Glasnik Matematicki, Vol. 43, No.2 (2008), 309-320.

THE ZERO-DIVISOR GRAPH WITH RESPECT TO IDEALS OF A COMMUTATIVE SEMIRING

Shahabaddin Ebrahimi Atani

Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran


Abstract.   In a manner analogous to a commutative ring, the ideal-based zero-divisor graph of a commutative semiring R can be defined as the undirected graph ΓI(R) for some ideal I of R. The properties and possible structures of the graph ΓI(R) are studied.

2000 Mathematics Subject Classification.   16Y60, 05C75.

Key words and phrases.   Semiring, k-ideal, zero-divisor, graph, ideal-based.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.2.06


References:

  1. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra 217 (1999), 434-447.
    MathSciNet     CrossRef

  2. D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring, II, Lecture Notes in Pure and Appl. Math. 220, Dekker, New York, 2001.
    MathSciNet

  3. P. Allen, Ideal theory in semirings, Dissertation, Texas Christian University, 1967.

  4. P. J. Allen, J. Neggers and H. S. Kim, Ideal theory in commutative A-semirings, Kyungpook Math. J 46 (2006), 261-271.
    MathSciNet

  5. I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208-226.
    MathSciNet     CrossRef

  6. S. Ebrahimi Atani, On k-weakly primary ideals over semirings, Sarajevo J. Math. 3(15) (2007), 9-13.
    MathSciNet

  7. S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glas. Math. Ser. III 42(62) (2007), 301-308.
    MathSciNet     CrossRef

  8. S. Ebrahimi Atani and R. Ebrahimi Atani, Ideal theory in commutative semirings, Bul. Acad. Stiinte Repub. Mold. Mat. 2(57) (2008), 14-23.

  9. V. Gupta and J. N. Chaudhari, Some remarks on semirings, Rad. Mat. 12 (2003), 13-18.
    MathSciNet

  10. V. Gupta and J. N. Chaudhari, Right π-regular semirings, Sarajevo J. Math. 2 (2006), 3-9.
    MathSciNet

  11. H. R. Maimani, M. R. Pournaki and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (2006), 923-929.
    MathSciNet     CrossRef

  12. J. R. Mosher, Generalized quotients of hemirings, Compositio Math. 22 (1970), 275-281.
    MathSciNet

  13. S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), 4425-4443.
    MathSciNet     CrossRef

  14. M. K. Sen and M. R. Adhikari, On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993), 699-703.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.