones $\mathbb{1} = [1, 1, ..., 1]^{\tau}$. For uniqueness of X we put the condition

$$\sum_{i=1}^n x_i = 0$$

イロト 不得 トイヨト イヨト ヨー うらつ

・ロト ・四ト ・ヨト ・ヨト э

Contents	General remarks	Random choice	Addendum	References
Potential Method				

Bibliografija

- Čaklović, L. (2012). Measure of Inconsistency for the Potential Method. In Torra, V., Narukawa, Y., López, B., and Villaret, M., editors, *MDAI*, volume 7647 of *Lecture Notes in Computer Science*, pages 102–114. Springer.
- Čaklović, L. and Kurdija, A. S. (2017). A universal voting system based on the Potential Method. *European Journal of Operational Research*, 259:677–688.
- Roberts, F. S. and Luce, R. D. (1968). Axiomatic Thermodynamics and Extensive Measurement. Synthese, 18(4):311–326.