Glasnik Matematicki, Vol. 42, No.1 (2007), 145-187.

THE COARSE SHAPE

Nikola Koceić Bilan and Nikica Uglešić

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
e-mail: koceic@pmfst.hr

23287 Veli Rat, Dugi Otok, Croatia
e-mail: nuglesic@unizd.hr


Abstract.   Given a category C, a certain category pro*-C on inverse systems in C is constructed, such that the usual pro-category pro-C may be considered as a subcategory of pro*-C. By simulating the (abstract) shape category construction, Sh(C, D), an (abstract) coarse shape category Sh*(C, D) is obtained. An appropriate functor of the shape category to the coarse shape category exists. In the case of topological spaces, C = HTop and D = HPol or D = HANR, he corresponding realizing category for Sh* is pro*-HPol or pro*-HANR respectively. Concerning an operative characterization of a coarse shape isomorphism, a full analogue of the well known Morita lemma is proved, while in the case of inverse sequences, a useful sufficient condition is established. It is proved by examples that for C = Grp (groups) and C = HTop, the classification of inverse systems in pro*-C is strictly coarser than in pro-C. Therefore, the underlying coarse shape theory for topological spaces makes sense.

2000 Mathematics Subject Classification.   55P55, 18A32.

Key words and phrases.   Topological space, compactum, polyhedron, ANR, category, homotopy, shape, S*-equivalence.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.12


References:

  1. K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254.
    MathSciNet

  2. K. Borsuk, Theory of Shape, PWN-Polish Scientific Publishers, Warszawa, 1975.
    MathSciNet

  3. K. Borsuk, Some quantitative properties of shapes, Fund. Math. 93 (1976), 197-212.
    MathSciNet

  4. D. Coram and P. F. Duval, Jr., Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288.
    MathSciNet

  5. H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Math. 4 (1933), 145-234.
    Numdam

  6. K. R. Goodearl and T. B. Rushing, Direct limit groups and the Keesling-Mardesic shape fibration, Pacific J. Math. 86 (1980), 471-476.
    MathSciNet

  7. H. Herrlich and G. E. Strecker, Category Theory: an Introduction, Allyn and Bacon Inc., Boston, 1973.
    MathSciNet

  8. A. Kadlof, N. Koceic Bilan and N. Uglesic, Borsuk's quasi-equivalence is not transitive, submitted.

  9. J. Keesling and S. Mardesic, A shape fibration with fibers of different shape, Pacific J. Math. 84 (1979), 319-331.
    MathSciNet

  10. S. Mardesic, Shapes for topological spaces, General Topology Appl. 3 (1973), 265-282.
    MathSciNet     CrossRef

  11. S. Mardesic, Comparing fibres in a shape fibration, Glas. Mat. Ser. III 13(33) (1978), 317-333.
    MathSciNet

  12. S. Mardesic, Inverse limits and resolutions, in: Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math. 870, Springer, Berlin-New York, 1981, 239-252.
    MathSciNet

  13. S. Mardesic and T. B. Rushing, Shape fibrations I, General Topology Appl. 9 (1978), 193-215.
    MathSciNet     CrossRef

  14. S. Mardesic and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59.
    MathSciNet

  15. S. Mardesic and J. Segal, Shape Theory, North-Holland Publishing Co., Amsterdam-New York-Oxford 1982.
    MathSciNet

  16. S. Mardesic and N. Uglesic, A category whose isomorphisms induce an equivalence relation coarser than shape, Topology Appl. 153 (2005), 448-463.
    MathSciNet     CrossRef

  17. K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 246-258.
    MathSciNet

  18. K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
    MathSciNet

  19. W. Scheffer, Maps between topological groups that are homotopic to homomorphisms, Proc. Amer. Math. Soc. 33 (1972), 562-567.
    MathSciNet     CrossRef

  20. N. Uglesic, A note on the Borsuk quasi-equivalence, submitted.

  21. N. Uglesic and B. Cervar, The Sn-equivalence of compacta, submitted.

  22. N. Uglesic and B. Cervar, A subshape spectrum for compacta, Glas. Mat. Ser. III 40(60) (2005), 347-384.
    MathSciNet

Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.