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THE SUN TOPOLOGY IN THE PLANE

PAVEL PYRIH

ABSTRACT.

We study properties of the sun topology which one is somewhere between
the fine topology from potential theory in the plane and the density topology
in the plane.

1. Introduction.

The three well known topologies in the plane, the Euclidean topology, the
fine topology from potential theory and the usual density topology are linearly
ordered. The fine topology is strictly finer than the Euclidean one, the density
topology is strictly finer than the density one. The fine topology has several
useful geometrical properties which disappear when we switch to the finer
density topology.

We introduce the sun topology which is somewhere between the fine topology
from potential theory in the plane and the density topology in the plane (the
density at any point x is measured using the Lebesgue measure>. and discs
D(x, r) with radius r centered at x).

We introduce the sun topology in the plane

Definition 1.1. A (Lebesgue) measurable set A in the complex plane is said
to be sun open if for each x E A for (Lebesgue) almost every a E [O,27rJ there
exists to> 0 such that {z E <C:z = x + t(cosa + isina), ItI < to} C A.

In other words the set A contains with any point x a segment on almost
every line through x.

We show that the sun topology is finer than the fine topology and coarser
than the density topology. The sun topology is not normal but keeps the some
useful properties of the fine topology.
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For any topology (e.g. blue) we use the terms blue open, blue closure ...
with respect to this topology.

2. Sun topology.

The following proposition relates the sun topology to the density topology
in the plane.

Proposition 2.1. The density topology is strictly finer than the sun topology.

Proof. (i) Let the set A be sun open at x. For each r > a denote by Br the
set of all [J E [O,27rJ for which {z E C: z = x + t(cos[J+ isin[J), It I < r} C A
holds. We see that A. (Br) --+ 27r for r --+ O. Hence

A.(A nD(x, r)) A.(Br) 1------ > --- --+
AD(x,r) - 27r

for r --+ O. Hence x is a point of density of A. The set A is density open at x.
The density topology is finer than the sun topology.

(ii) The set C \ {z E C : l/lzl E N} is density open at a and is not sun open
at O. The density topology is strictly finer than the sun topology. 0

Now we introduce the fine topology from potential theory in the plane. If
we denote for an arbitrary point x E C , a set A C C and n E N

1 2
An(x) = {z E C\A,- < Iz-xl <-}2n - 2n

we can characterize points x at which a set A is finely open as those for which
the series

00

~ lOgCap~~n(x))

converges ( Wiener's test), where cap' denotes the outer logarithmic capacity
(see [1, Th.IX,10]).

We will recall ([6,Theorem 4.4, p. 16]) a useful property of the fine topology
in the plane

Proposition 2.2. Every point z of a fine domain U has a fine neighborhood

V in U such that any two points a,b of V can be joined by a polygonal path I
in U (not necessarily in V) consisting of just two straight segments of equal
length, the length of'Y being less than o:lb - ai, 0: > 1 being given.

In fact there is a positive probability for a Brownian particle starting at a
point x of a fine domain U to reach into any prescribed fine neighborhood of
another point y of U before leaving U. (See [7J.)

The finely open set U contains with any point x segments starting at x in
almost any direction due to
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Proposition 2.3. The sun topology is strictly finer than the fine topology.

Proof. (i) Let 0 E A, A be finely open at o. We now restrict to M = {z =
x + iy E C : x 2: 0, y 2: O} and we show that for (Lebesgue) almost every
a E [0,7r/2] there exists to: > 0 such that {z EM: z = t( cos a + i sin a), 0 ::::;
t < to:} c A. Then with the same information from the other quadrants we
conclude that A is sun open at O. For n E N denote

1 2

An = {z E M \ A, 2n ::::;Izi < 2n}

Let En = P(An), where P is the projection from the origin on the line through
the points [21n ,0] and [0, 21n]. Similarly, let Cn = R(An), where R is the
projection from the origin on the circle {z E C: Izl = 2~}.

The outer logarithmic capacity decreases under contractions, hence

For the measurable linear set Bn we can use the estimate the (linear) Lebesgue
measure on the line through the points [21n ,0] and [0, 21nJ by >"(Bn) ::::;
4cap*(Bn) (see [4, p. 173]). There is a simple Lipschitz mapping from Bn onto
Cn, hence the (linear) Lebesgue measure of Cn on the circle {z E C : Izi = 2~}
is estimated by >"(Cn) ::::;2>"(Bn).

The set A is finely open at 0, hence the series
00

~ log ca~~ (An)

converges. We conclude that the series
00

~ lOg~~Cn)

converges. We know that >..( Cn) E [0, 2.~n]. Each point at Cn 'stops' the
radius from origin at the distance 2~' The measure of the angles, which stop
at Cn, is qn = 2n>..(cn) (belongs to [0,7r/2]). We show that

00

converges. (Suppose not. If qn 2: 2-n for infinitely many n, then >"(Cn) >
2-2n for infinitely many n and the series

00

~ lOg~~n)
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diverges - a contradiction).
We see that the measure of angles in [0,7r /2] which stop at some distance

due to en (and due to An) for n 2:: m is smaller then L~=m qn - hence
arbitrarily small for m big enough. Hence (Lebesgue) almost every angle at
[0,7r /2] stops at some positive distance. The set A is sun open at O.

(ii) The set C\JR+ is obviously sun open at the origin and is not finely open
at the origin due to the fact that each finely open set contains with any point
arbitrarily small circles (not discs) centered at the point (see [2, Th.10.14]).
The sun topology is strictly finer than the fine topology. 0

3. Properties of the sun topology.

We prove some useful properties of the sun topology

Proposition 3.1. The sun topology has the following properties:

(i) the sun topology fulfills the essential radius condition, this means that
for each x E C and each sun neighborhood U of x there is an "essential radius"
r(x, U) > 0 such that

Ix - yl ::; min(r(x, Ux), r(y, Uy)) :::} Ux n Uy =I- 0

for every sun neighborhoods Ux, Uy of x and y in C,
(ii) the sun topology has the Euclidean G6 - insertion property, this means

that for each sun open set (} and each sun closed set F with (} c F, there is
a set G of type Euclidean G6 such that (} c G c F,

(iii) any countable set is sun isolated,
(iv) the sun topology is not separable,
(v) the sun topology is locally connected.

Proof. (i) Let U be a sun neighborhood of x. There exist an E JR and
tn > 0, 0 ::; n ::; 3 such that Ian - n7r/2/ < 1/11 and {z E C : Z

x+t(cosa+isina),ltl < tn} C U. Thentheessentialradiusr(x,U)
min(tl, t2, t3, t4)/2. The essential radius condition obviously holds.

(ii) Due to (i) (see [5, 2.D.16, p. 66]).
(iii) Let {Xn}~=l be a countable sun dense set. For x E C there is a fine

neighborhood U of x disjoint with {Xn}~l (any countable set is finely closed
and the fine topology is regular - see [5]). The set U is sun open due to
Proposition 2.3. Hence the set {xn}~=l is not sun dense.

(iv) See (iii).
(v) The polygonal connectedness of any sun neighborhood follows from the

definition of the sun topology. 0

Let us remark that the sun topology has some properties similar to the
crosswise topology - see [5, Ex. 1.1, p. 7].

We recall from [8, Theorem 2.2, p. 347]' the following
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Proposition 3.2. Let the topology blue be finer than the topology green on
X. Let the topology blue have the green C6 - insertion property. Suppose A
and B are disjoint blue closed sets, U and V disjoint blue open sets, A c U,
and B c V. Then there exist A and B of type green F" such that A c A,
Be B, A is disjoint with B, and B is disjoint with A.

Now we can prove

Proposition 3.3. The sun topology is not normal.

Proof. Assume that the sun topology is normal. Let C be the Cantor (middle
thirds) set in [0,1]. Then for each a C C, the sets a and b = C\a are (disjoint)
sun closed sets (C is a Lebesgue null set).

The sun topology has the Euclidean C6 - insertion property due to Propo­
sition 3.1 (ii). Proposition 3.2 imply that there exists F of type Euclidean F"
such that a C F, F disjoint with b.

The mapping a f--7 F is an injective mapping (we see that F nC = a) from
the potential set P(C) to the collection of all Euclidean Borel sets, hence the
cardinality argument applies. The cardinality of the collection of all Euclidean
Borel sets is c whereas the cardinality of P(C) equals 2C - a contradiction.
The sun topology is not normal. 0

Remark 3.4. The sun topology under the name the core-a.e. topology was
already introduced by G. Horbaczewska (d. [3, p. 416]). Moreover, it has
quite recently been proved by E. Wagner-Bojakowska and W. Wilczynski that
the sun topology is not regular (see [9, Theorem 2, p. 363]).
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