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ON SOME VECTOR VALUED SEQUENCE SPACE USING
ORLICZ FUNCTION

D.GHosH AND P.D.SRIVASTAVA
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ABSTRACT. In this paper, we introduce some new sequence space
using Orlicz function and study some properties of this space.

1. INTRODUCTION

J.Lindenstrauss and L.Tzafriri [7] used the idea of Orlicz function M (see
definition below) to construct the sequence space IM of all sequences of scalars
(xn) such that

00

2:M(lxkl/ p) < 00, for some p > O.
k=l

The space IM (for instance see [7]) becomes a Banach space which is called
an Orlicz sequence space.

DEFINITION 1.1. Let M: [0, (0) -t [0, (0). Then M zs called an Orlicz
function if

i) M(O) = 0;
ii) M(x) > 0, for all x;

iii) M is continuous, non-decreasing and convex;
iv) M(x) -t 00 as x -t 00.

Obviously Orlicz function generalizes the function

M(x) = xP (where p ~ 1).
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An Orlicz function M can always be represented in the following integral form:

M(x) = lx p(t)dt

where p known as the kernel of M, is right differential for t ~ 0, p(O) =
0, p(t) > 0 for t > 0, p is non-decreasing and p(t) -+ 00, as t -+ 00. An Orlicz
function M is said to satisfy .6.2-condition for all values of u, if there exists a
constant K > 0 such that

M(2u) :s: KM(u) (u ~ 0)

The .6.2-condition is equivalent to the satisfaction of inequality M(lu) <
lKM(u) for all values of u and l > 1 (Krasnoselkii and Ruticsky [5]).

2. SPACE F(Ek, M)

Let Ek be Banach spaces over the field of complex numbers C with norms
11·IIEk' k = 1,2,3, ... , and F be a normal sequence space with monotone norm
I/·IIF and having a Schauder basis ek where ek = (0,0, ... ,1,0, ... ), with 1 in
k-th place. We denote the linear space of all sequences x = (xd with Xk E Ej,­

.for each k under the usual coordinatewise operations :

o:x = (o:xd and x + y = (Xk + yd

for each 0: E C by S(Ek). If x E S(Ed and A = (Ak) is a scalar sequence and
then we shall write AX = (AkXd. Further let M be an Orlicz function. We
define

(1)

(2)

F(Ek, M) = {x = (xd E S(Ed: Xk E Ek for each k and

(M(l/xkIIEk/p)) E F, for some p > O}.

For x = (Xk) E F(Ek,M), we define

I/xil = inf{p > 0: II(M(llxkIIEjp))IIF :s: I}.

It is shown that F(Ek, A1) turns out to be a complete normed space under
the norm defined by (2). Inclusion relations separability, convergence criteria
etc. are discussed in the subsequent section of this paper.

It can be seen that for suitable choice of the sequence space F, Ek's and
M the space F(Ek, M) includes many of the known scalars as well as vector
valued sequence spaces as particular cases.

For example, choosing F to be lM and Ek = C, k = 1,2,3, ... in
F(Ek, M) one gets the scalar valued sequence space lM, known as Orlicz
sequence space defined by Lindenstrauss & Tzafriri [7].

If Ek = X, a vector space over C , M(t) = t (t > 0) then the class
F(Ek, M) gives the class F(X) of X-valued sequences which includes as par­
ticular case, the many known sequence spaces introduced by Leonard [6]'
Maddox [9] and others.
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Thus the generalized sequence space F(Ek, AI) unifies seyeral spaces stud­
ied by yarious authors.

3.

In this section we study algebraic and topological properties of the se­
quence space F(Ek, M).

THEORElvl 3.1. F(Ek, AI) is a linear space over the field of complex num­

bers C.

PROOF. Let x = (xd, y = (Yd E F(Ek,AI) and a,.3 E C. So there
exists Pl, P2 > 0 such that

Let P3 = max(2Io:lpl, 21.8Ip2)' Since j\f is non-decreasing and convex, so

AI(llo:xk + ,3YkIIEk/ P3) :::; M(llo:xkilEk/ P3 + IL8YkIIEk/P3)

:::;1/2M(IIXkIIEk/ PI) + 1/2AI(IIYkIIEk/ P2)

:::;M(llxkIIEk/Pl + M(IIYkIIEk/P2)'

Since F is a normal space, so

which shows o:a;+ ,By E F(Ek, M). Hence F(Ek, AI) is a linear space. 0

THEORDI 3.2. F(Ek, i\l) is a normed space under the nom! defined by

(2) .

PROOF. Let x = (xd , Y = (Yd be the elements of F(Ek, lvI). It is
easy to yerify that [Ixll > 0 and for x = 8 = (81.82:",) the null clement of
F(Ek: j\I) (where 8i is the zero element of Ei for each i) we have 11811= O.

Further, from the previous theorem it follows that x + Y E F(Ek, AI). To
show Ilx + yll :::;Ilxll + Ilyll, consider

Ilx + yll = inf{p > 0: II(M(llxk + YkIIEk/p))IIF :::; I}.

There exists Pl > 0, P2 > 0 such that

Let P3 = ma..\:(2pl, 2p2). Since AI is non-decreasing and convex: so

M(llxk + YkIIEk/P3) :::; 1/2M(llxkIIEk/Pl) + 1/2111(IIYkIIEk/p211)

:::;M(llxkIIEk/ pd + lvI(IIYkIIEk/ P2)'
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From the above inequality we can conclude that IIx + yll :::; IIxll + Ilyli. To
show IIAXII= IAlllxl1 for A E C, consider

IIAxll = inf{p > 0: II(M(IIAxkIIEk/p))IIF :::; I}

= inf{IAlp/IAI > 0: II(M(lIxkIIEk/ p/IAI))IIF :::; I}

= IAlllxll·

Now it is left to prove that Ilxll = 0 implies x = (J. Suppose this is not
true i.e. suppose ilxll = 0 but x =I (J. So from the given assumption that
Ilxll = 0 we have

inf{p> 0: II(M(llx~:IIEk/p))IIF :::; I} = O.

This implies that there exists 0 < Pe < c such that

II(M(lIxkIIEk/Pt'))IIF :::; 1.

Since (ed is a Schauder basis for F and F is normal space so we have

(3) M(llxkIIEk/Pe)llekIIF:::; II(M(lIxkIlEk/Pe))IIF:::; 1.

Suppose Xk", =I (J~,,,, for some m. Letting c -+ 0, then

M(llxk", IIEk", /c)lIek", IIF -+ 00,

which is contradiction to (3). Therefore Xk", = (Jk", for each m. So x = (J.

This completes the proof. 0

THEOREM 3.3. F(Ek, AI) is complete normed space under the norm given
by (2).

PROOF. It is sufficient to prove that every Cauchy sequence

(Xi) = ((xU) in F(Ek, M)

is convergent. Let (Xi) be any Cauchy sequence in F(Ek, M). Using the
definition of norm (2) we get

II(M(llxl- x{IIEk/lixi - xjll))IIF :::; 1.

Since F is a normal space and (ek) is a Schauder basis of F, it follows that

M(lIxl- x{IIEk/llxi - xjll)llekllF :::; II(M(llx1- x{IIEk/llxi - xjll))IIF :::; 1
We choose 'Y with 'Y1!ekIiF > 1 and Xo > 0, such that

'YllekIlF(xo/2)p(xo/2) ~ 1,

where p is the kernel associated with M. Hence,
. j ..

M(llxk - xkIlEk/llx' - xJll)llekllF :::; 'Yllek IIF (xo/2)p(xo/2).

Using the integral representation of Orlicz function M, we get

(4)
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For given e: > 0, we choose an integer iosuch that

257

(5) Ilxi - xiii < e:hxo, for all i,j > io.

From (4) & (5) we get

Ilxt - x{IIEk < e: for all i,j > io.

So, there exists a sequence x = (Xk) such that Xk E Ek for each k and

Ilxt - Xk IIEk ---+ 0, as i ---+ 00,

for each fixed k. For given e: > 0, we choose an integer n > 1, such that
Ilxi - xiii < e:/2, for all i,j > n and a p > 0, such that IIxi - xiii < p < e:/2.
Since, F is a normal space and (ed is Schauder basis of F, so

n

(6) IIL i\l(llxt - x{IIEk/ p)ekllF ~ II(M(llxt - x{IIEk/ p))IIF ~ 1.
k=l

Since M is continuous, so by taking j ---+ 00 and i, j > n in (6) we get

III:~=lM(llxt - xkIlEk/2p)ekIIF < 1. Letting n ---+ 00, we get Ilxi - xii <
2p < e:, for all i > n. So (xi) converges to x in the norm of F(Ek, M). Now
we show that x E F(Ek, M). Since, xi = (xU E F(Ek, M), so there exists a
p> 0 such that (M(llxtIIEk/p)) E F. Since Ilxt - xkllEk ---+ 0 as i ---+ 00, for
each fixed k so we can choose a positive number cSt, 0 < cSt < 1, such that

Now consider

M(llxkIIEk/2p) = M(llxt + Xk - xtIIEk/2p)

~ 1/2M(llxt - xkllEk/ p) + 1/2M(lIxtIlEk/ p)

(because M is convex)

< (1/281 + 1/2)M(llxtIIEk/p)·

But F is normal so (M(llxkIIEk/2p)) E F. Hence x = (Xk) E F(Ek, M) . This
completes the proof. 0

THEOREM 3.4. F(Ek) C F(Ek, M), if M satisfies the t..2-condition

where F(Ek) = {(Xk): Xk E Ek, Vk, and (IlxkllEk/ p) E F, for some p > 0 }.

PROOF. Let x = (Xk) E F(Ed . So for some p > 0; (1IxkIlEk/P) E F. We
define the two sequences Y = (Yk) and Z = (Zk) such that

if IIxkllEk/p > 1;

if IlxkllEk/p ~ 1;
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if IlxkllEk/p > 1;

if IlxkIIE •./P::; 1.

Hence IlxkllEk/p = IlvkllEk + IlzkllEk' Obviously V = (Yd, z = (zd E F(Ed·
Now

M(llxkIIEk/ p) = AI(llvkllEk + ilzkilEk)

::; 1/2M(21IvkIIEk) + 1/2M(21IzkIIEk)

< 1/2](11IvkIIEkM(2) + 1/21IzkIIEkM(2),

where ](1 is a constant. Since, F is a normal space, so

(Af(llxkIIEk/ p)) E F i.e. x = (xd E F(Ek, M).

Hence F(Ed C F(Ek, M). 0

4. SOME INCLUSION RELATION IS DERIVED FOR THE SPACE OF i\lULTIPLIER

OF F(Ek,M)

Suppose Ek are normed algebras. Define: Y = TIEk product of Banach
spaces Ek, and S[F(Ek,M)J, the space of multiplier of F(Ek,J\f)

S[F(Ek,M)] = {a = (ad E 1": (M(llakx"IIEk/p)) E F,

for all x = (xd E F(Ek, M)},

loo(Ed = {x = (Xk E 1': sup IlxkIIE •. < IX)}.
k

THEOREM 4.1. loo(Ed ~ S[F(Ek, ill)] if AI satisfies the ~2-conddion.

PROOF. Let a = (ad E loc(Ed, H = sUPk>l IlakllEk and :z: = (xd E

F(E", J\I). Then for some p > 0, (M(llxkIIEk/ p)) E F and

M(llakxkIIEk/p)::; M(llakIIEkll'TkIIEk/P)

::; M[(l + [H])llx"IIEk/ p]

(where [H] denotes the integer part of H)

(where ](1 is a constant). Since F is normal space, so

(M(llah,xkilEk/ p)) E F i.e. ax = (akxd E F(Ek, J\l).

Hence loo(Ed ~ S[F(Ek, M)]



ON SOi\m VECTOR VALUED SEQUENCE SPACE 259

(7)

O. THIS SECTION DEALS WITH SOi\IE PROPERTIES OF A SPACE [F(Ek, 111)]

INTRODUCED HERE AS A SUBSPACE OF F(Ek, 111)

'Ve define

[F(Ek, A1)] = {x = (xd: Xk E Ek for each k

and for every p > 0, UII(llxkIIE./ p)) E F}.

F is the same as in section 2 and the topology of [F(Ek, M)] is introduced by
the norm of F(Ek, 11I) given by (2).

THEOREM 5.1. [F(E, M)] is a complete normed space under the norm
given by (2).

PROOF. Since [F(Ek, A1)] is already shown as a complete normed space
under the norm (2) and [F(Ek. llI)] is a subspace of F(Ek, M), so to show
that [F(Ek, M)] is complete under the norm (2), it is sufficient to show that
it is closed. For this let us consider (xi) = ((xU) as sequence in [F(Ek, 111)]

such that II:ri - xii -+ 0 (i -+ (0), where x = (Xk) E F(E.., M). So for given
~ > 0, we can choose and integerio such that

Ilxi - xii < U2, 'Vi> io·

Consider

M(llxkIIEk/O :s; 1/2M(21IxL - xkIIE./O + 1/2AI(21IxLIIEk/O

:s; 1/2M(llxi - xkllEk/llxi - xllEk) + 1/2M(21IxilIEk/~)'

Since

(M(llxi, - xkllEk/llxi - xii)), (AI(21IxtlIEk/~)) E F

and F is normal space so (M(llxkIIEk/~)) E F. This implies x = (x..) E
[F(Ek, M)]. Hence [F(Ek, AI)] is complete. 0

PROPOSITION 5.2. [F(Ek, AI)] is an .4.K space.

PROOF. Let x = (xd E [F(Ek, AI)]. Therefore, for every p > 0,
(.M(llxkIIEk/ p)) E F. Since (e..) is a Schauder basis of F, so for given
c(O < c < 1) , \ve can find an integer no such that

00

II L AI(llxkll/c)ekIIF < 1.
k,?-no

Using the definition of norm, we have
00

(8) Ilx - x[n]11 = inf{~ > 0: II L AI(llxkIIEk/OekIIF:S; I},
k,?-n+l

where :r[n] = n-th section of x. From (7) and (8), it is obvious that

[Ix - x[n]11 < c, for all n > no.
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Therefore [F(Ek, M)] is an AK space. 0

THEOREM5.3. Let (xi) = ((xU) be a sequence of elements oj[F(Ek, 1\1)]

and x = (xd E [F(Ek, M)]. Then Xi --+ x in [F(Ek, M)] if and only if

(i) x1 --+ Xk in Ek for each k ~ 1;
(ii) Ilxili --+ Ilxll as i --+ 00.

PROOF. Necessary part is obvious.
Sufficient part. Suppose that (i) & (ii) hold and let n be an arbitrary positive
integer, then

Ilxi - xII ~ ilxi - xi[nJ II + IIxi[n] - x[n] II + Ilx[n] - xii,

where xi[n], x[n] denote n-th sections of xi & x respectively. Letting i --+ 00,
we get

Hmsup ilxi - xII ~ lim sup Ilxi - xi[n111+ lim sup IIxi[ll] - x[7l] II + IIxln] - xII
i-+oo i-+ex> i-+oo

~ 2I1x[n] - xII.

Since n is arbitrary, so taking n --+ 00, we get lim SUPH= Ilxi - xii = 0 i.e.
IIxi - xII --+ 0 as i --+ 00. 0

THEOREM5.4. [F(Ek, M)] is separable if Ek is separable for each k.

PROOF. Suppose Ek is separable for each k. Then, there exists a count­
able dense subset Hk of Ek. Let Z denote set of finite sequences z = (zd

where Zk E H for each k and

(Zk) = (Z1,Z2, ... ,zn,Bn+1,On+2, ... )

for arbitrary integer n. Obviously Z is a countable subset of [F(Ek,.l\1)]. We
shall prove that Z is dense in [F(Ek, M)]. Let x = (xd E [F(Ek, 1\1)]. Since
[F(Ek, M)] is an AK space, so Ilx - x[n] II --+ 0 as n --+ 00, where x[n] = n-th
section of x. So for given 10 > 0, there exists an integer n1 > 1 such that

Ilx - x[n] II < 10/2 for all n ~ n1.

We take n = n1. Therefore

IIx - x[nl] II < 10/2.

We choose Y = (Yk) = (Y1,' .. , Ynll Onl +1, On1+2, ... ) E Z such that

IIxlnl] - YkilEk < e/(M(1)2n11IekIlF) for each k.

Now

IIx - yll = IIx - x[nl] + x[nl] - yll

~ IIx - x[nl]11+ Ilx[nl] - yll < e.
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This implies that Z is dense in [F(Ek, M)]. Hence [F(Ek, M)] is separa­
ble.
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