Glasnik Matematicki, Vol. 43, No.2 (2008), 253-264.

FIBONACCI DIOPHANTINE TRIPLES

Florian Luca and László Szalay

Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58180, Morelia, Michoacán, México
e-mail: fluca@matmor.unam.mx

Institute of Mathematics and Statistics, University of West Hungary, 9400, Sopron, Erzsébet utca 9, Hungary
e-mail: laszalay@ktk.nyme.hu


Abstract.   In this paper, we show that there are no three distinct positive integers a, b, c such that ab+1, ac+1, bc+1 are all three Fibonacci numbers.

2000 Mathematics Subject Classification.   11B37, 11B39, 11D61.

Key words and phrases.   Binary recurrences, Fibonacci and Lucas numbers, Diophantine triples.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.2.03


References:

  1. Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10.
    MathSciNet     CrossRef

  2. Y. Bugeaud and K. Gyarmati, On generalizations of a problem of Diophantus, Illinois J. Math. 48 (2004), 1105-1115.
    MathSciNet

  3. R. D. Carmichael, On the numerical factors of the arithmetic forms αn ± βn, Ann. Math. (2) 15 (1913/1914), 30-48.
    MathSciNet     CrossRef

  4. J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540.
    MathSciNet     CrossRef

  5. A. Dujella, There are only finitely many Diophantine quintuples, J. reine angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  6. R. Finkelstein, On Fibonacci numbers which are one more than a square, J. reine angew. Math. 262/263 (1973), 171-178.
    MathSciNet

  7. C. Fuchs, F. Luca and L. Szalay, Diophantine triples with values in binary recurrences, Ann. Sc. Norm. Super Pisa Cl. Sci. (5), to appear.

  8. P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41(61) (2006), 195-203.
    MathSciNet     CrossRef

  9. K. Gyarmati, A. Sarkozy and C. L. Stewart, On shifted products which are powers, Mathematika 49 (2002), 227-230.
    MathSciNet

  10. K. Gyarmati and C. L. Stewart, On powers in shifted products, Glas. Mat. Ser. III 42(62) (2007), 273-279.
    MathSciNet     CrossRef

  11. R. Knott, Fibonacci Numbers and the Golden Section,
    http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/.

  12. T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Interscience, New York, 2001.
    MathSciNet

  13. F. Luca, On shifted products which are powers, Glas. Mat. Ser. III 40(60) (2005), 13-20.
    MathSciNet     CrossRef

  14. F. Luca and L. Szalay, Fibonacci numbers of the form pa ± pb + 1, Fibonacci Quart. 45 (2007), 98-103.
    MathSciNet


Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.