Glasnik Matematicki, Vol. 41, No.2 (2006), 335-343.

ON THE n-FOLD HYPERSPACE SUSPENSION OF CONTINUA, II

Sergio Macias

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510, Mexico
e-mail: macias@servidor.unam.mx


Abstract.   We continue our study of n-fold hyperspace suspensions. We show that n-fold hyperspace suspensions of contractible continua are contractible. We prove that n-fold hyperspace suspensions are zero-dimensional aposyndetic. We also show that hereditarily indecomposable continua have unique n-fold hyperspace suspensions.

2000 Mathematics Subject Classification.   54B20.

Key words and phrases.   Absolute retract, continuum, n-fold hyperspace, n-fold hyperspace suspension, retract, strong deformation retract, Z-set.


Full text (PDF) (free access)

DOI: 10.3336/gm.41.2.16


References:

  1. R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110.
    MathSciNet

  2. T. A. Chapman, Lectures on Hilbert cube manifolds, American Mathematical Society, Providence, 1976.
    MathSciNet

  3. D. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to אo-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
    MathSciNet     CrossRef

  4. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass. 1966.
    MathSciNet

  5. R. Escobedo, M. de J. López and S. Macias, On the hyperspace suspension of a continuum, Topology Appl. 138 (2004), 109-124.
    MathSciNet     CrossRef

  6. T. Ganea, Symmetrische Potenzen topologischer Räume, Math. Nach. 11 (1954), 305-316.
    MathSciNet     CrossRef

  7. J. T. Goodykoontz, Jr. Some retractions and deformation retractions on 2X and C(X), Topology Appl. 21 (1985), 121-133.
    MathSciNet     CrossRef

  8. A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and Recent Advances, Marcel Dekker, Inc., New York, 1999.
    MathSciNet

  9. M. Levin and Y. Sternfeld, The space of subcontinua of a 2-dimensional continuum is infinite-dimensional, Proc. Amer. Math. Soc. 125 (1997), 2771-2775.
    MathSciNet     CrossRef

  10. S. Macias, On the hyperspaces Cn(X) of a continuum X, Topology Appl. 109 (2001), 237-256.
    MathSciNet     CrossRef

  11. S. Macias, On the hyperspaces Cn(X) of a continuum X. II, Topology Proc. 25 (2000), Spring, 255-276. MathSciNet

  12. S. Macias, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), 125-138.
    MathSciNet     CrossRef

  13. S. Macias, Topics on Continua, Chapman & Hall/CRC, Boca Raton, 2005.
    MathSciNet

  14. S. Macias and S. B. Nadler, Jr., Z-sets in hyperspaces, Questions Answers Gen. Topology 19 (2001), 227-241.
    MathSciNet

  15. J. M. Martinez-Montejano, Zero-dimensional closed set aposyndesis and hyperspaces, to appear in Houston J. Math.
    MathSciNet

  16. E. E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111-1121.
    MathSciNet

  17. S. B. Nadler, Jr., Hyperspaces of Sets. A Text with Research Questions, Marcel Dekker, Inc., New York-Basel, 1978.
    MathSciNet

  18. S. B. Nadler, Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math. 5 (1979), 125-132.
    MathSciNet

  19. S. B. Nadler, Jr., Continuum Theory. An Introduction, Marcel Dekker, Inc., New York, 1992.
    MathSciNet

  20. M. Wojdislawski, Rétractes absolus et hyperespaces des continus}, Fund. Math. 32 (1939), 184-192.

Glasnik Matematicki Home Page

closePristupaÄŤnostrefresh

Ako Ĺľelite spremiti trajne postavke, kliknite Spremi, ako ne - vaĹÃâÃÃâââÃÆ’ƒÆ’¢â€šÂ¬Ã…¡Ã‚¬Ã…¡Ãƒâ€šÃ‚¢ÃƒÆ’¢â‚¬Å¡Ã‚¬Ã„…‡e Äâ€ÃÃÆÃÆâ€™Ãƒâ€ Ã¢â‚¬â„¢ÃƒÆ’‚¢Ã¢â€šÂ¬Ã¢â€žÂ¢ÃƒÆ’ƒâ€ Ã¢â‚¬â„¢ÃƒÆ’‚¢Ã¢â€šÂ¬Ã…¾ÃƒÂ¢Ã¢â€šÂ¬Ã…¡ÃƒÂ¢Ã¢â€šÂ¬Ã…¡Ãƒâ€šÃ‹â€¡e se postavke poništiti kad zatvorite preglednik.