Abstract. An initial-boundary value problem for one-dimensional flow of a compressible viscous heat-conducting micropolar fluid is considered. It is assumed that the fluid is thermodinamically perfect and politropic. A global-in-time existence theorem is proved. The proof is based on a local existence theorem, obtained in the previous paper.
1991 Mathematics Subject Classification. 35K55, 35Q35, 76N10.
Key words and phrases. Micropolar fluid, viscousity, compressibility, boundary value problem, global existence.
Ako ĹÃâ€Ãâ€Ãâââââââ€šÂ¬Ã…¡Ã‚¬Ã…¡Ã‚¬Ã…¡Ãƒâ€šÃ‚¦ÃƒÆ’ƒâ€šÃ‚¾Ãƒâ€žÃ¢â‚¬Å¡ÃƒÂ¢Ã¢â€šÂ¬Ã…¡Ãƒâ€šÃ„¾elite spremiti trajne postavke, kliknite Spremi, ako ne - vaÄÂÂÄâ€Ãâ€ÃÃÃ†â€™Ãƒâ€šÃ‚¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚¬Ã‚¦Ãƒâ€šÃ‚¡ÃƒÆ’ƒâ€šÃ‚¦ÃƒÆ’ƒâ€žÃ¢â‚¬Å¡Ãƒâ€šÃ†â€™ÃƒÆ’¢â‚¬Ä…‡e Ä‚ÂÆÃÃâââ€ÃÃ¢â‚¬Â¦Ãƒâ€šÃ‚¡ÃƒÆ’‚¬Ã‚ ÃƒÂ¢Ã¢â€šÂ¬Ã¢â€žÂ¢ÃƒÆ’ƒâ€šÃ‚¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚¬Ã¢â€žÂ¢ÃƒÆ’ƒâ€žÃ¢â‚¬Â ÃƒÂ¢Ã¢â€šÂ¬Ã¢â€žÂ¢Ãƒâ€žÃ¢â‚¬Å¡Ãƒâ€¹Ã‹Å“€žÃ¢ÄÃÂÂÂÂÃƒâ€šÃ‚¢ÃƒÆ’ƒÆ’ƒÂ¢Ã¢â‚¬Å¡Ã‚¬Ã…¡Ãƒâ€¹Ã‹Å“‚¬Äâââââ€ÅÂÃÃâ€