Preference measurement and application

to choice theory

Lavoslav Čaklović

Faculty of Natural Sciences/Dept. of Math.

Biostat 2019 - Zagreb, 5-8 june

Contents

(1) Table of contents
(2) General remarks

A brief history Human vs. exact sciences
(3) Random choice

Stochastic preference
Representation theorem
Visual representation of choice Flow representation of choice

Axiom of choice. Luce Ballots. Example Generators of choice data A puzzle
(4) Addendum

Value difference measurement
Measurable value function
Qualitative probability
Potential Method

A brief history (which concerns out topic only)

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) - utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).
Background: probability.

A brief history (which concerns out topic only)

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) - utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).
Background: probability.
Probability is the special case of value function with the axiom of 'independence' (de Finetti).

A brief history (which concerns out topic only)

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) - utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).

Background: probability.
Probability is the special case of value function with the axiom of 'independence' (de Finetti).

- Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of Measurement I-II (What is the measurement?)

A brief history (which concerns out topic only)

- Borda (1784) vs. Condorcet (1785) (still today)
- Thurston (1927) introduced pairwise comparison.
- Morgenstern and John von Neumann (1944) - utility theory.
- Savage (1954) reconstruction of attributes and objects probabilities from preferences (axiomatic approach).
Background: probability.
Probability is the special case of value function with the axiom of 'independence' (de Finetti).
- Supes, Tversky, Luce, Kranz, Roberts (1974), Foundations of Measurement I-II (What is the measurement?)

What is time?

Human vs. exact sciences (again and again)

Humanity (nature)	Techniques (mind)
value difference measurement	extensive measurement
preference intensity	measurement unit
half, double	archimedean axiom
consistency	precision
concatenation	algebra
structure	equation
probability	statistics
quality	quantity
feedback	max/min
behaviour	convergence

Scientists in humanity are using (imitating) the methods from exact sciences. They should develop their own mathematics.

Stochastic preference

S - set of states (objects).
$p_{a b}$ - propensity of choosing state a if the pair of states (a, b) is offered ($p_{a a}=\frac{1}{2}, \forall a \in S$). We suppose that $0<p_{a b}<1$ and

$$
p_{a b}+p_{b a}=1
$$

Let us define a relation on the set of states S

$$
a \geqslant b \Longleftrightarrow p_{a b} \geqslant \frac{1}{2} .
$$

Q. Is it possible to represent the relation (S, \geqslant) by real function V such that

$$
a \geqslant b \Longleftrightarrow V(a) \geqslant V(b) .
$$

Existence \rightarrow

Theorem (Representation theorem for choice)

If $p_{a b} \neq 0, \forall a, b$ satisfies the consistency condition

$$
\begin{equation*}
\frac{p_{a b}}{p_{b a}} \cdot \frac{p_{c a}}{p_{a c}}=\frac{p_{c b}}{p_{b c}}, \quad \text { for all } a, b, c \in S, \tag{1}
\end{equation*}
$$

then, \geqslant is transitive and there exists a real function V such that

$$
\begin{equation*}
p_{b c}=\frac{V(b)}{V(b)+V(c)} . \tag{2}
\end{equation*}
$$

Moreover,

$$
a \geqslant b \Longleftrightarrow V(a) \geqslant V(b)
$$

and function $v(a)=\ln (V(a))$ is measurable value function, i.e.

$$
\begin{equation*}
(a \leftarrow b) \geqslant_{e}(c \leftarrow d) \Longleftrightarrow v(a)-v(b) \geqslant v(c)-v(d), \tag{3}
\end{equation*}
$$

where $(a \leftarrow b) \geqslant_{e}(c \leftarrow d) \Longleftrightarrow p_{a b} \geqslant p_{c d}$.

Visual representation: ratio $A: B: C=4: 3: 1$

Central point (star) is the representation of $A: B: C=4: 3: 1$. This is the consistent case which is equivalent to 3 pairwise ratios:
$A: B=4: 3$
$A: C=4: 1$
$B: C=3: 1$.
Ratio $A: B: C: D$ may be represented as a point in tetrahedron.

Flow representation: ratio $A: B: C=4: 3: 1$

Left side: multigraph with parallel edges which represent the ratio. Right side: aggregated graph ready for analysis with Potential Method.

Axiom of choice

Axiom (Luce, 1959)

Suppose R is a subset of S; then the choice probabilities for the choice set R are assumed to be identical to the choice probabilities for the choice set S conditional on R having been chosen, i.e., for $a \in R$

$$
P_{R}(a)=P_{S}(a \mid R)
$$

Consequences (equivalence):
$-p_{a b} p_{b c} p_{c a}=p_{a c} p_{c b} p_{b a}$ (product rule)
$-p_{R}(a)=\frac{V(a)}{\sum_{x \in R} V(x)}$ (logit, strict utility model)

- consistency

What happens if the axiom of choice is not satisfied and (or) $p_{a b}=0$ for some pair (a, b) ? In that case data are not consistent, we have now value function V, but we may calculate potential X.

Ballot. Example.

most preferred

least preferred

Generators of choice data

- In a survey:
(a) Please choose one possibility from the given four: A, B, C, D.
(b) How sure you are in yoou choice? (0-100)
- Promotion in marketing.
- Individual choice by triad interface.
- Recommendation (of a restaurant, option, ...)
- Product development
- Public transport (organization)

A puzzle
Question: $A: B: C=2: 1: 1 \oplus A: B: C=1: 1: 2$

Both multigraphs we shall aggregate by: 1. ... taking log (like choice) and add parallel edges.
2. ...adding parallel edges and summing after that.

Puzzle - continued

Answer: $A: B: C=2: 1: 1 \oplus A: B: C=1: 1: 2$

Measurable value function
(S, \geqslant) - weak preference, (S_{e}, \geqslant) weak preference on the set of exchanges.

Definition (Measurable value function)

Function $V: S \rightarrow \mathbb{R}$ is measurable value function if:

$$
\begin{align*}
a \geqslant b & \Leftrightarrow V(a) \geqslant V(b) \tag{4}\\
(a \leftarrow b) \geqslant_{e}(c \leftarrow d) & \Leftrightarrow V(a)-V(b) \geqslant V(c)-V(d) . \tag{5}
\end{align*}
$$

(4) means that V is ordinal value function on S.
(5) means that $V(a)-V(b)$ is ordinal value function on S_{e}.

Theorem (Necessary and sufficient condistions for MVF)

Axioms A1-A6 (bellow) are sufficient for existence of measurable value function.
Moreover, A1-A4 and A6 are necessary for existence of measurable value function.

A1. (Weak preference) \geqslant is weak preference, and \geqslant_{e} is weak preference on the set of exchanges.
A2. (Compatibility \geqslant and \geqslant_{e}) $\forall a, b \in S$

$$
a \geqslant b \Leftrightarrow(a \leftarrow b) \geqslant_{e}(c \leftarrow c), \quad \forall c \in S .
$$

A3. (Inversion) $\forall a, b, c, d \in S$

$$
(a \leftarrow b) \geqslant_{e}(c \leftarrow d) \Leftrightarrow(d \leftarrow c) \geqslant_{e}(b \leftarrow a) .
$$

A4. (Concatenation) $\forall a, b, c, d, e, f$

$$
\left.\begin{array}{l}
(a \leftarrow b) \geqslant_{e}(d \leftarrow e) \\
(b \leftarrow c) \geqslant_{e}(e \leftarrow f)
\end{array}\right\} \Longrightarrow(a \leftarrow c) \geqslant_{e}(d \leftarrow f) .
$$

A5. (Solvability) $(\forall b, c, d \in S)(\exists x \in S)$ tako da je

$$
\begin{equation*}
(x \leftarrow b) \sim_{e}(c \leftarrow d) . \tag{a}
\end{equation*}
$$

$(\forall b, c \in S)(\exists x \in S)$ such that

$$
\begin{equation*}
(b \leftarrow x) \sim_{e}(x \leftarrow c) . \tag{b}
\end{equation*}
$$

A6. (archimedean) Each strictly bounded standard sequence is finite.
de Finetti. Qualitative probability.
S - the set and $(\mathcal{P}(S), \geqslant)$ the relation on the set of subsets. We are looking for representation $P: A \mapsto P(A) \in \mathbb{R}$ such that

$$
\begin{equation*}
A \geqslant B \Longleftrightarrow P(A) \geqslant P(B) \tag{6}
\end{equation*}
$$

[^0]
Qualitative probability

de Finetti. Qualitative probability.

S - the set and $(\mathcal{P}(S), \geqslant)$ the relation on the set of subsets. We are looking for representation $P: A \mapsto P(A) \in \mathbb{R}$ such that

$$
\begin{equation*}
A \geqslant B \Longleftrightarrow P(A) \geqslant P(B) \tag{6}
\end{equation*}
$$

Axioms for qualitative probability:
Z1 (Completeness) \geqslant is weak preference ${ }^{1}$. Let use denote ani-symmetric and symmetric part by $>\& \sim$.

[^1]
de Finetti. Qualitative probability.

S - the set and $(\mathcal{P}(S), \geqslant)$ the relation on the set of subsets. We are looking for representation $P: A \mapsto P(A) \in \mathbb{R}$ such that

$$
\begin{equation*}
A \geqslant B \Longleftrightarrow P(A) \geqslant P(B) . \tag{6}
\end{equation*}
$$

Axioms for qualitative probability:
Z1 (Completeness) \geqslant is weak preference ${ }^{1}$. Let use denote ani-symmetric and symmetric part by $>\& \sim$.
Z2 (Independence ${ }^{2}$ from common part) For subsets A, B, C such that $A \cap C=B \cap C=\varnothing$

$$
A \geqslant B \Longleftrightarrow A \cup C \geqslant B \cup C .
$$

[^2]
de Finetti. Qualitative probability.

S - the set and $(\mathcal{P}(S), \geqslant)$ the relation on the set of subsets. We are looking for representation $P: A \mapsto P(A) \in \mathbb{R}$ such that

$$
\begin{equation*}
A \geqslant B \Longleftrightarrow P(A) \geqslant P(B) . \tag{6}
\end{equation*}
$$

Axioms for qualitative probability:
Z1 (Completeness) \geqslant is weak preference ${ }^{1}$. Let use denote ani-symmetric and symmetric part by $>\& \sim$.
Z2 (Independence ${ }^{2}$ from common part) For subsets A, B, C such that $A \cap C=B \cap C=\varnothing$

$$
A \geqslant B \Longleftrightarrow A \cup C \geqslant B \cup C .
$$

Z3 (Nontriviality) $S>\varnothing$ (strong preference) and $A \geqslant \varnothing, \forall A \subseteq S$.

[^3]
Theorem (de Finetti ${ }^{3}$)

Let us suppose Z1-Z6, then there exist P such that (6).
Z4 (Referent test) Decision maker is capable to identify the event on the probability wheel (PW).
Z5 (Continuity) $\forall A \subset S$ decision maker is capable to identify sector \tilde{A} on the $P W$ such that $A \sim \tilde{A}$. Let us denote by $\alpha(A)$ the central angle of \tilde{A}.
Z6 (Sure thing principle) $\alpha(S)=360^{\circ}$.

Potential Method ${ }^{4}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

Preference flow \mathcal{F}
${ }^{4}$ Čaklović (2012); Čaklović and Kurdija (2017)

Potential Method ${ }^{4}$

Preference flow \mathcal{F}
${ }^{4}$ Čaklović (2012); Čaklović and Kurdija (2017)

Potential Method ${ }^{4}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow
arcs_{m}	A	B	C	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4

Preference flow \mathcal{F}

$$
\mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0
$$

Potential Method ${ }^{4}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow
arcs $_{m}$	A	B	C	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

Preference flow \mathcal{F}

$$
\mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0
$$

Potential Method ${ }^{4}$

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow
arcs $_{m}$	A	B	C	D	\mathcal{F}
α	-1	1	0	0	1
β	0	-1	1	0	3
γ	-1	0	1	0	4
δ	0	1	0	-1	2
ϵ	0	0	-1	1	2

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Potential Method ${ }^{4}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs_{m}	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m}
$$

Potential Method ${ }^{4}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs_{m}	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

Potential Method ${ }^{4}$

Preference flow \mathcal{F}
$\mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0$

$$
\mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs $_{m}$	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

\mathcal{F} is consistent iff $\mathcal{F} \in R(A)$

Potential Method ${ }^{4}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs $_{m}$	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

\mathcal{F} is consistent iff $\mathcal{F} \in R(A)$
\mathcal{F} je consistent iff $A X=\mathcal{F}$

Potential Method ${ }^{4}$

Preference flow \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}_{\alpha}+\mathcal{F}_{\beta}-\mathcal{F}_{\gamma}=0 \\
& \mathcal{F}_{\epsilon}+\mathcal{F}_{\delta}+\mathcal{F}_{\beta}=7
\end{aligned}
$$

\mathcal{F} cycle DBCD is not consistent!

Incidence matrix $A \in \mathbb{R}^{m \times n}$

	nodes $_{n}$				flow	
arcs_{m}	A	B	C	D	\mathcal{F}	
α	-1	1	0	0	1	
β	0	-1	1	0	3	
γ	-1	0	1	0	4	
δ	0	1	0	-1	2	
ϵ	0	0	-1	1	2	

$$
\begin{gathered}
N\left(A^{\tau}\right) \oplus R(A)=\mathbb{R}^{m} \\
c \oplus \mathcal{F}_{o}=\mathcal{F}
\end{gathered}
$$

\mathcal{F} is consistent iff $\mathcal{F} \in R(A)$
\mathcal{F} je consistent iff $A X=\mathcal{F}$
\mathcal{F} je consistent iff $c \perp \mathcal{F}, \forall c$

Potential of preference graph

A - incidence matrix, $n=$ \#Vertices, $m=$ \#Arcs.
\mathcal{F} - preference flow.
Ranking of the vertices is given by potential X :

$$
A^{\tau} A X=A^{\tau} \mathcal{F}
$$

$A^{\tau} \mathcal{F}$ - flow gain in vertices
$L=A^{\tau} A$ - Laplace matrix of the graph.

Potential of preference graph

A - incidence matrix, $n=$ \#Vertices, $m=$ \#Arcs.
\mathcal{F} - preference flow.
Ranking of the vertices is given by potential X :

$$
A^{\tau} A X=A^{\tau} \mathcal{F}
$$

$A^{\tau} \mathcal{F}$ - flow gain in vertices
$L=A^{\tau} A$ - Laplace matrix of the graph.
For connected graph, the matrix A has range $n-1$, the kernel is generated by the vector of ones $1=[1,1, \ldots, 1]^{\tau}$. For uniqueness of X we put the condition

$$
\sum_{i=1}^{n} x_{i}=0
$$

Konsistency (bis)

Konzistentan graf

$\begin{array}{llll}\text { A } & \text { B } & \text { C } & \text { D }\end{array}$

Nekonzistentan graf

A
B
C D
-

$$
0
$$

Bibliografija

Čaklović, L. (2012). Measure of Inconsistency for the Potential Method. In Torra, V., Narukawa, Y., López, B., and Villaret, M., editors, MDAI, volume 7647 of Lecture Notes in Computer Science, pages 102-114. Springer.
Čaklović, L. and Kurdija, A. S. (2017). A universal voting system based on the Potential Method. European Journal of Operational Research, 259:677-688.
Roberts, F. S. and Luce, R. D. (1968). Axiomatic Thermodynamics and Extensive Measurement. Synthese, 18(4):311-326.

[^0]: ${ }^{1}$ Complete and and transitive.

[^1]: ${ }^{1}$ Complete and and transitive.

[^2]: ${ }^{1}$ Complete and and transitive.
 ${ }^{2}$ Known in the literature as the Axiom of independent alternative.

[^3]: ${ }^{1}$ Complete and and transitive.
 ${ }^{2}$ Known in the literature as the Axiom of independent alternative.

