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PROPER METRIC SPACES AND RIGSON
COMPACTIFICATIONS OF PRODUCT SPACES

KAZUO TOMOYASU

ABSTRACT. Let (X, d) be a non-compact metric space. We provide an

equivalent condition that the metric d is proper on X. r denotes the
Higson compactification of a non-compact proper metric space (X, d).
In this paper we show that if (X, dx) is a non-compact proper met­
ric space and (Y, dy) is a non-compact proper metric space or a non­

degenerate compact metric space, then X X ymax{dx ,dy} is not equiv­
alent to Xdx x ydy .

1. INTRODUCTION AND PRELIMINARIES

The Rigson compactification is a compactification which is defined for all
locally compact metric spaces endowed with certain metrics [6]. We say that
a metric d on X is proper provided that every bounded set in X has a com­
pact closure. For X to have a proper metric, obviously X must be locally
compact. Let (X, d) be a metric space. In this paper, for r > 0, Br(x, d)
and diamX denote {y EX: d(x,y) < r} and sup{d(x,y) : x,y E X} re­
spectively. Suppose that X is non-compact with d a proper metric. Let
f : X -+ Y be a continuous function into a metric space Y with specific
metric. We say that a function f satisfies the (*)d- condition provided that
limx--->oodiam(J(Br(x, d))) = 0 for any r > O. The (*)d-condition means that
for each T > 0 and each E > 0, there is a compact set K = Kr,E: in X such that
for all x ~ K, diam(J(Br(x, d))) < c. We now define Cd(X) and Cd(X), Re­
call that C(X) (resp. C* (X)) denotes the set of all real-valued (resp. bounded
real-valued) continuous functions on X. These are rings under pointwise addi­
tion and multiplication with C*(X) a subring of C(X). By analogy with these
definitions we define Cd(X) = {f E C(X) : f satisfies the Hd-condition} and
Cd(X) = {f E C*(X) : f satisfies the (*kcondition}. With the supremum
norm on C* (X), Cd (X) is a closed subring of C* (X) containing all the con­
stant functions. Because the metric d on X is proper, Cd(X) generates the
topology of X. It is well-known that the compactifications of X are in one-to­
one correspondence with the closed subrings :F of C* (X) which contain the
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constants and generate the topology of X (d. [1]' Theorem 3.7.). We are
now in a position to define the Higson compactification and its corona. The
Higson compactification is the compactification associated with the closed
subring :F = Cd(X) c C*(X) [6]. We denote the Higson compactification by

Xd, which depends on the metric d. The corona of this compactification is
the set Xd - X with the subspace topology. We denote the corona of X by

VdX. It is characterized as the compactification Xd such that the real-valued

continuous functions on X that extend to Xd are precisely the ones in Cd(X).
The following proposition was shown in [6].

Proposition 1.1. Supposes that X is non-compact and that d is a proper

metric on X. The Higson compactification Xd is the unique compactification
of X such that if Y is any compact metric space and f : X -+ Y is continuous,

then f has a continuous extension to Xd if and only if f satisfies the (*) d­

condition.

In this paper ~, Nand lIJ)t<denote the real line endowed \vith a usual
topology, the set of all positive integers and a discrete space with cardinality
K, respectively. In section 2, for non-compact metric space (X, d), we show
that the metric d is proper on X if and only if Cd (X) separates points from
closed subsets of X. Let (X, dx) and (Y, dy) be non-compact proper metric

spaces. It is natural to ask a question whether Xdx x ydy is equivalent to
X x yP for some proper metric p compatible with the topology of X x Y.
Y. Iwamoto introduced the notion that two proper metrics d and p on X

are similar (Definition is appeared in section 3.) and he proved that Xd is
equivalent to xP if and only if d and p are similar. In section 3, we show

that if d and max{ dx, dy} are similar, then Xdx x ydy is not equivalent

to X x yd. Assume that (K, dK) is a non-degenerate compact metric space.

Furthermore, we show that if d and max{ dx, dK} are similar, then Xdx x K is

not equivalent to X x Kd• Let (X, d) be a non-compact proper metric space
and n < w. \Ve show that there exists a proper metric p on lIJ)nx X such that

lIJ)nx xP is equivalent to llJ)nx Xd• In particular, if p and p' are similar, then-----p' -d
K x X is equivalent to K x X .

For undefined notation and terminology, see [2] and [3].

2. PROPER METRIC SPACES

In this section we assume that (X, d) is a non-compact metric space. A
subset :F c C*(X) separates points from closed subsets of X provided that
for any closed subset F C X and any x E X - F there is an f E :F with
f(x) f/. chd(X - F). In this section we discuss concerning proper metric
spaces. Now, it is easy to see that Cd (X) separates points from closed subsets
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of X if (X, d) is a proper metric space. In this section we show that the
converse is true. At first, we will prove the following lemma:

Lemma 2.1. IfCd(X) separates points from closed subsets of x, then

diamX = +00.

Proof. Assume the contrary that diamX < +00. Then there exists an
s > 0 such that Bs(x,d) = X. In this case, every element of Cd(X) is a
constant function. In fact, for any f E Cd (X) and any n E N, there exists a
compact subset Kn of X such that diam(f(Bs(x, d))) = diam(f(X)) < l/n
if x tt Kn. This indicates that f is a constant function. This contradicts for
the fact that Cd (X) separates points from closed subsets of X and then the
proof is complete. 0

Lemma 2.1 shows that if d is a proper metric on X, then diamX = +00.
From the Lemma 2.1 we will prove the theorem below:

Theorem 2.2. If Cd (X) separates points from closed subsets of X, then d is
proper on X.

Proof. Assume the contrary that d is not proper. Then there exist an
x E X and an r > 0 such that Br(x, d) is not relatively compact. At first, we
will shmv the following claim below:

Claim. For any y E Br (x, d), there exists a A > 0 such that B). (y, d) :>

Br(x, d) and B).(y,d) =I- Br(x,d).
In fact, from the Lemma 2.1 diamX = +00. Then we can take a point

z E X - Br(x, d) because X - Br(x, d) =I- 0. Put A = 2r + d(x, z) and then
B). (y, d) :> Br(x, d) holds for any y E Br(x, d). Furthermore, since d(y, z) ::;
d(y,x) + d(x,z) < r + d(x,z) < A, z E B).(y,d) and thus B).(y,d) =I- Br(x,d).
Then the proof of claim is complete.

Now, since Br(x, d) - K =I- 0 for any compact subset K of X, we can take
a point y E Br(x,d) - K. Since Cd(X) separates points from closed subsets
of X, there exists an f E Cd(X) such that f(x) tt cllRf(X - Br(x, d)). Put
EO = d(f(x), clrrd(X - Br(x, d))). Let A be as in the Claim and z E B). (y, d)­
Br(x, d). Since B).(y,d) :> Br(x,d) and B).(y,d) n (X - Br(x, d)) =I- 0, we
note that diam(f(B).(y, d))) ~ If(x) - f(z)1 ~ Eo. This is a contradiction and
thus d is proper on X. The proof is complete. 0

From the Theorem 2.2 we can get the following corollary:

Corollary 2.3. Cd (X) separates points from closed subsets of X if and only
if d is proper on X.

3. HIGSON COMPACTIFICATIONS OF PRODUCT SPACES

For compactifications aX and, X of X 1 aX ~ ,X if there exists a contin­
uous map f : aX -t ,X such that f rx is an identity on X. aX is equivalent
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to 'YX provided that if there is a homeomorphism f : aX -t 'YX such that
f rx is an identity on X. (We denote this by writing aX:=::J'YX,) Let (X,d)
be a metric space and A a subset of X. Let d(x, A) and Br(A, d) be denoted
by inf{d(x,a) : a E A} and {x EX: d(x, A) < r} respectively. The following
definition was introduced by Y. Iwamoto.

Definition 3.1 ([5]). Let d and p be two proper metrics on X. We write
d -< p provided that if for any r > 0, there exists a compact set K in X and
Sr > 0 such that Br(x,d) C Bs.(x,p) whenever x E X - K. If d -< p and
p -< d then we say that d and p are similar. (We denote this by writing d :::;p.)

The following lemma was proved by Y. Iwamoto.

Lemma 3.2 ([5]). Let d and p be two proper metrics on non-compact space

X. Then Xd ~ xP if and only if d ==: p.

We will prove the theorem below:

Theorem 3.3. Let (X, dx) and (Y, dy) be non-compact proper metric spaces.---d -dx -dy
Then X x Y is not equivalent to X x Y , where d = maxi dx, dy}.

---d -dx -dy
Proof. Assume the contrary that X x Y :=::J X X Y . Since both X

and Yare non-compact metric spaces, there exist countable infinite closed
discrete subsets Nand M of X and Y respectively. Let us denote these sets
by N = {xn : n < w} and M = {Yn : n < w}. We now construct subsets
PeN and Q C M as subsequences. Let Po = Xo and qo = yo. Since dx and
dy on X and Y, respectively, are proper, there must be Xi (j B3 (Po, dx) and
Yi (j B3(qo, dy). Choose such Xi and Yi and let PI = Xi and ql = Yi. Similarly,
there must be Xi (j Ui<2 B4 (Pi, dx) and Yi (j Ui<2 B4 (qi, dy). Choose such
Xi and Yi and let P2 = Xi and q2 = Yi. Continuing in these fashions we
obtain subsets P = {Pn : n < w} eN and Q = {qn : n < w} C M such that
Pn (j Uk<n Bn+2(Pk,dx) and qn (j Uk<n Bn+2(qk,dy) for any n E N. NO\v, let
D = {tn : tn = (Pn, qn), n < w}. We will verify that B = {Brn (tn, d) : n < w}
is a discrete open collection of X x Y, where r n = (n +1)/2 for n < w. In fact,
it is sufficient to show that {Brn (Pn, dx) : n < w} and {Brn (qn, dy) : n < w}
are discrete open collections of X and Y respectively and then we will show
the following claim:
Claim 1.

(1) I{n : Brn(Pn,dx) n BI/2(X,dx) =j:. 0 and n < w}1 ~ 1 holds for any
xEX,

(2) I{n: Brn (qn, dy )nBI/2(y, dy) =j:. 0 and n < w}1 ~ 1 holds for any Y E Y.
We will show the Claim 1-(1). In fact, assume the contrary that there exist

i, j < wand X E X such that Bri(Pi,dx)nBI/2(X,dx) =j:. 0 and Brj(pj,dx)n
B1/2(X, dx) =j:. 0 hold. Without loss of generality, we may assume that i < j.
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if p r¢ Un<w Brn (tn, d),

if p E Brn (tn, d).

From the assumption above we can take Zk E Brk (Pk, dx) n BI/2(X, dx) for
k = i, j. Then

dX(Pi,Pj)::; dX(Pi,Zi) +dX(Zi,X) +dx(x,zj) +dx(zj,pj)

< HI + 1 + 1 + i.±l < J. + 2- 2 2 2 2 .

However, this contradicts the choice of Pj, dX(pi,Pj) ~ j + 2. By the similar
argument of Claim 1-(1) we can show the Claim 1-(2).

From the Claim 1 we note the following claim:
Claim 2.

(1) I{n: (X x {y}) n Brn (tn, d) i- 0 and n < w}1 ::; 1 holds for any y E Y,
(2) I{n: ({x} x Y) n Brn(tn,d) i- 0 and n < w}1 ::; 1 holds for any x E X.

Then we will define a map f :X x Y -4 [0,1] as follows:

f(p) = { 0,(rn - d(p,tn))/rn,

Claim 3. f E Cd(X x Y).
It is sufficient to show that j satisfies the (*)d-condition. In fact, let c > a

be fixed and let r > O. Then there exists an n < w such that ri > 4r/c for

i ~n. Put K = Ui<n Br; (ti, d). Since d is proper, clxxyBr(K, d) is compact
in X x Y.

Now, if P r¢ clXxyBr(K,d) and Br(p,d) n Br;(ti, d) i- 0, then ri ~ rn >
4r / E:. We will show that diam (J (Br (p, d))) ::; E:. It is sufficient to show that
d(J(p), j(z)) < c/2 for every Z E Br(P, d). To that end of the proof of Claim
3, it is sufficient to consider the following four cases below:

(1) Z E Br(P, d), z E Br; (ti, d) and P E Br;(ti, d),

(2) Z E Br(p, d), Z E Bri (ti, d) and P r¢ Br;(ti, d) for every i < w,
(3) Z E Br(p, d) and P, z r¢ Bri (ti, d) for every i < w,

(4) z E Br(P,d), P E Br;(ti,d) and Z E Brj(tj,d) for some i, j < w withi i- j.

In the case (1), If(p) - f(z) I= Ih -d(p, ti))/ri - h -d(z, ti))/ril = Id(z, ti)­

d(p, ti)l/ri < r/ri < c/4. In the case (2), If(p) - f(z)1 = If(z)1 = Iri ­
d(z, ti)l/ri < r/ri < c/4. In the case (3), Ij(p) - j(z)1 = O. Finally, in
the case (4), without loss of generality, we may assume that i < j. Then
If(p) - f(z)1 ::; c/2 because If(p)1 = Iri - d(p, ti)l/ri < r/ri < c/4 and
If(z)1 = Irj - d(z, tj)l/rj < r/ri < c/4. This completes the proof that
diam(J(Br(p,d))) ::; c. Hence, f satisfies the (*kcondition and then j E

Cd(X x Y).
From Claim 2 for any x E X, there exists a compact set Kx of Y such

that j(p) = a if P E {x} x (Y - Kx). Similarly, for any y E Y, there exists

a compact set Ky of X such that f(p) = a if p E (X - Ky) x {y}. Since-dx -dy --d - -dx -dy
X X Y ~ X x Y , f has a continuous extension f on X x Y . R
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-dx -dy -
denotes X x Y - X x Y. From the facts above we note that f(x) = a if

x E R. Since clxdx xydy D n R =f. 0, we take a point p E clxdx Xydy D n R.

Then we can verify that SUPZEUp If(z) - f(P)1 = 1 for any neighborhood Up of

p. This contradicts the continuity of f and then Xdx x ydy is not equivalent--d
to X x Y . The proof is complete. 0

From Lemma 3.2 we can get the following corollary:

Corollary 3.4. Let (X, dx) and (Y, dy) be non-compact proper metric spaces.
--d -dx -dy

If d ~ max{ dx, dy }, then X x Y is not equivalent to X x Y .

Furthermore, the following theorem holds even if one factor is non- degen­
erate compact metrizable.

Theorem 3.5. Let (K, dK) be a non-degenerate compact metric space, (X, d)

a non-compact proper metric space and p = max{ d, dK}. Then X x KP is not

equivalent to r x K.
---P -d

Proof. Assume the contrary that X x K ~ X x K. Let r be denoted
by a diameter of K and a k E K. We will define a function f :X x K -+ [0, 1]
as follows:

f((x,z)) = { 0,(s-3·dK(k,z))/s, ifzEBs/3(k,dK),

where s = min{r, I}. Then f E C*(X x K). For any y E K we define fy :
X -+ [0,1] by fy(x) = fUx, y)). Since fy E C,j(X), there exists a continuous- -d -
extension fy : X -+ [0,1] such that fy IX= fy. We will define a function
- -=<l - - -d
f : X x K -+ [0,1] as follows: f((x, y)) = fy(x) for any (x, y) E X x K. We

will verify that f E C*(Xd X K) with f IXxK= f. To do this it is sufficient to
show that if p E 1/dX and q E K then f I(XxK)U{(p,q)} is continuous (cf. 6H

of [4]). Let c: > a be given. We must find V open in Xd and W open in K for
which (P, q) E V x W and f((V x W)n(X x K)) c (J((p, q)) -c:, f((p, q)) +c:).

As fq is continuous there exists an open subset V ofr such that p E V and
fq(V) C (Jq(P) - c:/4, fq(P) + c:/4). Thus, if x E V then

f((x,q)) E (J((P,q)) -c:/4']((P,q)) +c:/4).

As f is uniformly continuous there exists d > a such that if (x, v) and (x', w)
are in X x K and p((x, v), (x', w)) < d then If((x, v)) - f((x', w))1 < c:/4. So,
let W = Bo(q, dK). Then if (x, v) E (VnX) x W, then If((x, v)) - f((x, q))1 <
c:/4. Combine this with (1) and conclude that f((V x W) n (X x K)) c- - - ---P
(J((P,q))-c:,f((P,q))+c:). Thusfiscontinuousasclaimed. Since X x K ~
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Xd X K, f satisfies the (*) p-condition. On the other hand, we note that
diam(f(Br+1((y,z),p))) = 1 for any (y,z) E X x K. This is a contradiction
and then the proof is complete. 0

From Lemma 3.2 we can get the following corollary:

Corollary 3.6. Let (K, dK) be a non-degenerate compact metric space and

(X,d) a non-compact proper metric space. If p ~ max{d,dK}, then X x KP-d
is not equivalent to X x K.

In Theorem 3.5 if K is discrete, then there exists a proper metric p com­

patible with the topology of K such that X x KP ~ Xd X K. The rest of this
paper, for the sake of abbreviation, let lIJ)n be denoted by {O, ... , n - 1} for
n <w.

Theorem 3.7. Let (X, d) be a non-compact proper metric space. Then for
any compact discrete space K there exists a proper metric p on K x X such---P -d
that K x X ~ K x X .

Proof. Since K is compact discrete, without loss of generality, we can
consider that there exists an n < w such that K = lIJ)n' Fix an element
Xo EX. Then we will define a metric p : (lIJ)n x X) x (lIJ)n x X) -+ lRas follows:

p((i,x),(j,y)) = { d(x,y), ifi=j,max{d(xo,x) +i,d(xo,Y) +j}, ifii-j.

Then it is easy to see that p is a proper metric on lIJ)n x X and for any
r > 0, Br((i,x),p) = {i} x Br(x,d) if d(xo,x) ~ r. Now, let Y be a compact
metric space and f : (lIJ)n xX, p) -+ Y a continuous map satisfying the (*) P­

condition. Define fi : X -+ Y by fi(X) = f((i,x)) and di : X2 -+ lR by
di(x, y) = p((i, x), (i, y)) for i < n. Then we note that di = d for i < n and it
is easy to see that Ii satisfies the (*)d-condition for i < n and then fi has a- -d - -d
continuous extension fi : X -+ Y. Then we will define f : lIJ)n x X -+ Y as
follows:

j((i, x)) = fi(X),
-d

ifxEX.

Th~n 1:lIJ)n x xd -+ Y is a continuous extension of f.
Conversely, we assume that a continuous map f : (lIJ)n xX, p) -+ Y has a

continuous extension 1 : lIJ)n x -yF -+ Y. For any i < n let fi and di be defined
- -=If. -

as in the argument above. For any i < n define f; : X -+ Y by fi(X) =
1((i, x)) for x E Xd. Since -yFi ~ Xd, f; satisfies the (*)di -condition for i < n.
To that end of the proof, we will show that f satisfies the (*) p-condition. For
any € > 0 be fixed and any r > 0, then there exists a compact set Ki of X such
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that if x (j. Ki, then diam(Ji (Br (x, di))) < c for i < n. Put K := Ui<n {i} X

(KiUclx Br(xo, di)). If (i, x) (j. K, then diam(J(Br((i, x), p))) := diam(J( {i}x
Br(x, di))) := diam(Ji(Br(x, di))) for i < n and then diam(J(Br((i, x), p))) <
c. Hence f satisfies the (*) p-condition. From the uniqueness of IDJn x XP,

IDJn x xP :::::! IDJn x ;rt and then the proof is complete. D

From Lemma 3.2 we can get the following corollary:

Corollary 3.8. Let (X, d) be a non-compact proper metric space, K a com­
pact discrete space, and p a proper metric on X x K defined on Theorem 3.7.

___ p' -d
If p' =: p, then K x X :::::! K x X .
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