Glasnik Matematicki, Vol. 43, No.1 (2008), 121-136.

APPROXIMATION AND MODULI OF FRACTIONAL ORDERS IN SMIRNOV-ORLICZ CLASSES

Ramazan Akgün and Daniyal M. Israfilov

Balikesir University, Faculty of Science and Art, Department of Mathematics, 10145, Balikesir, Turkey
e-mail: rakgun@balikesir.edu.tr

Institute of Math. and Mech. NAS Azerbaijan, F. Agayev Str. 9, Baku, Azerbaijan
e-mail: mdaniyal@balikesir.edu.tr


Abstract.   In this work we investigate the approximation problems in the Smirnov-Orlicz spaces in terms of the fractional modulus of smoothness. We prove the direct and inverse theorems in these spaces and obtain a constructive descriptions of the Lipschitz classes of functions defined by the fractional order modulus of smoothness, in particular.

2000 Mathematics Subject Classification.   30E10, 46E30, 41A10, 41A25.

Key words and phrases.   Orlicz space, Smirnov-Orlicz class, Dini-smooth curve, direct theorems, inverse theorems, fractional modulus of smoothness.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.1.09


References:

  1. S. Ya. Al'per, Approximation in the mean of analytic functions of class Ep, in: Investigations on the modern problems of the function theory of a complex variable. Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, 272-286 (in Russian).
    MathSciNet

  2. J. E. Andersson, On the degree of polynomial approximation in Ep(D), J. Approx. Theory 19 (1977), 61-68.
    MathSciNet     CrossRef

  3. P. L. Butzer, H. Dyckhoff, E. Görlich and R. L. Stens, Best trigonometric approximation, fractional order derivatives and Lipschitz classes, Can. J. Math. 29 (1977), 781-793.
    MathSciNet

  4. A. Cavus and D. M. Israfilov, Approximation by Faber-Laurent rational functions in the mean of functions of the class Lp(Γ) with 1 < p < ∞, Approx. Theory Appl. 11 (1995), 105-118.
    MathSciNet

  5. P. L. Duren, Theory of Hp spaces, Academic Press, 1970.
    MathSciNet

  6. D. Gaier, Lectures on Complex Approximation, Birkhäuser, 1987.
    MathSciNet

  7. G. M. Goluzin, Geometric theory of functions of a complex variable, Translation of Mathematical Monographs Vol. 26, AMS, Providence, 1969.
    MathSciNet

  8. V. P. Havin, Continuity in Lp of an integral operator with the Cauchy kernel, Vestnik Leningrad Univ. 22 (1967), 103-108 (in Russian, English summary).
    MathSciNet

  9. D. M. Israfilov, Approximate properties of the generalized Faber series in an integral metric, Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10-14 (in Russian).
    MathSciNet

  10. D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class Ep(G,ω) and the Bieberbach polynomials, Constr. Approx. 17 (2001), 335-351.
    MathSciNet     CrossRef

  11. D. M. Israfilov, Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54 (2004), 751-765.
    MathSciNet     CrossRef

  12. D. M. Israfilov and R. Akgün, Approximation in weighted Smirnov-Orlicz classes, J. Math. Kyoto Univ. 46 (2006), 755-770.
    MathSciNet

  13. V. M. Kokilashvili, On analytic functions of Smirnov-Orlicz classes, Studia Math. 31 (1968), 43-59.
    MathSciNet

  14. V. M. Kokilashvili, Approximation of analytic functions of class Ep, Proceedings of Math. Inst. of Tbilisi, 39 (1968), 82-102, (in Russian).
    MathSciNet

  15. V. M. Kokilashvili, A direct theorem on mean approximation of analytic functions by polynomials, Soviet Math. Dokl. 10 (1969), 411-414.

  16. I. P. Natanson, Teoriya funktsii veshestvennoy peremennoy, Moscow-Leningrad, 1974.
    MathSciNet

  17. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Berlin, Springer-Verlag, 1992.
    MathSciNet

  18. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
    MathSciNet

  19. R. Ryan, Conjugate functions in Orlicz space, Pacific J. Math. 13 (1963), 1371-1377.
    MathSciNet

  20. P. K. Suetin, Series of Faber polynomials, Gordon and Breach Science Publishers, Amsterdam, 1998.
    MathSciNet

  21. R. Taberski, Differences, moduli and derivatives of fractional orders, Comment. Math. 19 (1977), 389-400.
    MathSciNet

  22. J. L. Walsh and H. G. Russel, Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions, Trans. Amer. Math. Soc. 92 (1959), 355-370.
    MathSciNet     CrossRef

  23. S. E. Warschawski, Über das ranverhalten der Ableitung der Abildungsfunktion bei Konformer Abbildung, Math. Z. 35 (1932), 321-456.
    MathSciNet     CrossRef

  24. A. Zygmund, Trigonometric series, Vols. I and II, Cambridge University Press, 1959.
    MathSciNet

Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.