Glasnik Matematicki, Vol. 43, No.1 (2008), 13-23.

ON PRIMAL AND WEAKLY PRIMAL IDEALS OVER COMMUTATIVE SEMIRINGS

Shahabaddin Ebrahimi Atani

Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran


Abstract.   Since the theory of ideals plays an important role in the theory of semirings, in this paper we will make an intensive study of the notions of primal and weakly primal ideals in commutative semirings with an identity 1. It is shown that these notions inherit most of the essential properties of the primal and weakly primal ideals of a commutative ring with non-zero identity. Also, the relationship among the families of weakly prime ideals, primal ideals and weakly primal ideals of a semiring R is considered.

2000 Mathematics Subject Classification.   16Y60.

Key words and phrases.   Semiring, weakly prime, primal, weakly primal.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.1.03


References:

  1. D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. of Math. 29 (2003), 831-840.
    MathSciNet

  2. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
    MathSciNet     CrossRef

  3. P. J. Allen, J. Neggers and H. S. Kim, Ideal theory in commutative semirings, Kyungpook Math. J. 46 (2006), 261-271.
    MathSciNet

  4. S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005), 423-429.
    MathSciNet

  5. S. Ebrahimi Atani, On k-weakly primary ideals over semirings, Sarajevo J. Math. 3 (2007), 9-13.
    MathSciNet

  6. S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glas. Mat. Ser. III 42 (2007), 301-308.
    MathSciNet     CrossRef

  7. S. Ebrahimi Atani and A. Yousefian Darani, On weakly primal ideals (I), Demonstratio Mathematica 40 (2007), 23-32.
    MathSciNet

  8. L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
    MathSciNet     CrossRef

  9. L. Fuchs and E. Mosteig, Ideal theory in Prufer domains, J. Algebra 252 (2002), 411-430.
    MathSciNet     CrossRef

  10. V. Gupta and J. N. Chaudhari, Some remarks on semirings, Radovi Matematicki 12 (2003), 13-18.
    MathSciNet

  11. V. Gupta and J. N. Chaudhari, Right π-regular semirings, Sarajevo J. Math. 14 (2006), 3-9.
    MathSciNet

  12. J. R. Mosher, Generalized quotients of hemirings, Compositio Math. 22 (1970), 275-281.
    MathSciNet

  13. K. Murta, On the quotient semigroup of a non-commutative semigroup, Osaka Math. J. 2 (1950), 1-5.

  14. R. Y. Sharp, Steps in Commutative Algebra, London Mathematics Society Texts, Cambridge University Press, Cambridge, 1990.
    MathSciNet

  15. H. Weinert, Über Halbringe und Halbkorper II, Acta Math. Acad. Sci. Hungary 14 (1963), 209-227.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.