Glasnik Matematicki, Vol. 44, No.2 (2009), 447-455.

ON SOME FUNCTIONAL EQUATIONS ON STANDARD OPERATOR ALGEBRAS

Irena Kosi-Ulbl and Joso Vukman

Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, Maribor, Slovenia
e-mail: irena.kosi@uni-mb.si

Department of Mathematics and Computer Science, FNM, University of Maribor, Koroska 160, Maribor, Slovenia
e-mail: joso.vukman@uni-mb.si


Abstract.   The main purpose of this paper is to prove the following result. Let X be a real or complex Banach space, let L(X) be the algebra of all bounded linear operators on X, let A(X) subset L(X) be a standard operator algebra, and let T : A(X) → L(X) be an additive mapping satisfying the relation T(A2n+1) = ∑i=12n+1 (-1)i+1 Ai-1 T(A) A2n+1-i, for all A in A(X) and some fixed integer n ≥ 1. In this case T\ is of the form T(A) = AB + BA, for all A in A(X) and some fixed B in L(X). In particular, T is continuous.

2000 Mathematics Subject Classification.   46K15, 39B05.

Key words and phrases.   Prime ring, semiprime ring, Banach space, standard operator algebra.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.11


References:

  1. K. I. Beidar, W. S. Martindale III and A.V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc. New York, 1996.
    MathSciNet

  2. K. I. Beidar, M. Bresar, M.A. Chebotar and W. S. Martindale 3 rd, On Herstein's Lie map conjectures II, J. Algebra 238 (2001), 239-264.
    MathSciNet     CrossRef

  3. P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275-289.
    MathSciNet     CrossRef

  4. J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
    MathSciNet     CrossRef

  5. M. Fosner and D. Ilisevic, On a class of projections on *-rings, Commun. Algebra 33 (2005), 3293-3310.
    MathSciNet     CrossRef

  6. M. Fosner and J. Vukman, On some equations in prime rings, Monatsh. Math. 152 (2007), 135-150.
    MathSciNet     CrossRef

  7. I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
    MathSciNet     CrossRef

  8. G. N. Jacobson, Structure of rings, American Mathematical Society, New York, 1956.
    MathSciNet

  9. I. Kosi-Ulbl and J. Vukman, An identity related to derivations of standard operator algebras and semisimple H*-algebras, CUBO A Math. J., to appear.

  10. L. L. Stachó and B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 9-20.
    MathSciNet     CrossRef

  11. L. L. Stachó and B. Zalar, Bicircular projections and characterization of Hilbert spaces, Proc. Amer. Math. Soc. 132 (2004), 3019-3025.
    MathSciNet     CrossRef

  12. P. Semrl, Ring derivations on standard operator algebras, J. Funct. Anal. 112 (1993), 318-324.
    MathSciNet     CrossRef

  13. J. Vukman, On automorphisms and derivations of operator algebras, Glasnik Mat. Ser. III 19(39) (1984), 135-138.
    MathSciNet

  14. J. Vukman, I. Kosi-Ulbl and D. Eremita, On certain equations in rings, Bull. Austral. Math. Soc. 71 (2005), 53-60.
    MathSciNet     CrossRef

  15. J. Vukman, On functional equations related to bicircular projections, Glasnik Mat. Ser. III 41(61) (2006), 51-55.
    MathSciNet     CrossRef

  16. J. Vukman, On derivations of standard operator algebras and semisimple H*-algebras, Studia Sci. Math. Hungar. 44 (2007), 57-63.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.