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A SPECIAL CLASS OF UNIVALENT OPERATORS

TEODOR BULBOAC;\

ABSTRACT. Let H(U) be the space of analytic functions in the unit disk

U and let h E H(U). We define a subset K({J,-r),h C H(U) such that the
operator A({J,"Y),h : K({J,"Y),h --+ H(U) given by

A({J,"Y),hU)(Z) = [~"Y~Z~ faz jf3(t)h-r-1(t)h'(t)dt] 1/f3

is well defined. Then we determine a class of functions whose images by
A({J,-r),h operators are univalent. In addition, we give some particular
cases of our main result obtained for appropriate choices of h, {3and "y.

1. INTRODUCTION

Let H(U) be the space of all analytic functions in the unit disk U = {z E

C : Izl < 1} and let h E A = {h E H(U) : h(O) = 0, h'(O) # 0, h(z)h'(z) #
0, for 0 < Izi < 1}, For f E K({3,'y),h C H(U) let F = A({3,'y),h(f) where

(1.1) F(z) = [~'~z~ 1z f{3(t)h,-I(t)h'(t)dt] 1/{3, (3" E C.

This type of integral operators and different particular cases were studied in
several papers like [1]' [2]' [3]' [6]' [7]' [8] and others.

In the present paper, first we will determine sufficient conditions on hand
the correspondent classes K({3,,),h such that the operator given by (1.1) will be
well defined. Then we will find a class of functions whose images by A({3,,),h
operator are univalent in U and in addition some particular cases obtained
for different choices of h, (3 and 'Y will be given.

2. PRELIMINARIES

In order to prove our main results, we will need the following definitions
and lemmas presented in this section.
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. .. leh/1 + 2 Re e + 1m e
LIke In [8], let e E C wIth Re e > 0 and let N = N(e) = -------. Ree

Considering the univalent function k(z) = 2Nz2, we define the "open door"1-z
function

(2.1)
(Z+b)

Rc(z) = k --- , z E U.1+ bz

Note that Rc is univalent in U, Rc(O) = e and Rc(U) = k(U) is the complex
plane slit along the half lines Re w = O,Im w 2:: Nand Re w = O,Im w :S

-N.
For f, 9 E H(U) we say that f is subordinate to g, written f(z) -< g(z), if

9 is univalent in U, f(O) = g(O) and f(U) C g(U).
We denote by A = {f E H(U) : f(O) = f'(O) - 1 = O} and let D = {¢ E

H(U) : ¢(z) -# 0 for z E U, ¢(O) = I}.

Lemma 1. !4} Let 4>, ~ E D and let a, /3,"1,8 E C with /3 -# 0, 0.+ 8 = /3+ "1
and Re (a + 8) > o. If f E A satisfies

zf'(z) z¢'(z)

a f(z) + ¢(z) + 8 -< Rc.+O(z),

where Rc is defined by (2.1) and if the function F is defined by

(2.2) F = A{3,-yU) where A{3,-yU)(z) = [/3; "1 lz f{3 (t)t-Y-ldt] 1/{3

then

F(z) [ZF'(z) z~'(z) ]FE A, -z- -# 0, z E U and Re /3 F(z) + ~(z) + "1 > 0, z E U.

(All powers in (2.2) are principal ones.)

A function f E A is called a starlike function of order a, a < 1, if
z!,(z)

Re f(z) > a for all z E U and we denote by 8*(0.) the class of all these
functions.

and
1 "1

q(z) = (3Q(z) - -g

Lemma 2. [9} Let /3 > 0, /3+ "1 > 0 and consider the integral operator A{3,-y

defined by (2.2). If a E [-~, 1), then the order of starlikeness of the class
A{3,-y(8*(a)), i.e. the largest number 8 = 8(0.;(3,"1) such that A{3,-y(8*(0.)) C
8*(8) is given by 8(0.;(3,"1) = inf{Re q(z) : z E U}, where

11(1 ) 2{3(I-c.)
Q(z) = ---=.!.- t{3+-y-1dt.

o 1- tz
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Moreover if a E [aD, 1), where aD = max {{3 - 2~ - 1; - ~} and g = Af3,y(f)
where f E S*(a), then

zg'(z) 1[ {3+, ]Re g(z) >b(a;{3")=-g 2F1(1,2{3(1-a),{3+,+1;~)-' ,ZEU,

where 2Fl represents the hypergeometric function.

The next lemma concerns subordination (or Loewner) chains. A function
L(z; t), z E U, t ~ 0 is called a subordination chain if L(·; t) is analytic and
univalent in U for all t ~ 0, L(z;·) is continuously differentiable on [0, +00)
for all z E U and L(z; s) -< L(z; t) when 0 :s; s :s; t [10, p. 157].

Lemma 3. [10, p. 159} The function L(z;t) = al(t)z + ... with al(t) =J 0
for all t ~ 0 and Hm lal(t)1 = +00 is a subordination chain if and only ift--t+oo

[ 8L/8z]Re z 8L/8t > 0, z E U, t ~ O.

The next lemma is a slight modification of a result of K. Sakaguchi which
provides a sufficient condition for univalence.

1
Lemma 4. [11, Corollary 3} Let Re {3 > -"2 and for F E H(U), with
F' (0) =J 0 let

zF'(z) zFI/(z)

(2.3) J({3, F)(z) = ({3 - 1) F(z) + F'(z) + 1.

1 1
If Re J(l, F)(z) > -"2' z E U or Re J({3, F)(z) > -"2' z E U when {3 =J 1
and F(O) = 0, then F is univalent in U.

The last lemma deals with the univalent solutions of Briot-Bouquet differ­

ential equations and represents a simplified form of Theorem 1 from [5].

Lemma 5. [5, Theorem I} Let {3" E C with {3 =J 0 and let h(z) = c+h1z+· ..
be analytic in U. If Re [{3h(z) + ,] > 0, z E U then the solution of the
differential equation

zq'(z) .

q(z) + {3 ( ) = h(z), wzth q(O) = c,q z +,
is analytic in U and the solution satisfies Re [{3q(z) +,] > 0, z E U.

3. MAIN RESULTS

Our first result gives us sufficient conditions on h function such that the
integral operator (1.1) is well defined.



14 TEODOR BULBOACA

Theorem 1. Let /3" E C with Re (/3 + ,) > 0 and let h E A. Then the
integral operator given by (1.1) is well defined on the subset

K(f3,-y),h = {f E H(U): f(O) = 0,1'(0) -I O,/3z;~~~) + J(r,h)(z) --< Rj3+-y(Z)}.

Proof. In order to prove our theorem we will use Lemma 1 for 0: := /3 and

, := 8. Taking in this lemma ¢(z) = (h~)) "1-1 h' (z) and <I>(z)= (h~Z)) "I,
since h E A we easily deduce ¢, <I>ED.

z¢'(z)

A simple computation shows that ¢(z) = J(r,h)(z) -, hence the con-
dition

zj'(z) z¢'(z) ..

/3 f(z) + ¢(z) +, --< Rf3+-Y(Z) IS eqmvalent to

zj'(z)

/3 f(z) + J(r, h)(z) --< Rf3+-Y(z)

i.e. f E K(f3,-y),h and using Lemma 1 we deduce that the function F
A(f3,-y),h(f) is analytic in U. D

Theorem 2. Let /3" E C with /3 +, > O. For a function h E A we denote
by

m=inf{Re,z:~~~) :ZEU} andby M=sUP{Re,z:~~~) :ZEU}.

Let 8 be a real number such that

(3.1) m - (/3 +,) < 8 ~ min { m; m _ /3 +; - 1 }

and

/3+,
(3.2) max{O; M} ~ 1

2 Fd 1, 2 (/3 + , + 8 - m), /3 + , + 1; 2")

and suppose that h function satisfies the inequality

(3.3)

Re J(-'V h)(z) > -~ - /3+, z E U
" - 2 2Fl(1,2(/3+,+8-m),/3+,+1;~)' .

If f E K(j3,-y),h and Re J(/3, f)(z) > -8, z E U, then F = A(j3,-y),h(f) given
by (1.1) is univalent in U. In addition f is also univalent in U.

Proof. Since f E K(j3,-y),h , using Theorem 1 we have that F = A(j3,-y),h(f)
is analytic in U and by (1.1) we deduce

1 [ h(z) F'(z) ] 1/13(3.4) j(z) = ((3 +,)l/f3F(z) /3 h'(z) F(z) +,
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Letting

1 [ h(z) F'(z) ] 1/13(3.5) L(z; t) = (/3 + ,)1/13 F(z) (1 + t),8 h'(z) F(z) +~( , t 2: 0

we will prove that L(z; t) is a subordination chain. Using (3.5), a simple
computation shows

(3.6)

where

(3.7)

8LI8z zh'(z)

z 8LI8t = (1 +t)T(z) +, h(z)

T( ) = J(,8 F)() zh'(z) _ zhl/(z) - 1
z ,z + h(z) h'(z) .

(3.9)

(3.10)

According to Lemma 3 and using (3.5), to prove that L(z; t) is a subordi­
nation chain it is sufficient to show the next two inequalities:

(3.8) Re T(z) > 0, Z E U and Re {T(Z) +,z:~~~) } > 0, z E U.

From 1'(0) i- 0 we have F'(O) i- 0 and if L(Zit) = a1(t)z + ... we get

lim la1(t)1 = lim 18L~0;t)1 = lim 1(,8F'(~)1/6(t,8+,8+,)1/131 =+00.t-4+OO t-4+OO z t-4+OO + , ,
Since

zp'(z) zh'(z) zh'(z)

J(,8, f)(z) = p(z) + p(z) -, h(z) where p(z) = T(z) +, h(z) ,

using the assumption Re J(,8, f)(z) > -8, z E U, we deduce

{ zp'(z)}Re p(z) + p(z) > -8 + m, z E U.

Considering the differential equation

zp' (z) zh' (z)

p(z) + p(z) = J(,8, f)(z) +, h(z) ,

from (3.1) we have

Re {J(,8,J)(Z) +,z:~;~)} > -8 +m 2: 0, z E U
and by Lemma 5 we conclude that this equation has an analytic solution in
U.

Denoting by q(z) = ,8P(z) , then q(O) = 1 and from (3.9) we obtain+,

{ Zq'(z)} m-8Re q(z) + (,8+ ,)q(z) >,8 +, , z E U.
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Since (3.10) holds, by using Lemma 2 for fJ := fJ + "I, "I := 0, a := ; - 8fJ+"I
we obtain

1
Re q(z) > 1 , z E U

zF1 (1, 2(fJ + "I + 8 - m), fJ + "I + 1; 2)
or

fJ+"I
(3.11) Re p(z) > 1 ' z E U.

zF1(1,2(fJ +"1 + 8 - m),fJ + "I + 1; 2)

From (3.11) and (3.2) we deduce

fJ + "I zh/(z)
Re T(z) > ------------ - Re "1-- >

zF1(1, 2(fJ + "I + 8 - m), fJ + "I + 1;~) h(z)

fJ+"I
> 1 - M ~ 0, z E U,

zF1 (1, 2(fJ + "I + 8 - m),fJ + "I + 1; 2)

hence Re T(z) > 0, z E U.
Similarly, from (3.11) and (3.2) we have

(3.12)

Re {T(Z) + "Izh/(z) } > fJ+"I > 0, z E Uh(z) 2F1(1,2(fJ+"I+8-m),fJ+"I+I;~)

hence both conditions of (3.8) are satisfied and according to Lemma 3, the
function L(z; t) is a subordination chain; thus j(z) = L(z; 0) is univalent in
U.

Using (3.7) we obtain

zh"(z) zh/(z) zh/(z)

J(fJ,F)(z)=T(z)+ h/(z) +1- h(z) = T(z) +"1 h(z) +J(-"I,h)(z)

and by combining this equality with (3.12) and (3.3) we get

fJ+"I
Re J(fJ, F)(z) > 1

2F1(1, 2(fJ + "I + 8 - m), fJ + "I + 1; 2)

1
+Re J(-"I,h)(z) ~ -2"' z E U

hence by Lemma 4, the function F is univalent in U, which completes the
proof of the theorem. 0

4. PARTICULAR CASES

1. Taking h(z) = zeAZ, A:S 1 in Theorem 2, for the case "I E R we have
m = "I - I"II/AI and M = "I + hI/AI· Then (3.3) becomes
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Re [1-'Y(I+AZ)-~] >1+ AZ -

1 f3+'Y
(4.1) I ' Z E U.

2 2F1 (1,2(f3 + 'Y+ a - m), f3 + 'Y+ 1; 2")

. f3+'Y-1

Let consIder the case f3 + 'Y ~ 1 and let a := 'Y- h IIAI - 2 . Then

2Fr(I, 2(f3 + 'Y+ a - m), f3 + 'Y+ 1; t) = 2 and (4.1) is equivalent to

(4.2) Re [-"'AZ - _1_] > _~ - f3 - 'Y Z E U.f 1 + AZ - 2 2'

Since

Re [-"'AZ - _1_] > -I"'IIAI- _1_ Z E UI 1+ AZ I 1_ IAI ' ,

we deduce that (4.2) holds if 21'YIIAI2-(f3-'Y+21'Y1+3)IAI+f3-'Y+1 ~ 0
and using Theorem 2 we obtain:

Corollary 1. Let f3, 'Y E R with f3 + 'Y ~ 1 and let A E C with IAI ::; 1 such
that

and

2hllAI2 - (f3 - 'Y+ 2hl + 3)IAI+ f3 - 'Y+ 1 ~ O.

If f E H(U) with f(O) = 0, f'(O) -# 0 and
zj'(z) 1 .

f3---yr;) + 1 + 'Y(1+ AZ) - 1 + AZ --< R{3+-y(z) satzsfies

f3-'Y-1

Re J(f3, j)(z) > hllAI + 2 ' Z E U

then F = A({3,-y),ze>': (I) is univalent in U; in addition f is also univalent in
U.

Z

2. Taking h(z) = 1 + AZ' A::; 1 in Theorem 2, a simple calculus shows

that if 'Y~ 0 then m = 1 :IAI and M = 1 _'YIAI·

Let consider the case f3+'Y ~ 1 and let a := 1:IAI - f3 +; - 1. By similar
reasons to the first particular case, (3.3) becomes

{ -'Y - 1 1 - AZ } 1 f3 + 'Y
Re --+-- >----- zEU

1+ AZ 1 + AZ - 2 2'
and since

{ -'Y - 1 1 - AZ } -'Y - 1 1 - IAIRe 1 + AZ + 1 + AZ > 1 _ IAI + 1 + IAI' Z E U,
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by using Theorem 2 we have:

Corollary 2. Let {3,,' E R with'Y 2 0 and {3+ 'Y2 1 and let>. E C such that

-'Y - 1 1 - 1>'1 1 {3+ ~(
~ + 1+ 1>'1 2 -2" - -2-

and

If j E H(U) with f(O)

satisfies

1>'1 < /3 - 'Y .
- (3+'Y

1 z!,(z) 1- >.z

0, j (0) ¥- 0 and (3 j(z) + 1 + >.z -< R;3+',(z)

'Y

- 1 + 1>'1' z E U
is univalent in U,. in addition f is also univalent in

(3+'Y-1
Re J({3, f)(z) > 2

then F = .4(;3,,), 1+\= (I)
U.
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