Glasnik Matematicki, Vol. 43, No.1 (2008), 59-95.

ON THE NUMBER OF SUBGROUPS OF GIVEN TYPE IN A FINITE p-GROUP

Yakov Berkovich

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il


Abstract.   We study the p-groups G containing exactly p+1 subgroups of order pp and exponent p. A number of counting theorems and results on subgroups of maximal class and p-groups with few subgroups of given type are also proved. Counting theorems play crucial role in the whole paper.

2000 Mathematics Subject Classification.   20D15.

Key words and phrases.   p-groups of maximal class, regular and absolutely regular p-groups.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.1.06


References:

  1. Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.
    MathSciNet     CrossRef

  2. Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.

  3. Y. Berkovich, On subgroups of finite p-groups, J. Algebra 240 (2000), 198-240.
    MathSciNet     CrossRef

  4. Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
    MathSciNet     CrossRef

  5. Y. Berkovich, Alternate proofs of some basic theorems of finite group theory, Glas. Mat. 40 (2005), 207-233.
    MathSciNet     CrossRef

  6. Y. Berkovich, On the number of elements of given order in a finite p-group, Israel J. Math. 73 (1991), 107-112.
    MathSciNet     CrossRef

  7. Y. Berkovich and Z. Janko, Groups of Prime Power Order, Part II, in preparation.

  8. Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Contemporary Mathematics 402 (2006), 13-93.
    MathSciNet

  9. N. Blackburn, On a special class of p-groups, Acta Math. 1 (1958), 45-92.
    MathSciNet     CrossRef

  10. N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. 11 (1961), 1-22.
    MathSciNet     CrossRef

  11. P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. 36 (1933), 29-95.
    Jahrbuch

  12. P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. 40 (1936), 468--501.
    Jahrbuch

  13. M. Hall, Jr. and J.K. Senior, The groups of order 2n (n ≤ 6), Macmillan, NY, 1964.
    MathSciNet

  14. R. James, 2-groups of almost maximal class, J. Austral. Math. Soc. (Ser A) 19 (1975), 343-357; corrigendum, ibid. 35 (1983), 307.
    MathSciNet

  15. Z. Janko, A classification of finite 2-groups with exactly three involutions, J. Algebra 291 (2005), 505-533.
    MathSciNet     CrossRef

  16. Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2n, J. reine angew. Math. 566 (2004), 135-181.
    MathSciNet     CrossRef

  17. Z. Janko, Finite 2-groups G with 2(G)| = 16, Glas. Mat. 40 (2005), 71-86.
    MathSciNet     CrossRef

  18. A. Mann, Conjugacy classes in finite groups, Israel J. Math. 31 (1978), 78-84.
    MathSciNet     CrossRef

  19. D. S. Passman, Nonnormal subgroups of p-groups, J. Algebra 15 (1970), 352-370.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.